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ABSTRACT 
In this paper, we describe an adaptive approach to gesture 
mapping for musical applications which serves as a mapping 
system for music instrument design. A neural network approach is 
chosen for this goal and all the required interfaces and 
abstractions are developed and demonstrated in the Pure Data 
environment. In this paper, we will focus on neural network 
representation and implementation in a real-time musical 
environment. This adaptive mapping is evaluated in different 
static and dynamic situations by a network of sensors sampled at a 
rate of 200Hz in real-time. Finally, some remarks are given on the 
network design and future works. 

Keywords 
Real-time gesture control, adaptive interfaces, Sensor and actuator 
technologies for musical applications, Musical mapping 
algorithms and intelligent controllers, Pure Data. 

1. INTRODUCTION 
Gestural control of musical events has become a trend in 
computer music over the past years. Rapid growth of sensor 
technologies and their processing tools in addition to the growing 
computing power of personal computers have made this 
technology available to the computer and electronic music 
communities. On the other hand, most sensor mapping approaches 
are fixed and confined to few parameters thereby do not allow 
much control and freedom over musical events. On the other 
hand, from an instrumental view, the problem of mapping is 
essential for any new instrument design and the rapid growth of 
technology is asking for new and intelligent mapping algorithms 
and controllers. 

Our aim was to implement an intelligent black-box that adapts to 
gestures performed by the user. The black-box would accept 
parameters describing physical gesture as input and generates the 
desired high-level parameters as output. For this augmented 
mechanism of mapping, we have chosen adaptive neural networks 
which would learn automatically during a training phase. 

Comparing to conventional methods of mapping, this system has 
the following advantages: 

• The user can work directly with the desirability of 
correspondence between gesture and produced results, rather 
than the complex mechanism of the mapping algorithm 

• The empirical approach of neural networks can evade the 
complexity of formalizing the problem 

• The system can perform well even in the presence of non-
linearity and noise in the input 

• Ability to make mappings of ‘unseen’ input patterns 

• Cheap computation compared to other methods of complex 
mappings 

• Neural Networks do not require expertise to train and 
maintain the network. 

2. HISTORICAL REMARKS 
Among works in adaptive interfaces for musical control, we cite 
two that have most influenced our approach. 

A Neural Network Interface between a Data-Glove and a Speech 
Synthesizer has been implemented by Sidney S. Fels and G. 
Hinton in University of Toronto [1].  This system recognizes the 
hand gestures of sign-language using adaptive neural networks.  
The networks’ output is the parameters for a speech synthesizer.  
The trained networks are small enough to achieve real-time 
performance, however the training sessions are heavy and the 
system was not developed in a musical environment. 

In another approach and concerned with the other aspect of 
adaptive interfaces, i.e. the training, the Center for New Music 
and Audio Technologies has implemented a simple back 
propagation with forward-pass as an external (called “mlp”, short 
for "multi-layer perceptron") for Max/MSP programming 
environment [2]. This implementation is among the first of such 
interfaces in a real-time musical environment and the graphical 
interface allows the user to train and obtain a network with ease. 

The main interest of Glove-Talk for our application is the Neural 
Network concept and architecture for the gesture recognition.  
The interest of CNMAT’s “mlp” object lies in the training 
interface implemented in Max/MSP real-time programming 
environment. 

3.  OVERVIEW OF THE SYSTEM 
The system consists of two different stages: the first being the 
network design and the second the real-time application. 
In the first stage—training and design of the network—we use 
Neural Network simulators such as SNNS and Matlab’s Neural 
Network Toolbox. Software developed at La kitchen takes the 
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networks designed in these simulators and produces text files that 
consequently serves as input for the Neural Network abstractions 
in Pure Data real-time music programming environment [5]. Our 
final goal is to implement a neural network training environment 
in Pure Data itself that handles several architectures and network 
schemes useful for instrumental and gestural system design. 
During this research, several network architectures and training 
schemes were evaluated and those suitable for general musical 
applications were implemented for further use. We experimented 
with two general architectures:  Static-networks and Dynamic-
networks. In a static network, we map the data without any use of 
time-delay for recognition and in dynamic application we use 
time-delay that introduces a notion of memory in a pattern 
recognition problem and allows gesture mapping and control.  
In the second stage, data acquisition is done using series of 
sensors that describe gestures.  A sensor interface routes this data 
to a real-time software environment containing a trained neural 
network.  Finally the neural network produces the desired 
parameters for event generation and continuous control of a 
musical process or application. A well-trained neural network 
system in general, would generalize its knowledge and respond to 
unseen gestures appropriate to defined preferences. 
The interest of the adaptable mapping lies in the ability to use any 
input device for mapping. For the sake of this research, data 
acquisition is done using La kitchen’s sensors and the “Toaster” 
or the wireless “Kroonde” interfaces [3] (see Figure1).  These 
interfaces provide the gesture data to a real-time musical 
application using the OpenSoundControl protocol [4]. 
Preprocessing operations designed with the interface and sensors, 
prepare the desired inputs for the trained network. Sensors and 
interfaces designed in La kitchen allow a time resolution input of 
5ms (equivalent of 200Hz) with 10-bit precision for “Kroonde” 
and 16-bit precision for “Toaster” which would allow high-
resolution control over the events. 
 

