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ABSTRACT
This research focuses on real-time gesture learning and recog-
nition. Events arrive in a continuous stream without ex-
plicitly given boundaries. To obtain temporal accuracy, we
need to consider the lag between the detection of an event
and any effects we wish to trigger with it. Two methods
for real time gesture recognition using a Nintendo Wii con-
troller are presented. The first detects gestures similar to a
given template using either a Euclidean distance or a cosine
similarity measure. The second method uses novel informa-
tion theoretic methods to detect and categorize gestures in
an unsupervised way. The role of supervision, detection lag
and the importance of haptic feedback are discussed.

Keywords
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1. INTRODUCTION
Gesture forms an integral part of music performance. Tra-

ditional instrumentalists develop a virtuosity for the ges-
tures related to their instruments. In a similar manner, the
performers who use digital interfaces develop a virtuosity
adapted to their devices, and an important issue to address
is to categorize and recognize these gestures. Research by
Cadoz and Wanderley [3] has stressed the importance of
gesture classification and recognition. Previous research by
Cadoz [2] also emphasized the importance of haptic feed-
back for the design of interactive interface for sound pro-
duction: the physical feedback given by the intermediary
device - such as a Wii remote in our case - contributes to cre-
ate memorizable gestures, and complete the audio feedback
rendered by the interface. Kela et al. [5] studied the use
of accelerometers for multi modal activities; applications in
music have also been studied (see e.g. [8]). However, the al-
gorithms presented for this research can be used with other
gesture controllers, such as motion capture or any sensor-
based technology. Whilst other approaches have focussed
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Figure 1: The three accelerometer signals captured
from a Wii controller while making repeated gestures.

on pre-defined classification, we are interested in real-time
classification for use in music performances. A starting point
of our research was to develop an on-the-fly learning of spe-
cific gestures, in order to create a database of recognizable
gestures that could be shared between performers. The first
part of this paper describes two algorithms used to recognize
a fixed length gesture. The second part presents a dynamic
and unsupervised recognition model that is able to handle
various length gestures. The two methods are discussed and
future works are presented.

2. SUPERVISED METHOD WITH
HAPTIC FEEDBACK

The Wii remote controller is a popular and pervasive de-
vice that detects 3-dimensional movements via three ac-
celerometers, one for each dimension (relative to the con-
troller). The signals produced by the accelerometers are
transmitted via Bluetooth to a laptop computer. We used
an external object within Max/MSP developed by Masayuki
Akamatsu to decode the transmissions from the controller.
The three signals sent by the controller are sampled at rate
of 50 Hz with an accuracy determined by the Max/MSP in-
ternal timing system. The latency produced by bluetooth
devices has been estimated to approximately 50ms [9]. How-
ever, more precise measures of both latency and sampling
jitter still need to be made. The Fig. 1 shows an example of
how the data evolves over a fixed period of time.

The Wii device can produce a vibration that we use as
feedback to the user when a gesture is recognized. In addi-
tion, a visual cue is produced. We now turn to a method
implemented in order to categorize a gesture in real time
with supervision.

2.1 First method: Euclidean distance
In this method, a window of controller signals is stored.

The length of the window is determined by the duration of
the gesture to be recognised, so that the length in samples,
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L, will depend on the sampling rate, e.g. 6 (x, y, z) triplets
at 50 Hz for a gesture that lasts 120ms. The user triggers
the capture of a template or reference gesture by pressing a
button (‘A’) on the controller at the end of the movement1.
At this stage, the system is ready to compare fragments of
the incoming data with the reference gesture.

If the reference gesture Vr is considered as a 3L-dimensional
vector, and Vi is a similar vector constructed from the last
L samples of the input signal, then the Euclidean distance
between the reference and the input is

D =
p

(Vi − Vr) · (Vi − Vr), (1)

where for our purposes the dot product is defined as

A · B =
L

X

i=1

Ax(i)Bx(i) + Ay(i)By(i) + Az(i)Bz(i), (2)

that is, a sum over the L samples and the three dimensions.
The gesture is detected when the distance drops below, or
reaches a minimum below, a given threshold, as shown in
fig. 2(b).

2.2 Second method: cosine similarity
The cosine of the angle between the reference vector and

the input vector can be computed by taking the dot product
and dividing by the norms of the two vectors:

C =
Vr · Vi√

Vr · Vr

√
Vi · Vi

, (3)

using the same definition of the dot product as before. It is
1 when the vectors are parallel, i.e. the gestures are identi-
cal up to an arbitrary scaling factor. Thus, we can detect
gestures similar to the reference by looking for peaks in the
cosine above a certain threshold, as shown in fig. 2(c).

