
Defining a control standard for easily integrating haptic
virtual environments with existing audio/visual systems

Stephen Sinclair and Marcelo M. Wanderley
Input Devices and Music Interaction Laboratory

Centre for Interdisciplinary Research in Music Media and Technology
McGill University – Montreal, QC, Canada

sinclair@music.mcgill.ca, marcelo.wanderley@mcgill.ca

ABSTRACT
This paper presents an approach to audio-haptic integra-
tion that utilizes Open Sound Control, an increasingly well-
supported standard for audio communication, to initialize
and communicate with dynamic virtual environments that
work with off-the-shelf force-feedback devices.

Keywords
Haptics, control, multi-modal, audio, force-feedback

1. INTRODUCTION
Audio and video systems have historically been very well

integrated. In contrast, haptic displays are only beginning
to be available to a wider audience. As the number of force-
feedback controllers on the market has been increasing, there
has been a corresponding interest in making use of haptics
as a third sensory mode in audio/visual systems. While cus-
tom high-fidelity systems are often used in research for de-
termining the limits of our haptic senses, there is also a need
to introduce better integration of ready-made, commercial
haptic devices into existing multimedia software.

Typically, creating an experimental setup for haptics re-
search entails programming a 3D environment using some
C/C++ framework. While this is powerful, it can be un-
necessarily complex for simpler needs. Some tools make this
easier by allowing the user to specify the environment in a
description language such as VRML [6] [15]. While this
approach certainly simplifies things, it does not provide an
easy means to inter-operate with tools used in audio. Con-
sequently, audio-enabled haptic demos are usually limited
to simple sound file playback. (See, for example, the proS-
ENSE HapticMusic demo.) More importantly, most sys-
tems are not designed for run-time interaction with other
software. For the purpose of quickly creating interactive en-
vironments that can be easily modified, better integration
with existing real-time media software is called for.

With the initial thought of creating some kind of “haptics”
external for PureData [14], similar to its GEM [4] system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME07, New York, NY, USA
Copyright 2007 Copyright remains with the author(s).

for video, we came to the conclusion that it would be more
fruitful to run a haptics simulation in a separate process,
using Open Sound Control to communicate. This paper
describes our reasoning behind this decision, our results to
date, and some ideas we are considering for future work.

2. MULTI-MODAL COMPUTING
A rendering system for a multi-modal display is inherently

separable by each of its sensory modes. While some common
properties can be shared, each mode has different require-
ments regarding timing and data throughput. For example,
while control changes should be apparent in an audio stream
within 10 ms or less for a satisfying user experience [9], vi-
sual displays usually update at about 30 Hz, meaning that
control changes are allowed up to 33 ms to be received and
processed.

In contrast, force-feedback haptics requires the total la-
tency be 1 ms or less. This is because input and output are
directly coupled: the user is part of a closed system. The
“display” depends entirely on the user’s movement, and re-
actions to position changes must be as instantaneous as pos-
sible in order to render the feel of a hard surface. It has been
previously found that between a 500 Hz and 1 kHz update
rate must be maintained for a good user experience [11].

As such, there are choices to make in terms of how the sys-
tem architecture will take these differences into account. On
the one hand, a single fast processor can be used to perform
all operations in synchrony—such an architecture usually
provides minimal latency between each sensory mode. On
the other, each mode can be considered independent, run-
ning with asynchronous timing or even on separate hard-
ware, but communicating events to each other to allow a
distributed approach.

The seminal TELLURIS project at ACROE [2] has shown
the possibilities of strictly synchronous systems. Originally,
three sensory modes were rendered on dedicated vector pro-
cessors, synchronized on using an external hardware clock.
They eventually moved to an SGI system, and currently
their ERGOS haptic device depends on algorithms running
on a PCI-based DSP board. The physical modelling for hap-
tic and audio processes are calculated synchronously on the
DSP, though the graphical display is updated independently
by the PC. The Virtual PebbleBox [8], a comparison study
between the TELLURIS system and a combination of avail-
able software solutions (SensAble OpenHaptics, the Open
Dynamics Engine, and Microsoft Direct3DSound), used the
system for a very accurate 3 kHz haptic model, with 30 kHz
audio and 50 Hz video.

Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIME07), New York, NY, USA

209



Figure 1: The system architecture. The dotted line
represents a process boundary. Within the process,
each sensory mode is computed with independent
timing on a separate thread.

Another example of this approach is the Audio-Haptic
Interface project [5]. A microcontroller-based system using
timer interrupts to compute haptics and audio under real-
time constraints was used to achieve latency below 1 ms
between the two subsystems. The result was a system that
enabled the authors to measure the lower bound of notice-
able latency in an audio-haptic system.

