
[hid] toolkit: a unified framework for instrument design

Hans-Christoph Steiner
Interactive Telecommunications Program

New York University
New York, NY, USA

hans@at.or.at

ABSTRACT
The [hid] toolkit is a set of software objects for designing
computer-based gestural instruments. All too frequently,
computer-based performers are tied to the keyboard-mouse-
monitor model, narrowly constraining the range of possible
gestures. A multitude of gestural input devices are readily
available, making it easy to utilize a broader range of ges-
tures. Human Interface Devices (HIDs) such as joysticks,
tablets, and gamepads are cheap and can be good musical
controllers. Some even provide haptic feedback. The [hid]
toolkit provides a unified, consistent framework for getting
gestural data from these devices, controlling the feedback,
and mapping this data to the desired output. The [hid]
toolkit is built in Pd, which provides an ideal platform for
this work, combining the ability to synthesize and control
audio and video. The addition of easy access to gestural
data allows for rapid prototypes. A usable environment
also makes computer music instrument design accessible to
novices.

Keywords
Instrument design, haptic feedback, gestural control, HID

1. INTRODUCTION
The [hid] toolkit is a set of Pd [13] objects for using a

wide variety of HIDs (Human Interface Devices) to build
computer music instruments. The main objective is to pro-
vide a standardized and coherent environment to create in-
struments using gestural interfaces, supporting rapid proto-
typing of instrument design ideas. The coherent, high-level
objects also make instrument design accessible to the novice,
providing an entry point into an otherwise difficult realm.
Pd already provides a wealth of options for output as well as
low level operators for mapping. The [hid] toolkit addresses
the processes of getting input data, mapping it to the out-
put, and generating meaningful non-auditory feedback such
as vibrations. This project is focused on physical interfaces,
as opposed to video or motion sensors, because they can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’05, May 26-28, 2005Vancouver, BC, Canada
Copyright 2005 Copyright remains with the author(s).

capture gesture data more reliably and at higher resolution.
Also, physical interfaces allow for haptic feedback.

The [hid] toolkit provides high-level objects for accessing
the data from various HIDs and low-level objects for getting
the data directly from the HIDs. It also includes objects
for mapping that data to whatever output the user wants
to control, and objects for controlling haptic feedback. It
is built to be an integral part of Pd, and most of the [hid]
toolkit objects are written in Pd. Because Pd is free software
that runs on most operating systems, musicians with even
very limited budgets can build their own computer music
instruments. Up until recently, computer music has been
out of reach of all but a select few. It is now possible to
build a computer music instrument using Pd that costs less,
including the cost of the computer, than most traditional
musical instruments.

2. BACKGROUND
More and more musicians are using computer-based in-

struments for live performance, to the extent where you can
see live computer music in just about any major city in the
world. A wide range of software is available for live computer
music performance; SuperCollider [4], Max/MSP [1], and Pd
are designed expressly for this purpose. Many of these soft-
ware environments are already capable of using data from
Human Interface Devices (HIDs) such as joysticks, drawing
tablets, gamepads, and mice.

Within Max/MSP, a number of objects exist for getting
data from HIDs such as [hi], [hidin] [12], [MouseState], [In-
sprock], [Wacom], and [MTCcentroid], each with a distinct
programming interface. The Max/MSP object [hi] is a good
example for coherent integration because it provides a sin-
gle interface to many different kinds of HIDs. SuperCollider
provides very low level access to the Mac OS X HID Man-
ager, following its interface directly. This allows for great
flexibility, but the interface is far from intuitive. Pd has
a number of objects and patches for using HIDs such as
[MouseState], [linuxmouse], [linuxevent], [joystick], the Gem
HID objects, kaos tools, and P5midiPD [5]. But, like the
Max/MSP objects, they all have different interfaces, mak-
ing it necessary to learn each object to use each device. Since
the basic principles are the same across the range of HIDs,
the interface of objects should be similarly structured. Other
computer music environments do not provide broad access
to HIDs.