2.3 Discussion
Supervised recognition, in both cases presented above,

seems to be an appropriate method for the definition of pre-
cise gestures. By focusing on one gesture at a time, we are
able to repeat a movement several times until the vibration
produced (as a result of the recognition) arrives at the mo-
ment it is expected. Moreover, the issue of latency due to
the various processing steps can be addressed. A gesture can
be recognized before it is finished as long as its initial frag-
ment can reliably be recognized in advance. In our case, we
observed that initial fragments of more than 80ms are usu-
ally distinct enough not to be confused with other gestures.
If we increase the ‘anticipatory lag’ by choosing a gesture
template from an initial fragment that ends well before the
end of the gesture, the haptic feedback can be triggered at
the time the performer expects, but on the other hand, the
detection is less reliable. The number of entries of the con-
stituted database is also an important factor in the overall
error rate.

We chose to analyse a regular, repeated movement, con-
sisting of a cycling through three hand movements, visible
as the large peaks in fig. 2(a). One of these movements, ex-
tracted from near the beginning of the signal, was taken to
be the reference gesture—it is visible in fig. 2(b) at the point

1Pressing the button while doing the gesture is not an ap-
propriate solution in the long term, as it affects the gesture
itself. This problem is addressed in the unsupervised version
(see section3).
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Figure 2: Analysis of the signal for a repeated gesture.
The reference gesture was taken from the begining and is
visible where the distance drops to zero. Suitable thresh-
olds for detection are shown as black horizontal lines.

where the Euclidean distance drops to zero. As it is shown
in figure 2, repetitions of the same gestures are not iden-
tical, therefore the threshold for detection must be larger
than 0 or less than 1 for the two methods respectively. The
cosine method, being invariant to overall magnitude of the
accelerometer signals, is able to recognize the reference ges-
ture even if it is performed at a larger scale, as long as it
has the same duration.

Both methods are quite sensitive to the choice of reference
gesture and the thresholds, but in this case we were able to
find parameters that gave successful detection of all 45 in-
stances of the reference gesture using the cosine methods,
and 44/45 using the Euclidean distance measure, with no
false positives. We were also able to use the results of the
initial run to construct a better reference gesture by averag-
ing all the previously detected instances. This gave perfect
results using both methods.

3. UNSUPERVISED METHOD USING
INFORMATION DYNAMICS

The above supervised method requires two distinct pieces
of information to recognise a gesture in a timely way: one is
the reference gesture with its label and the other is the indi-
cation of the particular time point, relative to the reference,
at which to respond to the gesture. This can be thought of
as a mark indicating the ‘perceptual centre’ of the gesture
(see fig. 3).

Though in some applications it may be possible to inter-
leave the training phases with the performances phases, as
we did in the system described above, in other applications
it may not be possible for the person or system creating the
gestures to provide this extra stream of information stating
that ‘this is gesture A’, ‘this is gesture B ’, and so on. For
example, a dancer’s movements might be improvised and
the dancer too occupied with the actual execution of them
to be able to mark and label them as well. However, human
observers are capable of recognising a repeated gesture and
inferring a series of relatively precise timings from what is
on the face of an unstructured continuous movement.
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Figure 3: A one dimensional gesture (e.g. a hand moving
up and down) where the implied punctual event or beat
is marked as the perceptual onset and is some time after
the initial onset.
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Figure 4: Representation of a sequential perceptual pro-
cess: at any given time, there will be context of known
previous observations, a ‘current’ observation, and an
unobserved future.

3.1 Predictive information
The question at the heart of gesture recognition is how do

we perceive discrete and punctual (that is, associated with a
particular point in time) events in a continuous signal? Our
approach to this is to consider the predictive information
rate of the signal as processed by the observer. Essentially,
we consider our hypothetical observer to be engaged in a
continuous (and largely unconscious) process of trying to
predict the future evolution of a signal as it unfolds. These
predictions are probabilistic in nature; that is, they entail the
assignments of probabilities to the various possible future
developments.

A sufficiently adaptive perceptual system will internalise
any statistical regularities in the signal, such as smoothness
or any typical or repeated behaviour, in order to make bet-
ter predictions. If a particular observation, which in practi-
cal terms might consist of a few samples of motion capture
data, brings about a large change in the predictive prob-
ability distribution, then we associate with it a large pre-
dictive information. In this way, we can plot the predic-
tive information rate against time. Referring to fig. 4, the
predictive information is the Kullback-Leibler divergence (a
measure of distance between probability distributions) be-
tween P (Y |Z = z) and P (Y |Z = z, X =x), where Z = z and
X = x denote the propositions that past and present vari-
ables respectively were observed to have particular values z
and x.

Now, depending on both the signal and the observer’s pre-
dictive model, the predictive information rate can take many
forms, but in particular, it may in some cases be relatively
flat, while in others, more peaky or bursty, in the sense that
the predictive information arrives in concentrated ‘packets’
interspersed by longer periods of relatively low predictive
information. It is in this latter case that we identify the
‘packets’ of information as the ‘events’.

