
Pocket Gamelan: a Pure Data interface for mobile phones
Greg Schiemer

Faculty of Creative Arts
University of Wollongong

Wollongong NSW Australia
61 2 4221 3584

schiemer@uow.edu.au

Mark Havryliv
Faculty of Creative Arts

University of Wollongong
Wollongong NSW Australia

61 2 4221 3584

mhavryliv@hotmail.com

ABSTRACT

This paper describes software tools used to create java

applications for performing music using mobile phones. The

tools provide a means for composers working in the Pure Data

composition environment to design and audition performances

using ensembles of mobile phones. These tools were developed as

part of a larger project motivated by the desire to allow large

groups of non-expert players to perform music based on just

intonation using ubiquitous technology. The paper discusses the

process that replicates a Pure Data patch so that it will operate

within the hardware and software constraints of the Java 2 Micro

Edition. It also describes development of objects that will enable

mobile phone performances to be simulated accurately in PD and

to audition microtonal tuning implemented using MIDI in the

j2me environment. These tools eliminate the need for composers

to compose for mobile phones by writing java code. In a single

desktop application, they offer the composer the flexibility to

write music for multiple phones.

Keywords

Java 2 Micro Edition; j2me; Pure Data; PD; Real-Time Media

Performance; Just Intonation.

1. INTRODUCTION
In the past decade there has been a paradigm shift from desktop to

ubiquitous computing. Mobile phones represent a major part of

this shift. The tools described here have been developed to

address the challenges of composing music for such a computing

environment. They were developed as part of a project called the

Pocket Gamelan.

1.1 Pocket Gamelan - background
The Pocket Gamelan project seeks to develop a software

prototype for an interactive musical performance interface that can

be used by non-expert performers [1,2]. Using mobile phones as

the basis for this interface, the project seeks to explore new tuning

systems and enable performance by large numbers of non-expert

performers playing music based on just intonation using hand-

held or wearable instruments [3].

In previous papers we described how performance scenarios

associated with the project might extend the musical legacy of

historical tuning systems as well as new tuning systems first

explored by composer and theorist Harry Partch [4] and extended

through the work of contemporary tuning theorist Erv Wilson

[5,6,7,8,9].

An application based on one of these performance scenarios has

been implemented as a library of j2me classes [10,11,12,13,14]. A

Nokia 6230 mobile phone was used as the target device. A new

work based on this tuning has been composed. Entitled Mandala

3 it will be performed at UK Microfest, Riverhouse, Walton-on-

Thames, London, UK, October 15th, 2005. The composition is

based on one of Wilson’s product set tunings called the Euler-

Fokker Genus [15]. In performance each mobile phone is swung

on the end of a cord. This produces audible artifacts such as

Doppler shift as a bi-product of movement. The performance

scenario originated from mobile instruments developed by one of

the authors two decades earlier [16,17].

On this occasion, four mobile phones will be used. In the lead up

to this performance, software development has concentrated on

two features of j2me. They include: real-time audio generation

and a microtonal MIDI implementation.

Up to this point, the Pocket Gamelan project has already

encountered many of the initial obstacles to achieving real-time

performance using a mobile phone. The most common of these

are the limited resources of j2me devices and irregular media

implementations. A more accessible interface to compose music

for mobile phones has been developed using a new application

called pd2j2me.

1.2 pd2j2me
Pd2j2me is a desktop Java application that cross-compiles from

PD to j2me. It allows musical applications composed for

performance on mobile phones to be simulated using Pure Data.

Figure 1. PD Patch shows PD object called phone. One inlet

(Play) starts a process that simulates the j2me application. Left

outlet (Done) flags the state of the process while the right

outlet allows the object to produce sound.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Nime’05, May 26-28, , 2005, Vancouver, BC, Canada.

Copyright remains with the author(s).

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

156

A j2me device is represented as a PD patch with one inlet and two

outlets as shown in Figure 1. The pd2j2me compiler creates a

source file that can be exported to the j2me environment.

A composer may create a PD patch with many such phone objects

in order to simulate the realisation of a musical performance using

multiple mobile phones.

Development of pd2j2me is driven by the requirements of

performance scenarios associated with the Pocket Gamelan

project where musical applications were initially written in j2me.

An understanding of the limitations of mobile phone technology

acquired in the process of creating these applications has informed

our decision to build a cross-compiler rather than a run-time PD

interpreter for j2me.

2. Design Considerations
A j2me version of PD is not a feasible option for time-critical

operations like audio, MIDI and user interaction which require

continual optimisation of resources. To overcome this problem, a

compiler is used to generate j2me source code that will emulate

the behaviour of a program written as a PD patch. It is then

possible to download j2me code into the mobile handset and

execute it.

2.1 Compilation
The compiler creates a j2me source file consisting of a hybrid

collection of:

• simple j2me expressions such as var = arg + const;

• calls to purpose-built j2me classes that support more

complex objects such as line, metro, delay, select, counter

and array; and

• interfaces to purpose-built classes that enable system IO like

audio, access to visual output and user input, and Bluetooth

wireless connection.