There have been a couple of attempts at building frame-
works for creating musical instrument mappings. Two no-
table packages come from IRCAM. ”MnM is a set of Max/MSP

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

140



externals... providing a unified framework for various tech-
niques of classification, recognition and mapping for motion
capture data, sound and music.” [2] An earlier attempt from
IRCAM is the ESCHER toolkit for jMax [18] which is a set
of objects to address various problems of mapping. In terms
of haptic feedback, Pd is currently the only widely available
computer music environment known to the author that has
the ability to control haptic feedback. The ff library [7] sup-
ports force feedback joysticks, and the [ifeel] object supports
haptic iFeel mice.

My personal experience with designing new instruments
started with JoyStickMusicMachine [16], a program for map-
ping joystick data to synthesis objects. I followed up on this
idea with StickMusic [17], developing a specific instrument
rather than a toolkit. StickMusic was created using a force-
feedback joystick and mouse, and was programmed in Pd.
In order to get raw access to those HIDs, I wrote the [lin-
uxevent], [linuxmouse], [ifeel] objects for Pd. Through these
experiences, it became obvious that a unified toolkit was
needed to provide a usable environment for instrument de-
sign.

3. OVERVIEW

3.1 Human Interface Devices
”HID” has become the standard term for devices designed

to control some aspect of a computer. A wide range of
devices are classified as HIDs, including standard devices
like mice and keyboards; gaming devices like joysticks and
gamepads; and devices for more specific needs, like drawing
tablets. There are a number of high end devices available as
well, like the SensAble Phantom 6DOF controller [3]. My
goal is to provide access to as many HIDs, including haptic
devices, into a unified, standardized, and coherent approach.

I chose to focus particularly on consumer HIDs for a few
reasons. First and foremost, custom built hardware requires
a high level of expertise to create, while HIDs are cheap
and readily available. While some off-the-shelf HIDs are
not up to the standards needed for musical performance,
many consumer HIDs perform quite well. Devices notable
for their performance include gaming mice, certain joysticks,
and most graphics tablets. Also, HIDs such as joysticks
are familiar to those attending computer music concerts, es-
pecially when compared to custom hardware, allowing the
audience to better follow a performer’s actions. Lastly, stan-
dard controllers enable the building of a body of technique,
which can be shared among musicians. A number of exam-
ple of contemporary musicians have mastered using a stan-
dard HIDs as musical controllers. Leon Gruenbaum’s Sam-
chillian Tip Tip Tip Cheeepeeeee [9] is built upon a stan-
dard ergonomic keyboard; Luke Dubois plays the Wacom
tablet with The Freight Elevator Quartet [8]; Loc Kessous
has built his instrument using a Wacom tablet and a joy-
stick [11]; Gerard Van Dongen tours with his force feedback
joystick [6].

The [hid] toolkit provides unified and standardized access
to HIDs, so one need not learn how to use a new object for
each different HID. Once the user has learned how to use
one HID with the [hid] toolkit, that knowledge will be eas-
ily transferrable to other devices. It is also cross-platform so
that instrument designers do not need to know the details
of a given operating system in order to write cross-platform
patches. High-level objects are provided for commonly used

Figure 1: A patch using [joystick], [hid invert],
[hid polar], [hid log], [hid cube], and [notescale].

devices, e.g. [gamepad], [tablet], etc. These objects pro-
vide data from the standard elements for that device. The
[mouse] object, for example, provides data for an X axis, Y
axis, a mouse wheel, and buttons. Using such abstracted
objects allows people to use a given Pd patch with different
devices of the same type. For example, it would not be nec-
essary to have the exact same make and model of joystick
as the Pd patch’s designer, your joystick would just have to
provide the minimum set of elements needed by that patch.

3.2 Data Range
The [hid] toolkit uses the data range of 0-1 wherever pos-

sible. The standard data range for computer audio is 0-1
(amp, pan, etc.), as well with parameters controlling many
other things. 0-1 is simple to convert to any other range.
Using 0-1 for axes makes the data format the same across all
of the HID elements as well: axes, buttons, and pseudo-axes
all output data in the range 0-1. Axis data can vary from
0-127 for many joysticks to 0-10,000 or more for tablets.
Having all axes output data within 0-1 allows devices with
widely varying output range to control the same patches
without change. Most of the mapping objects expect input
and output data in the same range. It is also very easy to
scale 0-1 to other common ranges, like MIDI (0-127).

