
ixi software: The Interface as Instrument 
Thor Magnusson 

Creative Systems Lab 
Department of Informatics 

University of Sussex 
Brighton, United Kingdom 

T.Magnusson@sussex.ac.uk 
 

 
 
 

ABSTRACT 
This paper describes the audio human computer interface 
experiments of ixi in the past and outlines the current platform for 
future research. ixi software [5] was founded by Thor Magnusson 
and Enrike Hurtado Mendieta in year 2000 and since then we've 
been working on building prototypes in the form of screen-based 
graphical user interfaces for musical performance, researching 
human computer interaction in the field of music and creating 
environments which other people can use to do similar work and 
for us to use in our workshops. Our initial starting point was that 
computer music software and the way their interfaces are built 
need not necessarily be limited to copying the acoustic musical 
instruments and studio technology that we already have, but 
additionally we can create unique languages and work processes 
for the virtual world. The computer is a vast creative space with 
specific qualities that can and should be explored. 

Keywords 

Graphical user interfaces, abstract graphical interfaces, hyper-
control, intelligent instruments, live performance, machine 
learning, catalyst software, OSC, interfacing code, open source, 
Pure Data, SuperCollider. 

1. INTRODUCTION 
The interface is an instrument. It is a graphical manifestation of 
musical ideas and work processes. An interface is at the same time 
the aesthetic platform defining musical structures and the practical 
control-base for the underlying sound-engine. In a way it can be 
seen as a musical ideology. It defines possibilities but also the 
limitations of what can be composed or played. Here we are 
mainly thinking of the graphical user interfaces of audio software, 
but this argument could be extended to audio programming 
languages as well: the objects or classes ready at hand in a given 
language define what can be expressed. 
 ixi has been exploring a basic idea of abstract graphical 
user interfaces over some years and created various prototypes, 
each of which contain a certain mode of interactivity. We see it as 
a proposition for how the musician could work with his or her 
soundengine. We believe the interface (and here we take the word 
very literally: that which faces two systems, i.e. the sound-engine 
and the human performer) is an important factor in a musical 

performance. It can evoke emotions, encourage direct responses, 
trigger ideas and open up unknown paths in a live performance. 
Musicians working with acoustic instruments know very well how 
an instrument can have a unique personality which makes you 
play differently depending on its character: just consider the 
difference between playing a Fender Stratocaster and a Gibson 
Les Paul and how the type of guitar affects the style of playing. 
 An essential part of our activities with ixi software, not 
related to this paper (but I feel it should be mentioned here) is the 
community aspect of our work. We have a website where people 
can download our applications for free, a mailing list, and we 
publish a zine where we promote open source audio programming 
and introduce things that we find relevant to what we are doing. 
We also give workshops where we introduce the technologies and 
ideas we have come up with or use and help people getting started 
with audio-visual programming. 

2. BACKGROUND 
ixi began as a response to our discontentment and questioning of 
the way commercial music software businesses build their 
interfaces uncritically on already established work processes 
known from the analog studio or from musical traditions such as 
score writing and reading. The two dimensional computer screen 
and the mouse are good for many things, but not particularly 
effective for controlling a mixer with hundreds of knobs. We are 
not dismissing the ingenious work being done in some of the 
software houses, but we found there was a big gap which had not 
been investigated where the computer (with the typical equipment 
people use such as the screen, mouse, keyboard, sound card, etc.) 
is taken on its own premises and its intrinsic nature explored. 

 Most of the software musicians use today can roughly be 
divided into 3 categories: sequencers (ProTools, Logic, Cubase, 
etc), editors (Peak, WaveLab, Cool Edit, etc) and patchers (Pure 
Data, SuperCollider, Max/MSP, Reaktor, etc); the last category 
being the most interesting for creating instruments and for use in 
live performances. Using software like Pure Data or Super-
Collider, the distinction between composing and instrument 
building becomes blurred. The musician composes the instrument 
and decides upon its expressive scope. [7, 9, 12] The instrument 
does not aim at generality like the sequencing software that tries 
to provide the ultimate "studio solution", but rather like traditional 
instruments the programmed instrument is limited and restricted 
in its musical capabilities. And the musician is happy working 
with its limitations and its quirkiness.  

 This is where we find that our work with ixi fits in; as a 
front end to more complex underlying sound engines. From 
discussions with the users of the software we find that it is as if 
the graphical and the abstract forms relate to some more intuitive 
and emotional parts of the musician. The raison d’être of the 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
Nime’05, May 26-28, , 2005, Vancouver, BC, Canada. 
Copyright remains with the author(s). 
 

