
The Smart Controller Workbench
Angelo Fraietta

University of Western Sydney
PO Box 859

Hamilton NSW 2303 Australia
+61-2-49697577

angelo_f@bigpond.com

ABSTRACT
The Smart Controller is a portable hardware device that responds
to input control voltage, OSC, and MIDI messages; producing
output control voltage, OSC, and MIDI messages (depending
upon the loaded custom patch). The Smart Controller is a stand
alone device; a powerful, reliable, and compact instrument
capable of reducing the number of electronic modules required in
a live performance or installation, particularly the requirement of
a laptop computer. More powerful, however, is the Smart
Controller Workbench, a complete interactive development
environment. In addition to enabling the composer to create and
debug their patches, the Smart Controller Workbench accurately
simulates the behaviour of the hardware, and functions as an in-
circuit debugger that enables the performer to remotely monitor,
modify, and tune patches running in an installation without the
requirement of stopping or interrupting the live performance.

Keywords
Control Voltage, Open Sound Control, Algorithmic Composition,
MIDI, Sound Installations, programmable logic control,
synthesizers, electronic music, Sensors, Actuators, Interaction.

1. INTRODUCTION
Many composers today are creating gesture based interactive
instruments and responsive environments, predicated on the
detachment of the excitation and sonification [24], enabling
composers to map physical and conceptual gestures to musical
parameters [27]. In many cases, the instruments are implemented
in three stages [25]: a sensing stage, whereby data is collected
using transducers or sensor devices that detect change in the
physical environment; a processing stage for mapping or
manipulation, whereby the data is applied to algorithms or
patches; and a response stage, where the manipulated data is sent
for sound generation to a synthesizer, such as on-board DSP or a
MIDI synthesizer; or an electro-mechanical instrument, such as
LEMUR’s musical robots [4] and the Interactive Bell Garden [7,
19]. The demarcation between the successive stages can be
reduced by combining two or more of the stages on a single
machine, as is currently done in programs like MAX/MSP [25]

and PD [22].

The Smart Controller is a portable hardware device that can
combine all three stages into a single unit. The Smart Controller
responds to input control voltage (hereafter CV), Open Sound
Control (hereafter OSC) [28], and MIDI messages; producing
output CV, OSC, and MIDI messages (depending upon the loaded
custom patch). The power of the Smart Controller, however, is
not primarily based upon its processing power; rather it is founded
upon the ease and degree of control that composers have in being
able to develop and refine algorithms for the device using the
Smart Controller workbench, a software API and simulator.

2. HISTORY
The idea of the Smart Controller was seeded when the author
collaborated with Guy Robinson in the development of the Virtual
Drum Kit, which entailed a drummer playing an imaginary drum
kit [6]. The instrument required a CV to MIDI converter and a
computer running Max [23] to decode and remap the MIDI. The
author dreamed about the possibility of one day integrating the
control voltage input and the data filtering and algorithmic
components into a single small hardware device. This dream
became a reality in the Smart Controller due to the inspiration of
two products that on the surface appear unrelated: a music
program for algorithmic composition and a hardware device used
to monitor and control water pump and sewage stations. The
Smart Controller was therefore inspired in two parts: as a software
package and as a hardware device.

2.1 Software Inspiration
The software component of the Smart Controller was originally
inspired by the Max programming language [23] while the author
was still an undergraduate. Max was only available for the Apple
Macintosh platform at that time; the author, however, did not own
a Macintosh. Subsequently, he developed Algorithmic Composer
[5] for Microsoft Windows so he could continue to create
algorithmic music using the patching paradigm used by Max.

Algorithmic Composer was written with the view that it could be
later ported to other platforms and operating systems—this
underlying code became the domain logic code of the Smart
Controller [6].

2.2 Hardware Inspiration
The hardware concept for the Smart Controller was inspired by a
program called ISaGRAF, “a control software environment that
enables the creation of local or distributed control systems” [11,
12]. The author was first introduced to this environment when
developing firmware for Serek Controls (formerly Hunter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Nime’05, May 26-28, , 2005, Vancouver, BC, Canada.
Copyright remains with the author(s).

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

46

Watertech); where ISaGRAF was used to program, control, and
monitor programmable logic controllers used for controlling water
pump stations through telemetry [3, 14].

One of the graphical languages ISaGRAF uses is called “function
block diagram” and is like a set of interconnected graphical
objects [16], a software equivalent to connecting electronic chips
with virtual wires [21]. This method of programming is the same
paradigm used by iconic music programs such as Max and PD.