3.3 Mapping
In the same way digital synthesis has freed the physical

interface from generating sound, computer music software
allows the mapping to be a distinct system. Any arbitrary
interface can be mapped to any given synthesis algorithm;
indeed the mapping can also be designed to suit the goals
of the designer [10]. There are many common ideas that

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

141



are frequently used when mapping input to output. For ex-
ample, since humans perceive loudness and pitch on a loga-
rithmic scale, the amplitude and frequency control data are
often mapped to a logarithmic scale. On the most basic
level, the input device data must be scaled to the param-
eters being controlled.HIDs almost always produce linear
data but mappings in expressive instruments are rarely lin-
ear. More complex mappings usually create more engaging
instruments.

The [hid] toolkit provides a number of mapping objects
for commonly used operations. Most are designed to work
within the [hid] toolkit, these have a ”hid ” prefix. Hav-
ing a consistent input and output range makes it possible
to chain [hid] objects without thinking about scaling the
data between each operation. A number of commonly used
curves are also available. [hid log], [hid exp], [hid square],
[hid cube], [hid squareroot], and [hid cuberoot] all gener-
ate curves from their stated operation. Rovan, Wander-
ley, Dubnov, and Depalle break down mapping strategies
into three basic categories: one-to-one, one-to-many (di-
vergent), many-to-one (convergent) [15] According to them,
these methods provide a level of expressivity in the order
listed, with many-to-one mappings creating more expressive
instruments. [hid one2two] and [hid one2three] are two ob-
jects that address this general idea. [hid polar] and [hid spiral]
convert HID data to polar data generates polar coordinates,
simplifying the creation of novel timbre spaces. Numer-
ous methods for smoothing sensor data exist. One tech-
nique is to take a running weighted average of a set of most
recent values from the stream is one technique. Another
technique converts the stream to an audio signal and runs
that signal through a low pass filter. These two techniques
are represented by [hid average] and [hid lowpass] respec-
tively. Others objects are more general purpose. For exam-
ple, [notescale] automatically scales the input to a range of
discrete MIDI note values, as specified in the object’s argu-
ments. [buttongate] and [keygate] control a stream of data
with a HID button or keyboard key.

3.4 Feedback
Since additional channels of feedback can greatly enhance

the interaction of human and computer, such feedback should
become a standard part of instrument design. For exam-
ple, ”[M]uscular feedback can work on time scales far be-
low those possible in auditory feedback.” [14] Adding hap-
tic feedback to an instrument allows the musician to accu-
rately perform actions that would otherwise be left to guess-
work. Each sense has its unique strength: the sense of touch
has the quickest feedback loop. The [hid] toolkit provides
a number of objects for generating haptic ’effects’ such as
[hid ff periodic] or [hid ff spring]. The messages from these
objects are then sent to the [hid] object, which sends the
messages to the device. They follow the same data range
conventions as the rest of the input, so they can be easily
interoperate the mapping and input objects. Unless there
was a strong reason to do otherwise, the haptic effect objects
followed the interface of the existing ff objects for Pd.

3.5 Event Naming Scheme
A coherent, usable scheme was designed to represent the

range of possible event data. The specifications for USB
HID, Mac OS X HID Manager, and Microsoft DirectInput
are all arcane and overcomplicated. The Linux input event

system is cleanly organized, and the [hid] scheme was built
using it as a model. For those who want to learn the de-
tails of various HID implementations, low level objects exist
([linuxhid], [darwinhid], and soon [windowshid]).

The final [hid] toolkit scheme is a modified version of the
Linux scheme. The Linux scheme has some aspects of it
that are too specific, making it hard to abstract, i.e. button
names for each device type, rather than just button num-
bers. While some parts of the scheme seem redundant. For
example relative axes have a ”rel” event type and ”rel x”,
”rel y”, etc. as event codes . This redundancy provides more
flexibility while directly reflecting the data as delivered from
the operating system. Symbolic names rather than numbers
were chosen for the elements because usability was a key de-
sign concern, and most people find symbolic labels easier to
remember than numeric labels. While there are some obvi-
ous disadvantages to symbolic labels in this context, such as
increased CPU usage, none were severe enough to force the
need for numeric labels.