2.2 Simple Objects
Simple objects are classed as those that can be contained in one

line of j2me code and all of whose arguments can be accessed in

local or global variable space. These include simple arithmetic,

tabreads, sends, receives and messages.

Simple objects are written to accommodate the possibility of

changing an argument after it has been initialised. This is done by

creating a global variable. This is stored as a second argument that

may be changed by other processes at run time.

public class SampleProg {

double mv0, mv1, minus1v1, plus3v1;

public SampleProg() {

 mv0 = 0;
 mv1 = 0;

 minus1v1 = 7.0;
 plus3v1 = 3.0;
 PDMain();
 }

Figure 2. SampleProg() initialises a value for objects minus1v1

and plus3v1 whose arguments may be altered during program

execution.

2.3 Complex Objects
Some PD’s objects cannot be contained in one line of j2me code.

To overcome this problem, a small library of general purpose

objects were created to simulate the behaviour of more than one

PD object.

For example, a single timer-based object in j2me can simulate the

behaviour of a metro, delay, line, line~ and vline~ object just by

changing the way it is called at run-time. This ensures that the

fastest possible algorithm is used for the core operation.

Values returned by complex objects in the j2me environment are

represented as separate methods in the PD program. All possible

execution threads leading from the object are called from that

method.

Figure 3. A PD patch demonstrating two complex objects

metro and counter. Metro assumes control over program flow.

 public void met0Bang() {

 double a;

 a = counter.bang();
 a = a * 3;

 a = a / 4;
 }

Figure 4. Example shows complex object counter and simple

objects compiled to j2me where met0Bang() is called whenever

a metro event occurs whereupon counter returns an

incremented value. met0Bang() is run as a separate thread

without interrupting other execution streams.

2.4 Program Flow
Program flow is first visualised as streams of data then replicated

in j2me. Each phone object can have a number of inlets. One of

these inlets must have a toggle or a bang connected to it. Other

inlets are assumed to be wireless connections from other phones.

A bang or a toggle on one inlet is necessary to start the phone

application. From this inlet the compiler determines the execution

order for all code within the phone.

A stream begins when:

• an inlet object receives a toggle or a bang; or

• an object is connected to more than one other object.

A stream ends when either:

• a series of patch cords is terminated by connection to a non-

live inlet;

• an object’s outlet is connected to more than one inlet;

• a multiple output object like trigger or select is used; or

• an object’s outlet is not connected to anything.

J2me program flow follows the connection order associated with

visible objects used in a PD patch. This can either be implicit -

which cannot not be illustrated graphically - or explicit as in the

case of PD objects with multiple outputs.

An example of this is the trigger (or t) object where multiple

outputs are triggered from right to left. The t object shown in

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

157

figure 5 has 4 float outputs. Because these are sequenced from

right to left, the t object provides a visible means to determine the

order in which j2me methods are executed.

Using the PD patch shown in figure 5, pd2j2me compiles j2me

source code shown in figures 2, 6 and 7. The PD patch shown in

figure 5 is a representative collection of possible ways that

program flow may be altered in PD; output code examples show

how these are represented in j2me.

Figure 5. A PD patch containing all likely combinations of

program flow and variable assignment.

Each PD data stream is represented by a method and may be

passed or may return a value. PDMain() , shown in figure 6, is a

method run immediately after initialisation. It sequences seven

methods in their order of execution.

public void PDMain() {

 mv0 = method0();

 mv1 = method1(mv0);
 method2(mv1);
 method3(mv1);
 minus1v1 = method4(mv0);
 method5(mv0);
 plus3v1 = method6(mv0);
 }

Figure 6. Execution begins in PDMain(). Data streams shown

in Figure 5 are represented by 1 of 7 methods shown here.

2.5 J2ME Object Creation
In method0() and method1(), only one local variable is created.

Objects are created only if they are required to replicate the

behaviour of the PD patch. This reduces the frequency at which

garbage is collected by the j2me virtual machine.

 public double method0() {

 double a;

 a = 1;
 a = a + 10.0;
 a = a + 15.0;

 return a;

 }

 public double method1(double arg0) {

 double a;

 a = arg0 - minus1v1;
 a = a + 4.0;

 return a;

 }

Figure 7. method0() (up to the t object) is executed first.

Method1() starts at the – 7 object and receives arg0, an

argument from method0(). Arg0 is the left operand of –7 while

minus1v1 is the right variable whose value may be altered by

program events.

2.6 System Interfaces
The set of classes described above, enable real-time audio and

microtonal MIDI output from a mobile phone. These classes

provide a robust interface to handle audio and MIDI effectively.

A similar set of classes were developed to access the mobile

phone screen output and its user input. Regulation of access to

these system resources asserts a level of runtime integrity not

possible if resources are allocated as soon as they are requested.

2.7 Wireless Communications
A stand-alone Bluetooth library has also been written to manage

wireless communications between mobile devices. This library

will replicate control between devices as simulated in the PD

patch. Bluetooth communication paths will be derived from

connections made between phone objects in PD like those shown

in figure 8.

Figure 8. A representation of bluetooth connection between

two mobile phones in PD. The right-most outlet of phone1 is

connected to the left most inlet of phone2 and demonstrates a

one way wireless communication path. Throw~ and catch~

may also be used instead of multiple dac~ objects.