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

212



interface is not that of nice visuals or slick front end, but rather 
that of designing user interaction or workflow for a live 
performance. By hiding the engineered and compound sound-
engine and providing playful and simple interfaces with their 
unique expressiveness and limitations, the musician is able to 
forget about technology and concentrate on simply playing music. 
 

3. IXI TECHNOLOGY/HISTORY 
Initially we wrote applications where the user would import his or 
her own samples into the instrument and work with them in the 
way that the instrument proposes. These applications could record 
sound input so the performer could sample other players and work 
with their sounds as well as their own. Slowly we created a visual 
language which would be utilised in various ways when designing 
new interfaces. For example, the location of objects on the vertical 
axis could control pitch, the horizontal could be panning, size 
could indicate volume, rotation some other parameter. A 
movement or blinking of the object could indicate tempo or 
repetition. But instead of determining this language to rigidly, we 
have tried to keep it open and flexible. There are no definite rules 
for what a horizontal location should mean, but rather - in the 
sense of Wittgenstein's language philosophy [15] - we have got 
language games where meaning is defined by its context. 

 The instrument paradigm worked for a while but we 
outgrew it eventually. This development happened for many 
reasons, but the main ones were that the users of the software 
were asking for new features that we had to try to implement, but 
more importantly the open source software was getting so 
powerful and interesting that it made sense to work with software 
like Pure Data and SuperCollider. After participating in NIME 
2002 we started experimenting seriously with the Open Sound 
Control protocol and it became clear to us that it was more 
interesting to create open controllers that send out OSC rather 
than the limited instruments we had been working on until then. 

 OSC provided us with an opening where various 
programming languages can communicate in a protocol that is 
very open and not bound to the irritating limitations of MIDI. 
Contrary to MIDI, OSC does not contain any musical concepts 
and that is a very good idea when writing a protocol for music as 
such an effort would always be limiting to the musician. The next 
ixi application was an OSC controller where the sound engine was 
built in SuperCollider. For us, this was a kind of paradigm shift. 
Instead of a fixed instrument that would only do what we had 
programmed it to do, we had a controller, which provided 
parameter settings and control for arbitrary synthesis components. 
This way the musician could use the ixi application as an interface 
for his or her own Pure Data, SuperCollider or Max/MSP patch 
and use the incoming OSC messages (the output from ixi) as they 
like.1 We found this extremely liberating and it changed the 
meaning of the software quite a lot. Not only did it make a 
contribution to the open source community and people working 
with these programming environments, but it also gave us much 
more freedom in experimentation with interactive modes of the 
interface. Instead of one defined use of the software as a certain 
type of instrument, it now became open for all kinds of 
applications and use. In short: the responsibility of mapping the 
                                                                    
1 We still distribute the software with example patches in either 

PD or Supercollider, so the software is both for inexperienced 
and experienced users of those environments. 

GUI elements to sound were no longer only ours, but also the 
user's who would redefine the interactivity. The exploration of 
mapping is one of the basic ideas for our work with ixi and there 
is good existing literature that shows the importance of mapping 
in virtual instruments. [2, 3, 1] 

 
 One of our criteria when choosing a programming 
environment was that it should be cross platform with good Linux 
support (which makes PD and SuperCollider good candidates as 
sound engines), it should have OSC libraries and it should be high 
level so that we can develop our prototypes quickly with minor 
effort. We thought of building interface components directly for 
Pure Data or SuperCollider as part of their GUI’s, but it did not 
make sense in our case as the SuperCollider GUI is platform 
specific and if we would create something specifically for PD, 
then Max/MSP and SuperCollider users would not be able to use 
them. We also wanted the act of programming to be closer to 
sketching or improvising on an instrument rather than serious 
software engineering. It is also important for us when we give our 
workshops that the programming environment is friendly with an 
easy learning curve. So we chose Python and Java for the 
graphical programming and Pure Data and SuperCollider for the 
audio programming. We have built a library in Python that uses 
OpenGL for the graphics and we built a little API on top of Daniel 
Holth's OSC library [14] so now we have quite a useful platform 
for use in workshop situations. In Java we use Chandrasekhar 
Ramakrishnan's Illposed OSC library [4] and in our workshops we 
also use Processing [10] as a graphical programming environment 
for teaching. 

