
Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada

NIME03-213

Dsp.rack: Laptop-based Modular, Programmable Digital
Signal Processing and Mixing for Live Performance

William Kleinsasser
Towson University

Department of Music
8000 York Road

Baltimore, MD 21252 USA
wkleinsasser@towson.edu

ABSTRACT
This document describes modular software supporting live
signal processing and sound file playback within the
Max/MSP environment. Dsp.rack integrates signal
processing, memory buffer recording, and pre-recorded
multi-channel file playback using an interconnected,
programmable signal flow matrix, and an eight-channel i/o
format.

KEYWORDS
Digital signal processing, Max/MSP, computer music
performance, matrix routing, live performance processing.

1. INTRODUCTION
Dsp.rack is a suite of Max/MSP modules that run on a

Macintosh Powerbook, iBook, or desktop computer with a
G3 500 mHz or faster CPU. Dsp.rack uses the familiar
paradigm of combined mixer, patch bay, and signal
processors for integrating electronic music with live
performance. Dsp.rack was developed to take advantage of
the familiarity of this paradigm and the decades of
performance practice related to it. Building on the flexibility

offered by software-based systems, Dsp.rack integrates the
functions of programmable mixing, routing, and audio
processing along with the ability to play overlaid, pre-
recorded sound files. Dsp.rack was designed to offer a
familiar, flexible, and open-ended entry point to composers,
performers, students, and teachers.

2. THE DESIGN
Dsp.rack is available in two versions which offer

beginning and more advanced environments for live
performance. Dsp.rack version 1 uses a menu-driven crossbar
method for routing signals. This version offers a flexible
and simple approach to integrating signal input, routing,
processing, mixing, and output. Version 2 uses the matrix~
object for routing that supports programmable, complex,
signal flow combinations. Having been developed in
Max/MSP, Dsp.rack also benefits from the open sharing of
resources that comes with that environment.

A basic set of processing modules is included with the
distribution of Dsp.rack and a mini-tutorial on integrating

Figure 1: dsp.rack screens

Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada

NIME03-214

additional user-designed modules is provided. The mixer
and patch bay are extendable and limited only by screen
saturation and processing speed of the computer.

Running on a Powerbook with an eight-channel i/o
converter like the RME Hammerfall or MUTO 828, Dsp.rack
can support eight independent input and output channels for
processing. With other i/o hardware, like the MOTU 2408, i t
can support up to 24 channels. This makes Dsp.rack capable
of instrumental and vocal ensemble processing with multi-
channel output.

Figure 2: dsp.rack block diagram

3. INTEGRATED SIGNAL PROCESSING
AND PRE-RECORDED SOUND FILE
PLAYBACK

The integrated performer+tape paradigm that flourished
after 1960 offers a model of musical expression that expands
the capabilities of acoustic music through integration with
electronic studio environment. Composers have produced a
repertoire that presents acoustic performance in the context
of technologically transformed music on tape but the
synchronization issues involved in performer+tape music
remain a concern in these works. Dsp.rack is designed to
support live interactive signal processing as well as
performer+tape repertoire.

This is done by offering the ability to present pre-
recorded, overlapping sound files using a method for mixed
overlaying that enables performance timing flexibility. The
sound file player module loads and plays sound files using
four independent multi-channel players. Sound files can
either be routed directly out to the sound system or, using
the flexible signal flow matrix, they can be routed to the
inputs of the other processing modules. Dsp.rack can layer
sound files with as many channels as the i/o supports
depending on sufficient drive speed, i/o buffering, and CPU
loading.

4. PERFORMANCE AND CPU LOAD
CPU load is directly related to the processing intensity

and number of simultaneous modules used as well as the i/o
vector sizes. Running several simultaneous dsp modules, an
8-channel mixer, and 8-channel i/o, Dsp.rack uses about 35%
of the CPU on a 1G G4 Powerbook. The same setup uses
about 75% of a 500 mHz G3 Powerbook. Dsp.rack uses the
mute object for enabling and disabling each individual dsp
processor which is useful for handling collections of
processor-intensive modules.

Dsp.rack provides a path to familiar, personally
expandable tools for integrating computer music with live
performance and it is hoped that it will prove attractive to
composers, performers, students, and those who teach others
entering the field of live electro-acoustic music.

Figure 3: Version 2 matrix-driven routing

5. ACKNOWLEDGMENTS
The audio processing in Dsp.rack is based on standard-

issue Max/MSP objects with the exception of the tap.shift
pitch shifting object which is distributed with Dsp.rack by
permission from its programmer, Timothy Place.

Dsp.rack owes to the following Max/MSP developers who
have offered models and suggestions during development:
Cort Lippe, Miller Puckette, and Erik Ona who developed
models for crossbar mixing and routing methods using
menu-driven send/receive signal flow. The approach of
modular dsp functions in an integrated software environment
relates to work by Cort Lippe (compositions) and Zack Settel
(multi effects processor, Jimmies) Christopher Dobrian and
Cort Lippe offered help on the buffer writing method and
other audio handling. Daniel Koppelman provided the preset
advancing method. The sound file playback and delay
methods were developed in order to help, and deriving help
from, my students Brian Comotto, Daniel Hope, Ljiljana
Jovanovic, Scott Leake, and Nicholas Schoeb. Thanks to
Miller Puckette and David Zicarelli for developing Max and
Max/MSP and to the Max/MSP developers who share their
solutions and ideas.

Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada

NIME03-215

6. REFERENCES
[1] Dobrian, C. Programming New real-time DSP

Possibilities with MSP, Proceedings of the 2nd COST G-
6 Workshop on Digital Audio Effects (DAFx99), NTNU,
Trondheim, December, 1999

[2] Lippe, C. A Look at Performer/Machine Interaction
Using Real-time Systems, Proceedings of the
International Computer Music Conference, Hong Kong,
1996

[3] Lippe, C. A Composition for Clarinet and real-time
Signal Processing: Using Max on the IRCAM Signal
Processing Workstation, Proceedings of the 10th
Italian Colloquium on Computer Music, Milan, 1993

[4] Lippe, C. Music for Piano and Computer: A Description,
Information Processing Society of Japan SIG Notes,
Volume 97, Number 122, 1997

[5] Place, T. tap.tools, Silicon Prairie Intermedia,
http://www.sp-intermedia.com/downloads/index.html

[6] Puckette, M. New Public-Domain Realizations of
Standard Pieces for Instruments and Live Electronics,
Proceedings, International Computer MusicConference,
2001

[7] Rowe, R. Interactive Music Systems: Machine Listening
and Composing, The MIT Press, Cambridge, 1993

[8] Settel, Zack, Jimmies, lecture/demonstration at the
Max/MSP workshop at the University at Buffalo, June,
1999, Buffalo, NY

[9] Zicarelli, D. An Extensible Real-Time Signal Processing
Environment for Max, Proceedings of the International
Computer Music Conference, Ann Arbor, 1998i

i More about Dsp.rack can be found at:
http://concert.towson.edu/WK/dsp.rack

http://www.sp-intermedia.com/downloads/index.html
http://concert.towson.edu/WK/dsp.rack