One notices that these projects are specialized, require
embedded programming, and are not easily scalable to larger
tasks. In contrast, commercial haptic devices usually rely
on the CPU as the main processing device, making use of
I/O with external hardware to read the device’s sensors and
control the motors. The implication is that there is a lower-
bound on achievable data rates, (most operating systems
allow timing just within 1 ms), but that the computational
architecture can be as flexible as a standard computer—
for example, taking advantage of the growing popularity of
multi-core processors [18], or even local networking to allow
a tiered approach [10].

3. TALKING TO HAPTICS
Unlike GEM, which calculates video frames between au-

dio computations, a similar approach would be difficult for
haptics servo computation. Non-trivial changes would need
to be made to the run-time system, requiring the addition
of a whole new set of patch cords running messages at the
haptic rate. The audio system would have to take a back
seat to the haptics real-time needs.

Additionally, the presence of force-feedback haptics usu-
ally implies the existence of some kind of 3D object scene
graph—while audio and video don’t necessarily need to rep-
resent concrete concepts with analogies to something phys-
ical, haptics tends to require some model of “what” we are
touching. Expressing complex low-level 3D mathematics in
the PureData visual programming paradigm seemed to be
a somewhat intractible problem. While simple shapes could
certainly be implemented, we wanted to be able to express
interactive scenarios using collision detection and physical
dynamics. Though not necessarily impossible, we felt that
Pd would be better suited to describing such a scene and
reacting to events that occur within it.

Since a scene graph is inherently a hierachical structure, it
seemed natural to take advantage of the addressing scheme
in Open Sound Control [22]. As a bonus, the program im-

Figure 2: Using the Phantom Omni from SensAble
Technologies to interact with the Force Stick exam-
ple. The PureData patch that manages the scene is
visible on the right-hand side of the screen.

plementing the scene would run in an independent process,
allowing for easy parallelism without interfering with Pure-
Data’s internals, and would also be interoperable with other
software that uses the protocol. A diagram of the system is
shown in Figure 1.

The task was then to try to define a set of OSC messages
that may be used for creating and communicating with a 3D
scene graph, and to produce an implementation which could
show examples of how this might be used to define musical
interactions.

4. IMPLEMENTATION
A proof-of-concept implementation, called DIMPLE (Dy-

namic Interactive Musically PhysicaL Environment), has
been created to test these concepts. A photograph of a user
interacting with the system can be found in Figure 2. The
CHAI 3D [3] haptic scene-graph API is used for calculat-
ing device-related forces and to communicate with the hap-
tic display, while the Open Dynamics Engine (ODE) [17] is
used for physical simulation of object movement and colli-
sion processing. It also uses LibLo [7] for OSC messaging.
CHAI 3D supports a number of off-the-shelf haptic devices.

A more complete specification for the proposed OSC
namespace is available [16]. The current software responds
only to a subset of these messages, but work on a full imple-
mentation is currently in progress. It is available for down-
load on the project’s website1.

5. EXAMPLES
The 3D virtual environment can be specified in terms of

objects and constraints on these objects. For receiving feed-
back from the model, any parameter of an object or con-
straint can be told to announce its value at regular intervals,
based on an internal timer. For now, only basic shapes are
considered, but we found that many interesting virtual mu-
sical instruments (VMI) [12] can be constructed with them.
Composite objects can be created by using a hierarchical
naming convention. In the future, more complicated shapes

1
http://www.music.mcgill.ca/musictech/idmil/projects/forcefeedback

Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIME07), New York, NY, USA

210



will be availble by loading triangle mesh files. The spec-
ification for constraints is inspired heavily by the API for
ODE.

The first example will give details about the OSC names-
pace that can be used to define it. The second will de-
scribe briefly another model that was implemented using
the framework.

5.1 Force Stick
Modeled on the original Force Stick described by Verplank

[21], this simple VMI consists of a rectangular prism with
one end on a rotating hinge. The hinge has varying types
of active feedback. For instance, Verplank suggested several
effects that can be achieved: pluck, ring, rub, bang, strike,
and squeeze. Using OSC, such a system can be constructed
as follows:

Initialize the object (named “stick”), and specify its
shape, position and mass:

/object/prism/create stick
/object/stick/size 0.02 0.1 0.3
/object/stick/position 0 0 0.15
/object/stick/mass 2

It can be seen here that once an object is created, it
becomes part of the OSC namespace. It can then accept
OSC methods which modify it. It is also immediately intro-
duced into the simulation, appears on the screen, and can be
touched and manipulated with the haptic device. Next, add
a constraint (a hinge) located at the bottom of the prism,
named “motor”, with a damped spring response:

/constraint/hinge/create motor stick world 0 0 0 0 1 0
/constraint/motor/response/spring 20 1

The constraint is located at (0,0,0) and its axis points
along (0,1,0), the X-axis. This is the axis around which the
stick will rotate.