4. CASE STUDIES 
In this part I will try to illustrate the change of direction we had 
when we started to use OSC. On the ixi website there are 
currently over 17 applications available to be downloaded, but 
they have been created with a mix of different technologies. I 
have chosen to show the basic functionality of 3 applications - 
SpinDrum, Connector and Picker - which illustrate quite well the 
history of the ixi technology. 

4.1 SpinDrum 
SpinDrum is one of the earliest ixi prototypes, an application that 
experiments with sequencing techniques and in fact parodies 
traditional sequencer software. Instead of having linear boxes 
representing the steps, typically a 16 step sequencer, there are 
rotating wheels with 1 to 10 pedals which can rotate at different 

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

213



speeds. Each wheel has a sound sample attached to it and when 
the pedal reaches the top position (12 o’clock), it triggers the 
sample. The location of the wheel controls the pitch and the 
panning, and the size of the wheel represents the volume. 

 
The Reichian concept of "phasing" comes to mind here and the 
software might be labeled a "phase sequencer". [11] When 
playing, the musician typically moves the wheels, adjusts their 
speed, samples audio input, adds wheels or deletes them, saves 
patterns and moves between stored settings often resulting in 
interesting polyrhythms. 

 
4.2  Connector 
Connector is an application experimenting with stochastic 
movement and change with varied degree of determinism. It 
consists of "connectors", i.e. units in a "plumbing system" with 
different amount of outlets, and "actors" which move within the 
system. 

 
The user, of course, sets up the desired system. Each connector 
has a probability graph, meaning that when an actor is about to 
leave it and move into another connector, it chooses the 
destination according to the user-defined probabilities, set up in 
the connector panel. The connectors have a MIDI value and they 
can also contain a sound sample, which is triggered when the 
actor enters the connector. There are 8 actors and they move with 
controllable speed and randomness. In this application we have 
extended ixi to become more than an instrument by the use of 

MIDI. It can now control external devices or virtual synths on the 
same computer.  

4.3 Picker 
Our first experiment with OSC is called Picker. As the name 
partly indicates, it picks up colour values from the interface and 
sends them as OSC to a sound-engine, here written in 
SuperCollider. The application has a video channel and a webcam 
channel which can be mixed in various ways, and it also has 
layers where one can display bitmap images and control their 
transparency. 

 
All this is to create an exciting colour field which, by the use of 
video, can have a moving background. There are 4 pickers that 
can be placed wherever on the screen, but they can also be taught 
some movement or just move randomly around the screen. The 
pickers send out the RGB values and the XY location through 
OSC, generating a flow of numbers that can be useful to work 
with. The repetitive video or patterns in the bitmap can result in 
interesting sound structures and the software has been used both 
to control the macrostructure (tonal information) and the 
microstructure (low level synthesis) of a piece. In a performance 
situation, the webcam functionality can be practical, as the 
performer can point it at him/herself and control the music by 
movement of the body, or just point the webcam at  objects in the 
surroundings. 
 
5. FUTURE WORK 

Our experience is that representing sound, from the synthesis to 
the compositional level, as graphical objects in a two or three 
dimensional space can help the musician to relate to the material 
he or she is working with. The human brain is limited in its 
capacity and representing complexity in an intuitive and 
ergonomic way is one of the goals of HCI. Furthermore, if the 
interface is well designed, it can serve as a useful instrument with 
unique characteristics, which can be played intuitively and 
expressively. [6] We believe there is huge amount of work ahead 
of us in exploring the language of such human computer 
interaction design of screen-based instruments. We have chosen to 
concentrate on this small but exciting field and currently we are 
not concentrating on physical controllers or sensors with our 
works as ixi, although it remains a personal interest for us. Future 
research will involve studies in how musicians understand the 
spatiality of the screen using the ixi interfaces and how visual 
memory relates to motor memory and musical decisions in a live 

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

214



performance.  

 The word "interface" explains very well what our research 
is about. It is used in HCI as signifying that boundary across 
which two systems communicate (the human and the program), 
but it is also used in software engineering as describing the 
"visible" methods of a class. A typical UML [13] diagram will 
show you what variables and methods are available in a given 
class, but the class itself might have much more complex and 
lower level inner workings that need not to be seen. The visible 
methods are the interface of the class and the rest is happening 
under the hood. This is the way we see the use of ixi apps: as 
interface between the human and the more complex synthesis 
engine, where the performer instructs the instrument in a simple 
manner, but controlling some much more integrated processes that 
might be taking place underneath. 

