
Towards Idiomatic and Flexible Score-based Gestural
Control with a Scripting Language

Mikael Laurson
CMT

Sibelius Academy
Helsinki, Finland
laurson@siba.fi

Mika Kuuskankare
CMT

Sibelius Academy
Helsinki, Finland

mkuuskan@siba.fi

ABSTRACT
In this paper we present our recent enhancements in score-
based control schemes for model-based instruments. A
novel scripting syntax is presented that adds auxiliary note
information fragments to user specified positions in the
score. These mini-textures can successfully mimic several
well known playing techniques and gestures - such as orna-
ments, tremolos and arpeggios - that would otherwise be
tedious or even impossible to notate precisely in a tradi-
tional way. In this article we will focus on several ‘real-life‘
examples from the existing repertoire from different periods
and styles. These detailed examples explain how specific
playing styles can be realized using our scripting language.

Keywords
synthesis control, expressive timing, playing styles

1. INTRODUCTION
The simulation of existing acoustical musical instruments

such as the classical guitar in this study [4] - provides a
good starting point when one wants to evaluate the qual-
ity of a synthesis algorithm and a control system. In this
paper we aim to present our recent research efforts deal-
ing with our score-based control scheme [8]. Various as-
pects of our score-based control system have already been
presented in different papers, for instance time modifica-
tion [5], playing technique realizations [9], and the more
recent article dealing with macro-notes [6]. In the following
we aim to combine these features and show how realistic
playing simulations can be realized in an economical way.
We will discuss three larger case studies from the exist-
ing guitar repertoire and give information how the system
is able to reach convincing simulations. The realizations of
these examples can be found as MP3 files in our home page:
www.siba.fi/pwgl/pwglsynth.html.

Musical scores in our system are situated within a larger
environment called PWGL [7]. PWGL is a visual pro-
gramming language based on Lisp, CLOS and OpenGL.
Scores are of primary importance in our system and they
can be used in many compositional and analytical applica-
tions such as to produce musical material for instrumental
music [3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME08, Genova, Italy
Copyright 2008 Copyright remains with the author(s).

2. SCORE-BASED SYNTHESISCONTROL
Our score-base control scheme has several unique fea-

tures. First, the input process is interactive. After listening
to the result the user can modify the score and recalculate
the score until satisfied with the outcome. The user can se-
lect and edit any range from the score, polish it and hear the
refinements in real-time, without re-synthesizing the whole
piece. The ability to work with only a small amount of mu-
sical material at a time has proven to be very useful. This
is especially important when working with musical pieces
of considerable length. Second, our system allows to use
performance rules that generate timing information and dy-
namics automatically in a similar fashion than in [1]. The
user can, however, also work by hand using the graphical
front-end of the notation package. In this case special ex-
pression markings can be inserted directly in the score. We
have found that this kind of mixed approach - using au-
tomated rules and hand-given timing information - is very
practical and allows to define time modifications in a more
flexible way than using automatic rules only. Third, the
system supports both local and global time modifications.
The importance of this kind of approach has also been dis-
cussed in [2]. Local modifications involve only one note or
chord (such as an expression that changes the time inter-
val between notes). A global modification, in turn, handles
a group of notes or chords (a typical example of this is a
tempo function).

3. MACRO-NOTES
In this section we focus on an important component our

control system called macro-note. The macro-note imple-
mentation has been revised and it is now compatible with
our scripting language syntax. This syntax in turn has been
used in demanding analytical and compositional tasks. The
scripting syntax has a pattern-matching header that ex-
tracts complex score information, thus making it straight-
forward to produce side-effects in a score.

Macro-notes allow to use notational short-hands which
are translated by the control system to short musical tex-
tures. In the simplest case this scheme allows to mimic
ornaments, such as trills and arpeggios. The reason for
introducing the macro-note scheme in our system comes
from our previous experiences using musical scores to gen-
erate control information. To realize an ornament - say a
baroque trill in a dance movement - just by using metri-
cal notation without any abstraction mechanism can be an
awkward and frustrating experience. What is worse, the re-
sult is typically ruined if the user changes the tempo. Thus,
in order to capture the free-flowing accelerandi/ritardandi
gestures typically associated with these kinds of ornaments
we need better abstraction mechanisms: the system should
respond gracefully to tempo changes or to changes in note

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

34



Figure 1: Two macro-note realizations that are la-
belled with ”trr”. The auxilliary notes are displayed
after the main note as note-heads without stems.

duration; the system should know about the current musi-
cal context such as dynamics, harmony, number of notes in
a chord; the system should have knowledge about the cur-
rent instrument and how it should react to various playing
techniques.