 
Figure 1. Kroonde and Toaster, high-resolution real-time 

sensor interfaces. 
For the real-time musical environment, Pure Data [5] is chosen 
for its availability, open-source license and its active community. 
Data acquisition patches were already available for the mentioned 
sensors and interfaces along with some preprocessing tools in 
Pure Data developed at La kitchen. Neural network abstractions 
are created in Pure Data which take a trained network and 
perform the network operations. For their design, we had the 
following constraints in mind: 

• High-level and easy interface 

• General network implementation that minimizes the 
sophistication of huge networks 

• Real-time performance 

4. NEURAL NETWORK REALIZATION IN 
PURE DATA 
A general neuron is presented in Figure 2. A designed network 
consists of a series of additions and multiplications along with a 
transfer function. Each neuron’s operation can be considered as 
vector operations. 
 

 
Figure 2.  A neuron model in a neural network 

 
A neural network is made up of layers, each of which contains 
several neurons. With the above model, problems arise when 
constructing more complicated networks that demand a large 
number of neurons. To solve this sophistication, we consider each 
layer as a matrix operation as shown in Figure 3. In this approach, 
the number of neurons used depends on the size of the input 
vector and weight matrix and all operations including the transfer 
function would be on matrices instead of numbers. Most matrix 
operations for this purpose are available through Pure Data’s 
Zexy library. 
 

 
Figure 3.  Matrix representation of a layer in a neural 

network 
Figure 4 shows a Pd realization of a layer in neural network.  
Each layer, despite the number of neurons will be represented by 
one abstraction and reduces the complexity of network 
representation. The left inlet accepts the input arranged as a 
matrix and other inlets would be the trained network parameters 
which are: layer’s weight matrix (equivalent of w in Figure 5), 
layer’s bias vector (equivalent of b in Figure 5) and the transfer 
function. These trained parameters are loaded only once into the 
patch. The transfer function is selected by sending a symbol to the 
inlet which can be either a log-sigmoid or tan-sigmoid functions. 
Due high-level representation of network parameters, more 
transfer functions can be defined by the interested user. In our 
applications so far, we have not encountered any need for others. 
The two mentioned transfer functions output data in a range of 
[0,1] and [-1,+1] respectively which is useful to know for 
designing the network. 
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Figure 4. Pd abstraction of a layer of a neural network 

For time-delay considerations- to be elaborated in the following 
sections- we prepare the inputs of a neural network using down 
sampling and constructing delay lines.  
Using the above abstraction, we have constructed a time-delay 
feedforward neural network which can be used for mapping and 
gestural recognition systems.  There is only one mathematical 
function which is written as an external for PD. The high-level 
aspect of this realization allows easy modification of the 
architecture and implementation of other architectures using the 
same concept. Figure 5 shows the details of a two layer neural 
network which will be used as a single abstraction in a mapping 
system patch.  