The constraint is defined to be between the object stick,
and world, indicating a fixed position. The stiffness of the
spring action is defined as 20 N·m/rad, and the damping
coefficient is 1 N·m·s/rad. The object will not move in space
except in rotation around the line segment defined by the
given point and axis. The spring, named motor, will respond
according to the given coefficients.

To change the behaviour of the object when it is pushed
or pulled by the device proxy, a different response message
can be sent to the motor constraint. For instance, to get a
squeeze type of response, a negative linear response can be
used.

/constraint/motor/response/spring -10

This will reverse the usual spring, so that the stick tends to
fall away from the original location, and must be pulled back
to the center. An object can be grabbed using the device’s
button. “Walls” can also be specified on the constraint so
that it does not fall all the way around the hinge.

To create a sonic response, for example, by modifying the
timbre or pitch of a synthesizer, the following message will
indicate that the system should send messages every 30 ms:

/constraint/motor/force/magnitude/get 30

This will cause the force exerted by the stick’s constraint
to be sent to the audio system at regular intervals. Con-
versely, the force exerted on the stick can be retrieved by,

Figure 3: The Bucket of Marbles example, and the
PureData patch that created it. Collisions between
spheres trigger sounds in the audio portion (not
shown). The light-coloured sphere represents the
haptic proxy, which can push the others around.

/object/stick/force/magnitude/get 30

Generally speaking, any object property can be retrieved
similarly, either one time or at regular intervals.

Other constraint responses, such as textures, non-linear
springs, or breakable membranes (“plucks”) may be speci-
fied in a similar manner.

5.2 Bucket of Marbles
The PebbleBox [13] is a controller using audio analysis to

detect collisions between small polished pebbles, which can
be used to excite some synthesis engine, such as physical
modelling of water or ice cubes.

It was used, as mentioned above, as a model for the Vir-
tual PebbleBox, a study implemented once using the TEL-
LURIS system, and again using a combination of software
packages, including the ODE which is also used here.

A picture of an implementation in DIMPLE, using only
a few messages, can be seen in Figure 3. Each part of the
box is specified with a create message, which is hinged in
place so that it is not affected by gravity. Marbles are then
dropped into the box. The audio portion receives messages
from DIMPLE informing it which objects collided and at
what combined velocity. Objects can be pushed around us-
ing the haptic device.

Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIME07), New York, NY, USA

211



The audio initially consisted of a decaying envelope ap-
plied to a low-frequency sinusoid, so that the spheres seemed
to make a small “bumping” sound. However, we then for-
warded these messages a proper modal synthesis algorithm,
running in Max/MSP on a separate computer, which seemed
to give the marbles a metallic quality.

Another non-haptic task for which we have used this
model was to redirect the gravity vector according to the
center of balance determined by a force-sensing floor, caus-
ing the marbles to roll to one side or another in correspon-
dence with the user’s posture. The ball positions were then
used to control a spatialization algorithm.

The advantage of using OSC here was clear: in at least two
cases, we were able to very quickly connect various modules
we had previously made in no more than a few minutes to
create new demonstrations.

6. DISCUSSION AND FUTURE WORK
We have shown that OSC can be used to describe a vir-

tual instrument, constructed and modelled in a dedicated
process, and to get feedback from it to inform an audio (or
visual) engine.

Inter-process and inter-computer communication is nec-
essarily slower than tightly integrated systems which share
memory. Usually, OSC messages are transmitted using
UDP/IP, even when communication is between processes
on the local computer. This protocol may have a variety of
physical transports, which may introduce latency between
events in the physical model and sensory responses in the
audio and visual modes. Experiments have shown that the
Just Noticeable Difference (JND) for audio-haptic latency
is about 24 ms [1], implying that messages must be re-
ceived and processed by the audio subsystem within this
time frame.

We have not performed formal tests on actual latency ob-
served when using OSC to communicate between haptic and
audio processes. Informally we have not observed problems
with small numbers of objects when the two processes are
communicating over a loop-back connection or on the lo-
cal network. An example such as the PebbleBox simulation
could be used to measure how many objects can effectively
be tracked this way.

It is important to remember that OSC is a purposely ver-
bose protocol, and that it is transport-independent. It puts
clarity over efficiency, with the assumption that the actual
transmission medium should be chosen to be fast enough
for the intended use. One could imagine an implemen-
tation which uses inter-process shared memory, or named
pipes, both of which would likely be very fast mediums on
a local computer. With some changes, perhaps DIMPLE
could even be compiled to an external, so as to make use
of Pd/Max messaging. Designing a clear, human-readable
namespace makes the program flexible and and easy to use,
which overshadows any overhead derived from its verbosity.