It was also important to carefully devise the symbols them-
selves, making sure that they represented the elements well,
and did not needlessly deviant from existing schemes. De-
signing the button scheme highlighted this issue. MacOS
X HID Manager simply numbers the buttons, Microsoft Di-
rectInput works similarly since both are based on the USB
HID specifications. The Linux input event system uses but-
ton names, like btn left, btn middle for mice; btn trigger,
btn base for joysticks; btn a, btn select for gamepads; btn tool pen,
btn stylus for tablets; with a different naming scheme for
each device type. One key advantage of the button number-
ing scheme is that it allows buttons on one device to work
in patches written for other devices. A patch written for
a joystick could be used by any other device with buttons
and absolute axes, like a joystick or tablet. A minor disad-
vantage is that the user has to test the device to find the
number scheme, rather than reading the label (”btn 0” vs.
”btn trigger”).

4. USER TESTING
While there was no formal user testing performed, much

informal user testing was done, and was influential to the de-
sign of the [hid] toolkit. The two forums that were utilized
for this informal user testing were the Pd mailing lists and
the ITP/NYU community. The people who tested it con-
firmed that the software was working on different platforms,
with different setups, and using different brands and models
of HIDs, outlining key issues that would prevent sharing of
instrument patches. One key idea that came from user test-
ing is to use symbolic names in the event naming scheme
instead of numbers. For many users, it was necessary to
constantly use lookup tables in order to remember which
number was representing which HID element. Using sym-
bolic names greatly reduced the number of lookups for some
users while not increasing it for others.

User testing also proved that the automatic range scal-
ing of the high level input objects ([mouse], [joystick], etc.)
allowed interoperability between devices of the same type,
joysticks for example, even if they provided a drastically dif-
ferent range of data. Two joysticks were consistently used
throughout the building of the [hid] toolkit, one with a range
of 0-127 and another with a range of 0-4095. Both of these
joysticks could be used with the same patch, with the same
joystick position producing the same sound. The variation

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

142



in data ranges was represented as resolution of the control
rather than a difference in the sound generated.

5. CURRENT STATE
For the prototype, the bulk of the functionality is imple-

mented on one platform, GNU/Linux. Then, to make sure
that the event model that I designed for the [hid] object will
work across platforms, I have a basic implementation work-
ing on MacOS X. I also researched the Microsoft DirectInput
and USB HID and USB PID event models to make sure that
the [hid] object’s event model will be able to represent the
range of data available. The way that input and haptic feed-
back events are represented is quite different on each of the
platforms. Therefore, in order to make a unified represen-
tation of events, convoluted and laborious code needs to be
written. This has been implemented for the most common
devices, but many remain to be implemented. Fortunately,
this code can be written bit by bit, as the need arises, while
the already implemented devices will be fully functional. A
couple intrepid Pd users have already designed their own in-
struments using the [hid] toolkit. Joystick- and mouse-based
patches included as examples work on numerous computers
with differing OS’s and models of HIDs.

6. CONCLUSIONS AND FUTURE WORK
The [hid] toolkit provides a common platform for using

HIDs within Pd for creating instruments. Early user test-
ing has confirmed that some key aspects of the [hid] toolkit
simplifies instrument design, both for novices and for more
experienced users. The unified, cross-platform objects for
input, mapping and feedback work in a consistent manner.
The high-level objects allow an instrument patch to work
with HIDs of the same device type, joysticks for example,
but with differing specifications. In addition to the objects
that are already working, this framework can be applied to
a broad range of devices out for developing a complete plat-
form for input, mapping, and feedback. MIDI controllers
and sensors with microcontrollers are two common devices
used that would fit well into the [hid] toolkit framework.