An impressive feature of ISaGRAF is that an engineer can
develop the algorithm for the programmable logic on a desktop
computer, simulate the hardware within the development
environment, and then download the algorithm to the hardware
device through a communications port or network. More notable,
however, was the ability for an engineer to connect to the
embedded device through the network and monitor the internal
variables within the development environment, almost as if the
algorithm was being run on the local desktop computer.

3. SMART CONTROLLER SYSTEM
The Smart Controller system consists of a physical hardware
device and a software workbench that performs the functions of
patch editor, simulator, and hardware debugger.

3.1 Hardware Device
The hardware device comes in differing levels of functionality,
enabling a person to add to their hardware configuration as their
requirements change. The first level is the Dumb Controller,
which is simply a MIDI to CV / CV to MIDI converter, and has
been used by various artists who have chosen to use a personal
computer for the processing stage of their performance [1, 2, 10,
17, 20]. The next level is the Dumb OSC Converter, CV to OSC /
OSC to CV converter, which is similar to the Dumb Controller
except that it also performs OSC conversion. The final level, the
Smart Controller, integrates the processing stage inside the
hardware, removing the requirement for a personal computer for
the processing stage.

All versions have up to sixteen of each of the following CV inputs
and outputs: 0-5VDC ten-bit analogue inputs, switched digital
inputs, 0-5VDC digital outputs, and 0-10VDC eight-bit analogue
outputs. The analogue inputs are scanned once every six
milliseconds while the digital inputs are scanned once every
millisecond. The devices have one MIDI input and two
independent MIDI output ports.

Within the later two versions, the number of CV and MIDI inputs
and outputs can be doubled through the addition of another I/O
board, resulting in thirty-two of each type of CV, two MIDI
inputs and four MIDI outputs. These devices also have an
Ethernet port and can communicate using OSC; reading OSC
messages from ten different UDP ports simultaneously and
transmitting OSC on any number of ports.

Instead of basing the Smart Controller upon hardware and specific
compilers, the system is based upon the patching and connection
algorithm originally developed in Algorithmic Composer and later
refined and optimized for use within an embedded system. It is
portable to a number of different hardware platforms and
operating systems as demonstrated in the simulator
implementation for the Windows and Mac OSX operating systems
[8]. The hardware device uses the Real Time Executive for

Multiprocessor Systems (hereafter RTEMS), an RTOS originally
developed for the US Army Missile Command. RTEMS currently
runs on more than forty different hardware platforms [8], which
means that the Smart Controller can be easily ported with RTEMS
as the underlying RTOS to many other hardware platforms as they
become available or necessary. It would be possible to add DSP
to the Smart Controller later using PD, which has already been
shown to work in an embedded system [13], while providing a
mechanism whereby objects can be manipulated and accessed
externally [15].

3.2 Workbench
The workbench is a software program that is used to program,
simulate, and debug the hardware device.

3.2.1 Patch Editor
The patch editor is a graphical interface used by the composer to
create and modify patches. The workbench consists of two
components: the graphical user interface (hereafter GUI), which
determines how the patches are displayed on the user’s screen;
and the Smart Controller engine, which is the underlying domain
logic. The workbench can operate in simulation mode, where the
objects are created within the same process as the workbench; or
in monitor mode, where the GUI displays the objects that are on
the embedded device. The underlying logic of the patch is not
contained within the graphical environment; instead, the graphical
environment makes calls to the underlying Smart Controller
engine. This gives the composer or performer the flexibility to
monitor and adjust the visual representation without affecting the
logical structure.

While the workbench is in simulation mode, the patches are
created within the same process space as the GUI. This would be
similar to starting MAX and creating a patch—the patch actually
exists on the computer that has the GUI. When the workbench is
operating in monitor mode, the GUI makes calls to the hardware
through the communications link—such as an Ethernet or RS232
port—displaying the information in the same way as would be
done in simulation mode.

In order to make the GUI identical for as many platforms as
possible, the distributed workbench for Windows and OSX is
written and distributed as a JAVA package, with the underlying
engine written and compiled in ANSI C++ [26]. The GUI
communicates with the engine using the Java Native Interface,
which enables Java code to call functions written in native
compiled languages such as C and C++ [18].

The patch editor provides three primary graphical representations
of the patch: performance view, tree view, and edit view.

3.2.1.1 Performance View
The performance view enables the composer to view part of or all
of a patch in a diagrammatic format, representing the objects as
icons, and connections as lines between the objects. Objects are
easily connected together when in performance view. Inlets are
represented at the top of the icons, while outlets are on the
bottom. This is very similar to the representation used by Max
and PD.