 The high level control over lower level structures is 
something that is used in all fields of engineering and technology 
where the human wants simple and understandable control base. 
In a NIME keynote, Joel Chadabe refers to the fly-by-wire 
concept used in aviation : 
 
'fly-by-wire'  describes a system in which a pilot tells a computer 
what the airplane should do and the computer flies the plane. The 
advantages of such systems include the computer's ability to 
expand simple but powerful instructions into coordinated controls 
for multitudes of variables, to redefine controls in different 
contexts, and to maintain goal-orientation while introducing  
enough unpredictability to keep the instrument  interesting. [1] 

 
This relates to the concept of hypercontrol which we have used 
for some time, where one action (say mousedown on a graphical 
object, move the object, mouseup) can result in many underlying 
parameters being affected. This is one of the unique qualities of 
virtual instruments: they can be controlled by simple input device 
like the mouse and a simple mouse action can result in a 
branching web of lower level control messages. An acoustic 
instrument has typically a one-to-one relationship between action 
and the sounding result, but virtual instruments can be non-
deterministic, non-linear and algorithmic in various ways. 

 This model lends itself to other exercises and experiments 
with techniques that people have come up with in the fields of 
machine learning, artificial life, artificial intelligence, genetic 
algorithms, etc. which allow us to create instruments that have 
intelligence, learn about the musician, have a character on their 
own, and utilise the idea of branched mapping or hypercontrol. 

6. CONCLUSION 
Over the years of working with ixi software, we have received 
good and useful feedback from the users and the download rate of 
the applications is ever increasing. This fact and direct 
communication with the users of the software, have strengthened 
our belief in the initial conception that abstract graphical 
interfaces as screen based instruments is a useful idea which can 
result in some good tools for musicians. With the proliferation of 
open source programming languages of various kinds which 
contain the algorithms of cutting edge research and development, 
it became obvious that we should not be building our own sound 

engines, but rather make use of what is already out there and in 
use by a strong and ever growing community. What we like to add 
to the flora of controller and sensor technology are the ixi 
interfaces, which can be used to control complex sound engines 
by OSC communication, a simple but playful addition to an 
already extraordinary creative research field. 
 
7. ACKNOWLEDGEMENTS 
ixi software is a collaboration between Thor Magnusson, Enrike 
Hurtado Mendieta, David Bausola and many musicians and beta 
testers who give us valuable feedback and ideas for further 
development. Many thanks to Chris Thornton for inspiring talks 
and I would also like to thank The Media Centre in Huddersfield, 
UK and Buchsenhausen in Innsbruck, Austria for a nice residency 
programmes which we have had the pleasure of experiencing. 
 
8. REFERENCES 
 

[1] Chadabe, Joel. “The Limitations of Mapping as a Structural 
Descriptive in Electronic Instruments” in NIME 2002 
Proceedings. 2002. 

[2] Hunt, Andy; Wanderley, Marcelo M & Paradis, Matthew. 
“The Importance of Parameter Mapping in Electronic 
Instrument Design” in Nime 2002 Proceedings. 2002. 

[3] Hunt, Andy; Kirk, Ross & Wanderley, Marcelo. “Towards a 
Model for Instrumental Mapping in Expert Musical 
Interaction” Proceedings of ICMC 2002. 

[4] http://www.mat.ucsb.edu/~c.ramakr/illposed/javaosc.html 
[5] Ixi software: http://www.ixi-software.net 

[6] Jordá, Sergi. “Digital Instruments and Players: Part I - 
Efficiency and Apprenticeship” in Proceedings of NIME 
2004. 

[7] McCartney, James. “Rethinking the Computer Music 
Language: SuperCollider” in Computer Music Journal, 26:4, 
pp. 61-68, Winter 2002. MIT Press 2002. 

[8] New Interfaces for Musical Expression. 
http://hct.ece.ubc.ca/nime/2002/ 

[9] Puckette, Miller. “Using PD as Score Language” in 
Proceedings ICMC 2002. Pp. 184-187. 

[10] Processing: http://www.processing.org 

[11] Reich, Steve. Writings on Music 1965-2000. Oxford 
University Press, New York, 2002. 

[12] Schnell, Norbert & Battier, Marc. “Introducing Composed 
Instruments, Technical and Musicological Implications” in 
Proceedings NIME 2002.  

[13] Unified Modelling Language. See http://www.uml.org/ 
[14] WireTap. See http://wiretap.stetson.edu 
[15] Wittgenstein, Ludwig. Philosophical Investigations. 

Blackwell Publishers, Oxford, 1953. 
 

 

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

215