In future work, we would like to implement many more
haptic effects such as deformable meshes for scanned synthe-
sis [20], stochastic scraping models [19], gravity wells, object
“grabbing”, and vibrational cues.

7. ACKNOWLEDGMENTS
This work was sponsored in part by the Natural Sciences

and Engineering Research Council of Canada (NSERC), the

Canadian Foundation for Innovation (CFI), and the Enac-
tive Network European Project.

8. REFERENCES
[1] B. D. Adelstein, D. R. Begault, M. R. Anderson, and E. M.

Wenzel:. Sensitivity to haptic-audio asynchrony. In
Proceedings of the 5th International Conference on
Multimodal Interfaces, pages 73–76, Vancouver, BC,
November 2003. ACM.

[2] C. Cadoz, A. Luciani, J.-L. Florens, and N. Castagné.
ACROE-ICA: Artistic creation and computer interactive
multisensory simulation force feedback gesture transducers. In
Proceedings of the Conference on New Interfaces for Musical
Expression, 2003.

[3] F. Conti, D. Morris, F. Barbagli, and C. Sewell. CHAI 3D.
http://www.chai3d.org/, November 2006.

[4] M. Danks. Real-time image and video processing in GEM. In
Proceedings of the International Computer Music
Conference, pages 220–223, 1997.

[5] D. DiFilippo and D. K. Pai. The AHI: An audio and haptic
interface for contact interactions. In Proceedings of the 13th
Annual ACM Symposium on User Interface Software and
Technology, pages 149–158, 2000.

[6] Handshake VR. proSENSE Virtual Touch Toolbox.
http://www.handshakevr.com/, November 2006.

[7] S. Harris and N. Humfrey. LibLo: Lightweight OSC
implementation. http://liblo.sourceforge.net/, January 2007.

[8] C. Magnusson, A. Luciani, D. Couroussé, R. Davies, and J.-L.
Florens. Preliminary test in a complex virtual dynamic haptic
audio environment. In 2nd Enactive Workshop, McGill
University, Canada, May 2006.

[9] T. Mäki-Patola and P. Hämäläinen. Latency tolerance for
gesture controlled continuous sound instrument without tactile
feedback. In Proceedings of the International Computer
Music Conference, Miami, USA, Nov 2004.

[10] W. R. Mark, S. C. Randolph, M. Finch, J. M. V. Verth, and
I. Russell M. Taylor. Adding force feedback to graphics
systems: issues and solutions. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 447–452, New
York, NY, USA, 1996. ACM Press.

[11] M. Minsky, O. young Ming, O. Steele, J. Frederick P. Brooks,
and M. Behensky. Feeling and seeing: issues in force display. In
SI3D ’90: Proceedings of the 1990 symposium on Interactive
3D graphics, pages 235–241, New York, NY, USA, 1990. ACM
Press.

[12] A. Mulder. Design of Virtual Three-dimensional Instruments
for Sound Control. PhD thesis, Simon Fraser University, 1998.

[13] S. M. O’Modhrain and G. Essl. PebbleBox and CrumbleBag:
Tactile interfaces for granular synthesis. In Proceedings of the
Conference on New Interfaces for Musical Expression, 2004.

[14] M. Puckette. Pure Data: another integrated computer music
environment. In Proceedings, Second Intercollege Computer
Music Concerts, pages 37–41, Tachikawa, Japan, 1996.

[15] Reachin’ Technology. Reachin’ API.
http://www.reachin.se/products/reachinapi/, November 2006.

[16] S. Sinclair. OSC for haptic virtual environments: Specification.
Technical Report MUMT-IDMIL-07-01, McGill University,
Music Technology Area, Feb 2007.

[17] R. Smith. Open dynamics engine (ODE). http://www.ode.org,
November 2006.

[18] H. Sutter. The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobb’s Journal, 30(3), March
2005. Available from www.gotw.ca/publications/
concurrency-ddj.htm.

[19] K. van den Doel, P. G. Kry, and D. K. Pai. FoleyAutomatic:
physically-based sound effects for interactive simulation and
animation. In Proceedings of the 28th annual conference on
computer graphics and interactive techniques, pages 537–544,
2001.

[20] B. Verplank, M. Mathews, and R. Shaw. Scanned synthesis.
The Journal of the Acoustical Society of America,
109(5):2400, May 2001.

[21] W. Verplank. Haptic music exercises. In Proceedings of the
2005 International Conference on New Interfaces for
Musical Expression, pages 256–257, Vancouver, Canada, 2005.

[22] M. Wright, A. Freed, and A. Momeni. OpenSound Control:
State of the art 2003. In Proceedings of the Conference on
New Interfaces for Musical Expression, 2003.

Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIME07), New York, NY, USA

212