In terms of mapping, many possibilities have not been
addressed in the current version of the [hid] toolkit. Most
of the current mapping objects cover relatively simple con-
cepts. More complicated ideas like many-to-one mapping
should be explored in the form of high-level objects. Phys-
ical modeling offers a lot of potential over simple averaging
and curve-mapping methods for processing the input data.
Some common physical modeling ideas could be encapsu-
lated in objects.

Modern computer graphics capabilities enable vast possi-
bilities, but visual feedback for musical instruments and even
visual instruments, remain largely unexplored. Computer-
based instruments could provide richer visual feedback than
any traditional instrument, but this idea is largely unex-
plored. A strong knowledge of graphics is necessary in order
to create an instrument with rich visual feedback. High-level
objects for creating visual feedback would open up these pos-
sibilities to a wider range of people, and fit well into [hid]
toolkit scheme.

7. ACKNOWLEDGMENTS
The Pd list has been an essential resource for information,

ideas, and advice. Ideas for mapping objects came from

Cyrille Henry and La Kitchen’s set of mapping objects, as
well as Jamie Allen’s mapping demo patch for Max/MSP.
The Pd community has been my main pool of alpha testers.
Additional testing was done here at ITP/NYU.

8. REFERENCES
[1] Max/MSP. http://cycling74.com.

[2] MnM (Music is Not Mapping). http://recherche.
ircam.fr/equipes/temps-reel/maxmsp/mnm.html.

[3] Sensable phantom. http://sensable.com/products/
phantom_ghost/phantom.asp.

[4] SuperCollider. http://audiosynth.com.

[5] H. Dini. P5 midi patches for pd. http:
//11h11.com/hugodini/projects/p5midipd.htm.

[6] G. V. Dongen. http://www.xs4all.nl/~gml/.

[7] G. V. Dongen. ff library for pd.
http://www.xs4all.nl/~gml/software.html.

[8] R. L. DuBois. An interview with luke dubois.
http://cycling74.com/community/lukedubois.html.

[9] L. Gruenbaum. Samchillian Tip Tip Tip Cheeepeeeee.
http://samchillian.com.

[10] A. Hunt, M. Wanderley, and M. Paradis. The
importance of parameter mapping in electronic
instrument design. In Proceedings, Conference on New
Interfaces for Musical Expression (NIME-02), 2002.
http://hct.ece.ubc.ca/nime/2002/proceedings/

paper/hunt.pdf.

[11] L. Kessous. Bimanuality in alternate musical
instruments. In Proceedings, Conference on New
Interfaces for Musical Expression (NIME-03), 2003.
http://citeseer.org/kessous03bimanuality.html.

[12] O. Matthes. hidin object.
http://akustische-kunst.org/maxmsp/dev/.

[13] M. Puckette. Pure data: another integrated computer
music environment. In Proceedings, International
Computer Music Conference (ICMC 1996), 1996.
http://citeseer.org/164971.html.

[14] M. Puckette and Z. Settel. Nonobvious roles for
electronics in performance enhancement. In
Proceedings, International Computer Music
Conference (ICMC 1993), 1993. http:
//crca.ucsd.edu/~msp/Publications/icmc93.ps.

[15] J. B. Rovan, M. Wanderley, S. Dubnov, and
P. Depalle. Instrumental gestural mapping strategies
as expressivity determinants in computer music
performance. In KANSEI - The Technology of
Emotion, AIMI International Workshop, 2000.
http://citeseer.org/65256.html.

[16] H.-C. Steiner. Joystickmusicmachine, 1996. Senior
Project, Bard College.
http://at.or.at/hans/misc/bard/seniorproject/.

[17] H.-C. Steiner. Stickmusic: Using haptic feedback with
a phase vocoder. In Proceedings, Conference on New
Interfaces for Musical Expression (NIME-04), 2004.
http://citeseer.org/699201.html.

[18] M. Wanderley, N. Schnell, and J. B. Rovan.
Escher-modeling and performing composed
instruments in real-time. IEEE Systems, Man, and
Cybernetics, 1998. http://intl.ieeexplore.ieee.
org/xpl/abs_free.jsp?arNumber=727836.

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

143