Within the performance view, it is possible to alter the text that is
inside each icon so as to display the name or the current default
attribute value of the objects, as shown in figure 1.

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

47

Figure 1 Smart Controller performance view

3.2.1.2 Tree View
The tree structure displays all objects, connectors, and views
within the context of the entire patch structure. Each patch or
sub-patch is represented in the tree with three branches: Objects,
Connectors, and Views. The objects, connectors, and views have
the name of the object in text next to the icon. The Objects branch
displays all objects that are within the first level or layer of
abstraction within the patch relative to the Objects branch. If an
object within the branch is a patch, it also has three branches,
which displays the next level of encapsulation or abstraction.
Figure 2 displays the tree view of an object that contains a sub-
patch.1

Figure 2 Tree view displaying objects within a sub-patch

3.2.1.3 Edit View
The edit view allows manipulation of an object’s internal data. In
the same way that an object has parts inherited from a common
ancestor and parts that are unique to the object type, the edit
window has different pages that enable access to the appropriate
data. The pages are separated as Attributes, Connections, and
Comments, indicating the type of information accessed by the
page.

Figure 3 Object attributes and connections pages

The object attributes page, shown on the left of figure 3, allows
the user to display and modify the internal attributes of the object.
The connections page, shown on the right of figure 3, allows the

1 A sub-patch is equivalent to a patch containing a patcher object

in Max.

user to display information about all the connections to the object
and allows the user to alter the order in which the connectors are
called in the outlets.

The left side of the connections page displays the inlets, while the
right displays the outlets. The inlet or outlet number can be
selected by selecting the appropriate tab at the top of the window,
which in turn displays the connectors that are attached to the
object through the selected inlet or outlet. Selecting the connector
causes the connector to become highlighted in the performance
view. The details about the connector can be found by displaying
the connector edit view, shown in figure 4.

Figure 4 Connector edit view

The connector edit view displays the two objects and associated
inlets and outlets joined by the connector. It is possible to display
the edit view of either or both of the objects, which in turn causes
the selected object to become highlighted within the performance
view, making it possible to navigate between the objects and
connectors using the object and connector edit views.

3.2.1.4 Alternative Patch Editors
Although the Java version of the patch editor is extremely
detailed, the patch editor can be modified by third party
developers to create a completely different interface because the
source code is available online [9]. It is also possible to develop a
patch editor in other languages or environments—such as Visual
C++, Visual Basic, Delphi, Code Warrior, Cocoa, and Xcode—
because the Smart Controller engine exists in the underlying
shared libraries.

3.2.2 Simulator
The workbench can be used as an alternative to algorithmic
software packages such as Max or PD. When in simulation mode,
OSC and MIDI messages are communicated through the Ethernet
and MIDI ports of the computer running the simulator, which
means that a composer or performer can use the simulator as a
performance tool without ever acquiring the Smart Controller
hardware device. This occurred at the Newcastle Electrofringe
festival2 where the Smart Controller simulator was used to
demonstrate how OSC can be used to transmit messages between
different computers.

CV inputs and outputs can be simulated on the workbench by
displaying the Smart Controller simulator input and output
windows. The composer can simulate an analogue input by
manipulating sliders, or a digital input by selecting a checkbox.
Simulated CV output is displayed as a slider for analogue output
or as a small panel for digital output. This effectively enables a

2 http://www.electrofringe.org/

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

48

composer to simulate an entire installation performance before
obtaining the Smart Controller hardware.

3.2.3 Debugger
It is possible within the workbench to connect to and monitor any
number of Smart Controller hardware devices on a network. After
detecting a Smart Controller, the patch inside the Smart Controller
can be read back into the workbench, allowing the user to utilise
the advanced features of the patch editor. Furthermore, it is
possible to create and modify patches within the embedded device
without stopping the existing patch or performance.

4. CONCLUSION
The Smart Controller Workbench provides a high level interactive
development environment that enables composers to effectively
develop, test, and modify their electro-acoustic and electro-
mechanical instruments and installations in real-time. It also
allows real-time patching to take place, altering the algorithm
during performance without stopping the existing program.

5. ACKNOWLEDGMENTS
With respect to the OSC implementation, I would like to thank the
Australia Council for providing funding, and Chris Johns of
Cybertec Pty. Ltd. (http://www.cybertec.com.au/) for developing
the CS8900A device driver for RTEMS.

I acknowledge the Apple University Consortium (AUC) for their
provision of an Apple Computer.

This project has been assisted by the Commonwealth Government
through the Australia Council, its arts funding and advisory body.

I would like to thank Dr Garth Paine for his encouragement and
support as my Ph.D. supervisor.