3.2 HMM-based implementation
We have implemented a version of this hypothetical ob-

server using a relatively simple predictive model (a Markov
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Figure 5: The state space of one of the HMMs trained
on the recorded data. The directed edges represent the
transitions; self-transitions and transitions with very low
probability have been hidden. The darkness of the edges
shows the probability of the corresponding transition.

chain) in which the predictive information associated with
each observation can be computed quite straightforwardly2.

The analysis proceeds as follows. The three sampled sig-
nals are windowed, taking L consecutive samples, and rep-
resented as a vector with N = 3L components. At each time
step the window is shifted along by one sample. The result-
ing sequence of vectors is taken as the as the continuous-
valued observation sequence from a hidden Markov model
(HMM) with Gaussian state-conditional distributions and
K possible states. The parameters of this HMM (the tran-
sition matrix and the mean and covariance for each of the
K states) are trained using a variant of the Baum-Welch
algorithm [7]. Once the HMM is trained, the most likely
sequence of hidden states is inferred using the Viterbi algo-
rithm and the information dynamic analysis applied to the
Markov chain.

Many instances of the system were trained with different
random initialisations. Fig. 5 shows the underlying Markov
chain found in one such instance with L = 9 and K = 20.
The transition structure shows that there a small number
of typical paths through the state space, corresponding to
different gestures. Our information dynamic analysis auto-
matically picks out states which most effectively signal that
a particular path is being traversed; in the figure, the most
informative states are 17, 8, and 15. Note that state 3 is not
as informative as state 8 as state 3 has a high self transition
probability.

In fig. 6, the variation in predictive information rate over
time is shown (this example actually uses a different HMM
from that shown in fig. 5). Event detection then proceeds by
picking all transitions with a predictive information greater
than a fixed threshold, and the identity the target state is
used to categorise the event. In our experiments, we sonified
these events using a different pitch for each event type. In
most cases, all the gestural events (approximately 150 in
total) are detected and categorised into 2–4 classes, with
1–3 false positives.

2However, the Markov chain is not observed but inferred
using a hidden Markov model (HMM) so there is an element
of approximation involved
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Figure 6: Information dynamic analysis of accelerom-
eter signals in top panel. The middle panel shows the
state sequence inferred from the HMM in a way that
highlights the average informativeness of each state in
the sequence: the shading of each marker encodes which
of the 20 states is active, while the y-axis represents
the average predictive information associated with that
state. In the bottom panel, the shading encodes the state
as before, but the y-axis encodes the predictive informa-
tion associated with that particular transition in context.

3.3 Related work
Hidden Markov models have been applied to gesture recog-

niton by many researchers [4, 6]. In the terminology used in
this field, our system performs continuous gesture recogni-
tion because there are no given boundaries between gestures.
Our current HMM based system is not online but could eas-
ily be made so using fixed-lag decoding of the HMM instead
of the current off-line Viterbi algorithm.

Unlike other HMM-based systems of which we are aware,
our system uses a single HMM to model all gestures instead
a separate HMM for each one. Thus the categorisation of
input signals as one gesture or another is made through the
normal operation of the forwards-backwards or Viterbi al-
gorithms.

In fact our system is more closely related to the audio on-
set detection system described in [1]. The difference is that
in the earlier system, the choice of which states were to be
taken as indicators of significant events had to made manu-
ally, where as the current system uses information dynamic
principles to do this automatically.

4. CONCLUSION
In this work, we have investigated the development of ef-

ficient tools for real-time gesture recognition. The Nintendo
Wii remote was chosen to provide data to our methods, how-
ever, both supervised and unsupervised algorithms are adap-
tive enough to deal with signals from different controllers.
The template matching system is based on well-known tem-
plate matching methods, while the HMM based system uses
novel information-theoretic criteria to enable unsupervised
identification of an initially unknown number of gestures. At
this stage, the recognition part of the HMM-method is im-
plemented in Matlab, but could be implemented in real-time
fairly straightforwardly using a standard fixed-lag smooth-

ing algorithm for the HMM [7]. The explicit probabilistic
formulation of the model makes it well suited to handling the
detection latency problem by predicting the future motion
of the controller and estimating how accurate this prediction
might be. The supervised method, however, is implemented
in Java as a plug-in for Max/MSP and works in real-time.
An external to calculate the Euclidean and cosine match-
ing methods for any signal will be soon be released. Online
training of HMMs is possible but is an inherently more dif-
ficult problem which we are researching currently.

Part of the motivation behind this work is that multiple
performers could use the system and thereby share infor-
mation about gestures made. For example, when a gesture
triggers or schedules a sonic or visual event, it could also
cause a vibration signal to be sent to the other performers’
controllers. This extra level of haptic communication could
enhance the sonic and visual interaction without interfering
with the performance as seen and heard by the audience.
Future work will explore the importance of shared cues be-
tween performers and the development of haptic solutions
to communicate these cues.
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