4. MACRO-NOTE SYNTAX
Next we go over and discuss the main features of the

macro-note syntax. As was already stated above, a macro
note expression uses our scripting syntax having three main
parts: (1) a pattern-matching part (PM-part), (2) a Lisp-
code part, and (3) a documentation string. In the following
code example we give a simple marco-note script that adds
auxiliary notes to the main note simulating a repetition
gesture (see also Figure 1):

(* ?1 (e ?1 "trr") ; (1) PM-part
(?if (add-macro-note ?1 ; (2) Lisp-code part

:dur (synth-dur ?1)
:dtimes ’(.13 30* .12)
:midis (m ?1)
:indices 1
:artic 50
:time-modif
(mk-bpf ’(0 50 100) ’(90 130 100))

:update-function ’prepare-guitar-mn-data))
"repetition") ; (3) Documentation

In the PM-part (1) we first state, with a wild-card, ’*’,
and a variable, ’?1’, that this script is run for each note in
the score (thus ’?1’ will be bound to the current note). Fur-
thermore we check whether the note contains an expression
with the label ”trr”. If this is the case we run the Lisp-code
part (2). Here we call the Lisp function ’add-macro-note’
that generates a sequence of notes according to its keyword
parameters. The arguments are normally numbers, sym-
bols, lists or break-point functions. Internally these argu-
ments are converted to circular lists. In our example we first
specify the duration of the sequence (’:dur’). Next we give a
list of durations (’:d-times’). After this we define the ’pitch-
field’ of our macro-note, ’:midis’, which is in our case the
midi-value of the current note, ’(m ?1)’ . A closely related
argument, ’:indices’, follows, that specifies how the pitch-
field will be read. Here the pitch-field consists of only one
pitch and using the index 1 we get a sequence of repetitions.
Two time related parameters follow: the first one, ’:artic’,
defines an articulation value (which is in our case 50 per-
cent meaning ’half-staccato’); the second, ’:time-modif’, is
a tempo function, defined as a break-point function, where
x-values are relative to the duration of the note (from 0 to
100), and the y-values specify tempo changes as percentage
values (100 percent means ’a tempo’). Thus in this gesture
we start slower with 80 percent, make an accelerando up
to 130 percent, and come back to the ’a tempo’ state with
100 percent. Finally, the ’:update-function’ performs some
instrument specific calibration of the generated macro-note
sequence. Figure 1 shows two applications of the macro-
note script.

5. REALIZATION EXAMPLES
In this section we discuss three case studies. The first one

is a tremolo study realization (the original piece was com-
posed by Francisco Tarrega). The result is given in Figure
2. Although this example is now more complex it follows a
similar scheme than the previous one. The following script
was used to realize this example. Here the PM-part (1) ac-
cesses all chords in a score and runs the Lisp-code part (2)
if the chord contains the expression with the label ’trmch’
(the variable ’?1’ will be bound to the current chord). The
pitch-field consists now of all sorted midi-values that are
contained in the chord. The most complex part of the
code deals with the generation of a plucking pattern for
the tremolo gesture (see the large ’case’ expression) This
result defines the ’:indices’ parameter. Here different pat-
terns are used depending on the note value of the chord.
For instance, if the note value is a quarter note, 1/4, then
the pattern will be ’(2 3)’, which will be expanded by the
’add-items’ function to ’(2 1 1 1 3 1 1 1)’. This means that
we will use a typical tremolo pluck pattern where we pluck
once the second note and then three times the first note in
the pitch-field, then the third note and three times the first
note, and so on. We use here also an extra keyword called
’:len-function’ that guarantees that the sequence is finished
after the pattern has reached a given length.

A break-point function controls the overall amplitude
contour, ’:amp’, of the resulting gesture. Note that this
contour is added on top of the current velocity value.