 
Figure 5.  Details of a two-layer network patch 

5. TRAINING THE NEURAL NETWORK  
Network design and training is the first step towards constructing 
a network for real-time mapping. For this, the user will need some 
predetermined input samples, their targets and a defined 
architecture to start the training. 
The training session of a neural network does not require an 
expertise to realize the network. An empiric approach with trials 
and errors would eventually make the network converge to the 
desired behavior. However, a clever choice of network 
architecture and parameters would save a lot of time in realizing 
the network. 
In our experience, for most musical applications, a maximum of 
three hidden layer seems to suffice. While use of excessive 
neurons makes the network converge more rapidly, it degrades 
the generalization in most applications. There is no law 
determining the number of neurons needed; this factor is realized 
by a heuristic approach towards the design of neural networks. 
There are numerous learning methods available in the neural 
network literature. For sensor mapping applications, batch 
training suffices for convergence. However due to high non-
linearity of sensors, the most convenient method does not 
necessarily converge. We have found that for most sensor 
mapping applications, the Reduced-Memory-Levenberque-
Marquardt algorithm [6] converges with acceptable 
generalization.  

After the training is done and results are satisfactory, network 
weights and parameters are automatically prepared as Pd MTX 
files to be used in the real-time application. 
 

6. REAL-TIME  APPLICATION 
At this point, we will examine the neural network mapping for 
two different applications: a static network which would map a 
sensor network to a simple spherical coordinate and a dynamic 
network for pattern recognition of a circular movement using a 
network of sensors. 

6.1 Static Networks 
Two experiments were performed: the first with two magnetic 
sensors on the palm, and the second with one flexure sensor and 
one magnetic sensor on the ankle and near the shoulder 
respectively.  The goal was to map these input values to Cartesian 
and Spherical coordinates. A total of 25 points were used as 
samples for network training. 
Satisfactory behavior is observed for a two-layer network 
architecture with a goal of 0.01 and network parameters are 
exported to Pd MTX files. 
The network realization using the abstractions discussed in 
section 4 is shown in Figure 6.  Sensor inputs are routed using the 
OSC protocol and from the wireless Kroonde interface. The 
sensor data is preprocessed, calibrated and fed into the network. 
As is seen in the figure, only one neural network abstraction is 
presented in the patch which takes care of all the mapping. All the 
rest are data acquisitions and preprocessing. 
Real-time performance is achieved using 200Hz data entrance and 
the final layer output would correspond to the desired behavior 
and can be used for further control.  
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Figure 6.  Pd patch for a static network application 

6.2 Dynamic Networks 
At this stage, our interest is to implement dynamic networks 
which evolve with time. Gesture recognition is one application. In 
this manner, we chose to experiment with a circular movement 
recognition using two accelerometer sensors in two perpendicular 
axes. For this reason, we use down sampled time delay vectors as 
entry which introduces a notion of memory for the recognition 
system.  
Sample/target acquisition for training is similar to the previous 
section but in most applications like this, the target should be 
assigned manually. We used the Gaussian approach suggested by 
Fels and Hinton [1] in assigning the target values for each 
recorded gesture. The training, although heavier than before, 
converges for more number of neurons and more tries are 
necessary to meet satisfactory generalization behavior. Figure 7 
shows the Pure Data realization of this gesture recognition 
system.  

 
Figure 7.  A Gesture Mapping sample network in Pd 

The output is presented as a ‘bang’, that is a bang is observed 
once the gesture is recognized and a threshold, set and observed 
during training, is used for this recognition. The same system can 
be used for more gestures (more bangs) but needs heavier 
training. 
As before, real-time performance is achieved and the network can 
be used beside other tasks for control of events and high-level 
parameters. One important aspect of this experience is the 
generalization behavior of the system. We trained the system with 
6 constant speed circles and the network response to a large 
variety of circles (different speeds and sizes) is satisfactory. 

7. FUTURE  WORK 
Still the training is being done in a Neural Network simulator. 
One main goal of this project is to construct a training interface in 
Pd environment with the same design principle shown above. 
When using several gestures at the same time, the training 
becomes very heavy. Although this is a trade-off of the high-level 
accessibility, we will consider parallel approaches with neural 
networks for this application in the future. 

8. CONCLUSIONS 
A general Neural Network mapping scheme was suggested for 
musical applications due to several reasons, notably ability to 
generalize the knowledge and its easy and friendly interface. 
Neural Network abstractions are implemented in the Pd 
environment using very few externals, in a way that would 
minimize sophistication of dealing with unnecessary network 
parameters and complications. Following this, two main 
applications have been developed and tested using high-speed and 
high-resolution sensor interfaces, achieving real-time application. 
This work finds applications in live and interactive performances 
and live control of events using a sensor network. Eventually, the 
user will be able to define and construct a desired mapping to 
high-level parameters. 
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