3. PD User Considerations
A pd phone object is a sub-patch where a composer is expected to

place composition algorithms. In order for pd2j2me to simulate a

mobile phone performance, users must adopt the convention of

placing all algorithmic composition code in these sub-patches. A

further PD object is planned: detuned_noteout. Together these

objects will be used to simulate microtonal performance

behaviours envisaged in the Pocket Gamelan project.

3.1 pd phone
The phone object allows simulation of these and other behaviours

using PD as a simulation environment. Pd phone encapsulates the

behaviour of a mobile phone and its relationship to the real world

through audio, wireless communication, screen output and user

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

158

input. The pd phone object is a sub-patch and any code inside that

patch will be compiled for the real device.

A pd phone object has one inlet that expects a bang to start the

application. The object’s outlets represent the screen output on the

phone. Any visual object like a bang, toggle or print to which a

phone outlet is connected will appear on the screen, sometimes

with an optional label. Because the screen size of phones vary, at

the moment it is more practical to allow the compiler to decide

where objects should be placed on the screen. Non-visual objects

will be ignored unless they are produce audio (e.g. like dac~ or

noteout) or wireless communications which will be managed by

connecting phones to each other through a second inlet.

Figure 9. Example of the functionality of the phone object.

The bang connected to the inlet of each phone starts the

application and the toggle from the left outlet will be printed

on the screen of the mobile phone.

3.2 detuned_noteout
The second object will be a microtonal noteout. This object will

accept a floating point number as an argument, determine the

correct pitch bend and output the detuned note. This will be

organised in PD in a way that is consistent with microtonal MIDI

as it is implemented in the Nokia 6230 mobile phone.

When a floating point value is passed to noteout, the object

selects a MIDI channel, transmits the floating point value as a

MIDI pitch bend and then performs the note. This replicates the

noteout system designed for microtonal performance in j2me

devices by dynamically allocating channels to manage up to 16

note polyphony.

4. Conclusion
The toolset described above offers an interface that will allow

composers familiar with PD or PD-like programs such as

MaxMSP to develop new musical applications for mobile phone

handsets and do it quickly. It also opens the way for new

communities of musicians to become engaged with creative uses

of this technology so that its creative development is driven by

diverse user interest groups rather than corporate cartels.

5. ACKNOWLEDGMENTS
This project was funded by an Australian Research Council

Discovery Grant for 2003-2005.

6. REFERENCES
[1] Schiemer, G., Sabir, K. and Havryliv, M. 2004 “The Pocket

Gamelan: A j2me Environment for Just Intonation”

Proceedings of ICMC2004 University of Miami, Florida,

November 4th-9th pp. 654-657

[2] Schiemer, G. “Pocket Gamelan: building the

instrumentarium for an extended harmonic universe”,

Proceedings of International Computer Music Conference

ICMC’04 Boundaryless Music, National University of

Singapore, International Computer Music Association, San

Francisco pp. 329 -332.

[3] Schiemer, G. and Havryliv, M. 2004 “Wearable Firmware:

The Singing Jacket” Proceedings of ACMA’2004 University

of Victoria, Wellington, July 1st-3rd pp. 66-71

[4] Partch, H. 1949 Genesis of Music Da Capo Press

[5] Wilson, E. 1961 Musical Instrument US Patent Office Patent

Number 3,012,460

[6] Wilson, E. 1967 Musical Instrument Keyboard US Patent

Office Patent Number 3,342,094

[7] Wilson, E. 1975 (1)“The development of Intonational

Systems by Extended Linear Mapping”

[8] Wilson, E. 1975 (2) “Bosanquet – A Bridge – A Doorway to

Dialog” Xenharmonikôn 3 (13 pages)

[9] Wilson, E. 1986 “D'Alessandro Like a Hurricane”

Xenharmonikôn 9 pp. 1-38

[10] Sun Microsystems, 1999 Java 2 Micro Edition

[11] Connected Limited Device Configuration (CLDC) 1.0,

Mobile Information Device Profile (MIDP) 1.0.

[12] http://www.devx.com/Java/Article/21850/0 - Optimizing

Fixed Point Math with j2me. André de Leiradella 2004.

[13] http://www.javaworld.com/javaworld/jw-03-2001/jw-0309-

games.html - j2me: The next major games platform? Jason

R. Briggs 2001.

[14] http://developers.sun.com/techtopics/mobility/midp/ttips/opti

mize/ - j2me Optimization Tips and Tools. Eric D. Larson

2002

[15] Op de Coul, M. 1992 Scales Archive in Scala available at

http://www.xs4all.nl/~huygensf/scala/

[16] Schiemer, G. 1999 “Improvising Machines: Spectral Dance

and Token Objects” Leonardo Music Journal 9 MIT Press

pp. 107-114

[17] Atherton, M. 1991 Australian Made - Australian Played

University of New South Wales Press, Sydney pp. 210-211

[18] Bischoff J., Gold R. & Horton J. 1978: “Music for an

Interactive Network of Computers” Computer Music Journal

2 (3) pp. 24-29

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

159