6. REFERENCES
[1] Brown, A. Australian Digital Instrument Building. in

Converging Technologies: the Australasian Computer Music
Conference. 2003. Western Australian Academy of
Performing Arts, Edith Cowan University: Australasian
Computer Music Association.

[2] Clemen, H. Interfaces for Public Use Interactive
Installations: Some Design Concepts, Problems and Possible
Solutions. in Converging Technologies: the Australasian
Computer Music Conference. 2003. Western Australian
Academy of Performing Arts, Edith Cowan University:
Australasian Computer Music Association.

[3] Entus, M., Running lift stations via telemetry. Water
Engineering & Management, 1989. 136(11): p. 41-43.

[4] Eric Singer, et al. LEMUR’s Musical Robots. in
International Conference on New Interfaces for Musical
Expression (NIME). 2004. Shizuoka University of Art and
Culture, Hamamatsu, Japan.

[5] Fraietta, A., Algorithmic Composer. 1998, University of
Western Sydney.

[6] Fraietta, A. Smart budgeting for a Smart Controller. in
Waveform 2001: the Australasian Computer Music
Conference. 2001. University of Western Sydney:
Australasian Computer Music Association.

[7] Fraietta, A. Incremental sound installation development
using the Smart Controller. in Converging Technologies: the
Australasian Computer Music Conference. 2003. Western

Australian Academy of Performing Arts, Edith Cowan
University: Australasian Computer Music Association.

[8] Fraietta, A. The Smart Controller - shifting performance
boundaries. in Boundaryless music: the International
Computer Music Conference. 2003. National University of
Singapore: International Computer Music Association.

[9] Fraietta, A., Smart Controller Workbench Source Code.
2004.

[10] Hewitt, D. and I. Stevenson. Emic-Extended Mic-stand
Interface Controller. in Conference on New Musical
Interfaces for Music Expression (NIME-2003). 2003.
Montreal.

[11] ICS Triplex plc, ICS Triplex ISaGRAF Inc. First in open
control. 2004.

[12] Jeffreys, J.R., Structured programming tools for embedded
systems. Control Engineering, 1998. 45(12): p. 200.

[13] Kartadinata, S. The Gluiph:a nucleus for Integrated
Instruments. in Conference on New Interfaces for Musical
Expression (NIME-03). 2003. Montreal.

[14] Langnau, L., A step closer to easier PLC programming.
Material Handling Engineering, 1995. 50(13): p. 23.

[15] Martin Kaltenbrunner, Günter Geiger, and S. Jordà. Dynamic
Patches for Live Musical Performance. in International
Conference on New Interfaces for Musical Expression
(NIME). 2004. Shizuoka University of Art and Culture,
Hamamatsu, Japan.

[16] Mintchell, G.A., Graphic interfaces are programmer's
friends. Control Engineering, 1999. 46(11): p. 57-65.

[17] Monro, G., Red Grains. 2003.
[18] Naughton, P. and H. Schildt, Java 2: the complete reference.

3rd ed. 1999, Berkeley: Osborne/McGraw-Hill.
[19] Norman, A., Power Pole Bells and the Bell Garden. Sounds

Unlimited: building the instruments: Sounds Australian --
Journal of the Australian Music Centre, 2003(62): p. 38-39.

[20] Opie, T. Granular synthesis: experiments in live
performance. in Form, space, time: the Australasian
Computer Music Conference. 2002. Royal Melbourne
Institute of Technology: Australasian Computer Music
Association.

[21] Pollard, J., PLCopen, IEC 61131-3 address motion
integration. Control Engineering, 2001. 48(7).

[22] Puckette, M., Pure Data.
[23] Puckette, M. and D. Zicarelli, Max--An Interactive

Graphical Programming Environment. 1990, Opcode
Systems: Menlo Park.

[24] Roads, C., The computer music tutorial. 1996, Cambridge,
Mass.: MIT Press. xx, 1234.

[25] Rowe, R., Interactive music systems : machine listening and
composing. 1993, Cambridge, Mass.: MIT Press. x, 278.

[26] Stroustrup, B., The C++ programming language. 2nd ed.
1991, Reading, Mass. ; Sydney: Addison-Wesley. xi, 669.

[27] Winkler, T. Making motion musical: Gesture mapping
strategies for interactive computer music. in International
Computer Music Conference. 1995. Banff, AB, Canada: The
International Computer Music Association.

[28] Wright, M. and A. Freed. Open Sound Control: State of the
Art 2003. in International Conference on New Interfaces for
Musical Expression (NIME). 2003. Montreal, Quebec,
Canada.

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

49