Finally, we use two parameters that affect the timing of
the result. The ’:artic’ parameter is now a floating point
value that is interpreted by our system as an absolute time
value in seconds, here 5.0s (by contrast, in the previous
example we used integers that in turn were interpreted as
percentage values). This controls the crucial overlap effect
of the tremolo gesture. 5.0s is used here as a short-hand to
say: ’keep all sounds ringing’. The calculation of the final
durations is, however, much more complicated (for instance
the low bass notes will ring longer than the upper ones), but
this will be handled automatically by the update-function.
The ’:time-modif’ parameter is similar to the one in the
previous example: we do an accelerando/ritardando gesture
during the tremolo event.

(* ?1 :chord (e ?1 "trmch") ; (1) PM-part
(?if ; (2) Lisp-code part
(when (m ?1 :complete? T)

(let* ((ms (sort> (m ?1)))
inds len-function)

(case (note-value ?1)
(3/4
(setq inds (add-items ’(4 3 2 3 2 3) 3 1)

len-function ’(= (mod len 24) 0)))
(1/4
(setq inds (add-items ’(2 3) 3 1)

len-function ’(= (mod len 8) 0)))
(1/2
(setq inds (add-items ’(4 3 2 3) 3 1)

len-function ’(= (mod len 16) 0))))
(add-macro-note ?1

:dur (synth-dur ?1)
:dtimes ’(.13 30* .12)
:midis (mapcar ’list ms ms)
:indices inds
:len-function len-function

:amp (mk-bpf
’(0.0 25.0 25.25 45.0 45.25 65.0 65.25 100.0)
(g+ ’(40 20 0 30 10 50 20 40) (vel ?1)))

:artic 5.0
:time-modif (mk-bpf ’(0 50 100) ’(90 130 100))

:update-function ’prepare-guitar-mn-data))))
"tremolo chords")

Our next example is a realization of a arpeggio study by
Heitor Villa-Lobos (Figure 3) and the script is quite similar

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

35



to the previous one. The main difference is that the pitch-
field is sorted according to string number and not according
to midi-value as was the case in the tremolo study example.
The ’:indices’ parameter is also different: now it is static,
reflecting the idea of the piece where the rapid plucking
gesture is repeated over and over again.

We combine here two notions of timing control: a global
one and a local one. A global tempo function (see the break-
point function above the staff that is labelled ”/time”)
makes a slow accelerando gesture lasting for 5 measures.
This global timing control is reflected in our script where the
local ’:dur’ parameter gets gradually shorter and shorter.

(* ?1 :chord (e ?1 "vlarp") ; (1) PM-part
(?if (when (m ?1 :complete? t) ; (2) Lisp-code part

(let* ((ms (mapcar #’midi (sort (m ?1 :object T) #’<
:key #’(lambda (n)

(first (read-key n :fingering)))))))
(add-macro-note ?1

:dur (synth-dur ?1)
:dtimes ’(.14 20* .12)
:midis (mapcar ’list ms ms)
:indices ’(6 4 5 3 4 2 3 1 2 1 3 2 4 3 5 4)
:artic 1.0
:amp (mk-bpf

’(0.0 25.0 25.25 45.0 45.25 65.0 65.25 100.0)
(g+ (vel ?1) ’(50 30 10 40 20 60 30 50)))

:len-function ’(= len 32)
:update-function ’prepare-guitar-mn-data))))

" Villa-Lobos arp")

Our final example, an excerpt from J. S. Bach’s Sara-
bande, is the most complex one, and it is probably also
the most delicate one, due to its slow basic tempo. The
piece is ornamented with rich improvised textures, such as
portamento glides, trills and arpeggios (see Figure 4). In
the following we discuss the arpeggio script that is applied
three times (see the chords with expressions having the la-
bel ”carp”). The arpeggio script is similar to the tremolo
example as we have a database of plucking patterns. These
are organized here, however, according to the number of
notes in the pitch-field. Furthermore, the script can choose
randomly (using the ’pick-rnd’ function) from several alter-
natives. This results in arpeggio gesture realizations that
are not static but can vary each time the score is recalcu-
lated, similar to the baroque performance practices where
a player is expected to improvise ornaments.

(* ?1 :chord (e ?1 "carp")
(?if (when (m ?1 :complete? t)

(let* ((ms (sort> (m ?1)))
(ind (case (length ms)

(6 (pick-rnd
’(6 5 4 3 2 1 2 3 4 5)
’(1 2 1 3 4 3 5 6 5 6 5 4 3 2 1)
’(1 2 3 4 5 6 5 4 3 2 1)))

(5 (pick-rnd
’(5 4 3 2 1 2 3 4 5)
’(1 2 1 3 4 3 5 5 4 3 2 1)
’(1 2 3 4 5 4 3 2 1)))

(4 (pick-rnd
’( 4 3 2 1 2 3 4 )
’(1 2 1 3 4 3 4 3 2 1)
’(1 2 3 4 4 3 2 1)))

(3 (pick-rnd
’( 3 2 1 2 3)
’(1 2 1 3 3 2 1))))))

(add-macro-note ?1
:dur (* 0.95 (synth-dur ?1))
:dtimes ’(.15 30* .13)
:midis (mapcar ’list ms ms)
:indices ind
:artic 5.0
:amp (mk-bpf

’(0.0 0.25 25.0 25.25 45.0 45.25 65.0 65.25 100.0)
(g+ (vel ?1) ’(50 0 30 10 40 20 60 30 0)))

:time-modif (mk-bpf ’(0 50 100) ’(60 150 90))
:update-function ’prepare-guitar-mn-data))))

"Bach arp")

6. CONCLUSIONS
This paper presents our recent developments dealing with

a score-based control system that allows to fill a musical
score with ornamental textures such as trills and arpeg-
gios. After presenting the main syntax features we discussed
three larger case studies that aim to show how the macro-
note scheme can be used in a musical context.

These examples have been subjectively evaluated by the
authors (the first author is a professional guitarist), and
we consider the macro-note scheme clearly to improve the
musical output of our model-based instrument simulations.
While this paper concentrates in the simulation of existing
musical instruments, it is obvious that our control scheme
could potentially be used also to control new virtual instru-
ments.

7. ACKNOWLEDGMENTS
The work of Mikael Laurson and Mika Kuuskankare has

been supported by the Academy of Finland (SA 105557 and
SA 114116).

8. REFERENCES
[1] A. Friberg. Generative rules for music performance: A

formal description of a rule system. Computer Music
Journal, 15(2):56–71, 1991.

[2] H. Honing. From time to time: The representation of
timing and tempo. Computer Music Journal,
35(3):50–61, 2001.

[3] M. Kuuskankare and M. Laurson. Expressive Notation
Package. Computer Music Journal, 30(4):67–79, 2006.

[4] M. Laurson, C. Erkut, V. Välimäki, and
M. Kuuskankare. Methods for Modeling Realistic
Playing in Acoustic Guitar Synthesis. Computer Music
Journal, 25(3):38–49, Fall 2001.

[5] M. Laurson and M. Kuuskankare. Aspects on Time
Modification in Score-based Performance Control. In
Proceedings of SMAC 03, pages 545–548, Stockholm,
Sweden, 2003.

[6] M. Laurson and M. Kuuskankare. Micro Textures with
Macro-notes. In Proceedings of International Computer
Music Conference, pages 717–720, Barcelona, Spain,
2005.

[7] M. Laurson and M. Kuuskankare. Recent Trends in
PWGL. In International Computer Music Conference,
pages 258–261, New Orleans, USA, 2006.

[8] M. Laurson, V. Norilo, and M. Kuuskankare.
PWGLSynth: A Visual Synthesis Language for Virtual
Instrument Design and Control. Computer Music
Journal, 29(3):29–41, Fall 2005.

[9] M. Laurson, V. Välimäki, and C. Erkut. Production of
Virtual Acoustic Guitar Music. In AES 22nd
International Conference on Virtual, Synthetic and
Entertainment Audio, pages 249–255, Espoo, Finland,
2002.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

36



Figure 2: Realization of the opening measures of the tremolo study ”Recuerdos de la Alhambra” by Francisco
Tarrega.

Figure 3: Arpeggio study by Heitor Villa-Lobos. This example is challenging as we use macro-notes mixed
with ordinary guitar notation.

Figure 4: Johann Sebastian Bach: Sarabande. This example contains macro-note arpeggios and trills,
vibrato expressions, a tempo function and a portamento expression.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

37


