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ABSTRACT
We present examples of a wireless sensor network as applied 
to wearable digital music controllers. Recent advances in 
wireless Personal Area Networks (PANs) have precipitated the 
IEEE 802.15.4 standard for low-power, low-cost wireless 
sensor networks. We have applied this new technology to 
create a fully wireless, wearable network of accelerometers 
which are small enough to be hidden under clothing. Various 
motion analysis and machine learning techniques are applied 
to the raw accelerometer data in real-time to generate and 
control music on the fly. 
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1. INTRODUCTION 
Music and dance are rarely separated, as they complement 
each other so fully. The rhythms of music echo in the 
movements of the bodies of performers and audience alike. 
We describe a digital interface which seeks to fully integrate 
music and dance by transforming the human body itself into a 
musical instrument.  

The system described in this paper allows the user to create 
and manipulate music with motion and dance. To offer the 
maximum flexibility for the musician, dancer, performing 
artist, or DJ, the system is fully programmable and 
configurable for a wide variety of musical scenarios. Machine 
learning techniques offer robust customizable gesture support 
to create motion-based control commands. When coupled with 
choreography, performance of electroacoustic compositions is 
possible with organic input introduced by the motions of a live 
performer. 

2. HARDWARE
The hardware components of the system, in essence, comprise 
a basic Motion Capture (MC) system. Accelerometers placed 
at different points on the arms, legs, and head, track the 
motion of the user. This data, collected at different points 
around the body, must be transmitted to a computer for 
analysis and translation into music. To minimize hindrance to 
the user, our MC system completely eliminates wires. Data is 
transmitted wirelessly and independently from each 
accelerometer to a base station, which is attached to a 
computer. 

This constitutes a wearable wireless sensor network, made 
possible by the emergence of the IEEE 802.15.4 standard [4]. 
Though each node in the network is independently battery 
powered, each uses such little power that a small, light battery 
is used for each, which can last for tens of hours of continuous 
use. The robustness of the IEEE protocol enables reliable 
communication within 100 feet of the base station, suitable for 
a typical performance environment. 

2.1 Sensor Node Design Background 
While sensor networks are relatively new, several have 
previously been implemented [3] [7]. In one instance, sensor 
networks comprised of Eco motes have been applied to dance 
[8]. Sensor networks used in live performance situations have 
strict design requirements. Our system, focusing on real-time 
music creation, is subject to these constraints and requires a 
high level of perceived interactivity with minimal latency. 

The system in [8] utilizes a mix of low-data-rate wireless 
nodes in the 2.4 GHz band (with similar characteristics to 
802.15.4 networks) co-located with 802.11 transceivers. The 
802.11 transceivers were responsible for communication 
across the performance environment. However, 802.11 
transceivers are bulky and consume a lot of power. 
Additionally, it has been indicated that 802.11 networks co-
located with 802.15.4 networks significantly interfere with the 
communication of the 802.15.4 networks [9]. Because of these 
concerns, our design relies solely on 802.15.4 nodes. These 
nodes are still capable of communicating across a performance 
environment. A basic interference prediction technique, 
similar to a more sophisticated version [6], is applied to 
minimize incidental 802.11 interference and allow for fast and 
reliable data throughput. 

2.2 Sensor Node Design 
Each sensor node, or mote, consists of three main components: 
the accelerometer, the radio, and the microcontroller. The 
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microcontroller and the radio (see Figure 1) are available 
together from Atmel’s Z-Link series, designed for Zigbee and 
802.15.4 networks. The Atmel radio, the AT86RF230, offers a 
digital radio solution that requires a bare minimum of external 
components, allowing for low cost and a physically small 
footprint. A Linx chip antenna is used to minimize the form 
factor of the devices. The three-axis accelerometers from 
Kionix offer 6-g sensitivity and 12 bits of resolution, allowing 
the sensors to detect fluctuations in acceleration as small as 
0.003 g’s in any direction. The radio and the accelerometer 
both interface with the microcontroller through an SPI (Serial 
Peripheral Interface) link, with speeds up to 2 Mbps, as the 
ATMega644 microcontroller is operated at 4 MHz. 

The radio operates in the 2.4 GHz band, although the IEEE 
specification defines two other bands, around 800 and 900 
MHz, which may be used when there is too much noise in the 
2.4 GHz band. The radio, when operating at 2.4 GHz is 
capable of a raw throughput of 250 kbps. As each sample from 
the accelerometer contains approximately 50 bits (12 bits * 3 
axes plus protocol overhead bits), each node is itself 
theoretically capable of transmitting around 5000 samples per 
second. With a 5-sensor node system, the theoretical limit of 
the rate at which samples may be collected from the entire 
system is around 1000 samples every second. This time 
resolution is more than sufficient for a responsive system 
without noticeable latency. Our experiments have used as few 
as 60 samples per second with excellent results and no 
noticeable latency. This wide range allows for successful 
operation of the system even in electrically noisy 
environments where the communications rate is forced to 
drop.  

2.3 Network Layer Design 
The software that runs on each node in the network is built on 
top of a custom library, designed according to an AT86RF230 
software programming document [1], which encapsulates the 
physical layer of the network. The network layer is kept very 
simple to allow for fast implementation of new techniques, 
which are not incorporated into a typical 802.15.4 Medium 
Access Control (MAC) layer. In addition, we are interested in 
a single-hop network and do not need many of the features the 
full 802.15.4 specification provides. The networking layer we 
have implemented is not 802.15.4 compatible, although the 
physical layer is. 

Our system requires several independent sensor nodes to 
communicate with a single base-station. Communication 
latencies must be kept to a minimum, samples should be 
collected from each node at regular intervals, and power 
consumption should be minimized. The 802.15.4 standard 
describes the Guaranteed Time Slot (GTS) feature that allows 
rigid, reliable data transmission rates between network slaves 
and a network master. However, the GTS feature requires the 
slaves to be either persistently listening, which wastes power, 
or time-synchronized, which requires extra communication.  

To solve this problem, our system utilizes a collaborative 
virtual time slot allocation technique, which takes advantage 
of the Carrier Sense Multiple Access with Collision Avoidance 
(CSMA-CA) feature. In essence, when each node wants to 
transmit, it listens to see if the channel is busy. If it is not 
busy, it will wait a random interval before transmitting. After a 
successful transmission, the node starts a deterministic timer, 
corresponding with the desired sampling rate, which indicates 
when the node should transmit its next sample. In the steady 
state, the node will transmit the next message after this pre-
determined interval and will settle into a regular transmission 
schedule. If the node listens and finds the channel busy, it will 
wait a random interval before attempting to transmit again. It 
will continue to wait and check the channel until it finds the 
channel is not busy. At this point, the node will transmit its 
message.  

With every node following this behavior, and using the same 
sampling rate, they will eventually settle into a schedule that 
fits for every node, where no message overlaps, assuming the 
message lengths are short enough given the sampling rate that 
is used. In addition, between each sample, the node can enter a 
standby mode to reduce power consumption and extend 
battery life. This scheme works well in a system such as this 
sensor network where each data frame to be transmitted will 
be of exactly the same length, and each node is taking samples 
at exactly the same rate. Since the clocks are not 
synchronized, however, and may actually run at slightly 
different rates, the "set" schedule for each node is not actually 
fixed. This scheme is flexible: as each sample timer is started 
only after a successful transmission, the schedule is readjusted 
such that no messages overlap. To minimize the latency jitter 
this may introduce, a reasonably low sampling rate is required, 
to allow some room in the transmission schedule for 
readjustments.  

In short, this transmission scheme allows for high throughput 
without the communication overhead that would be required 
with other schemes. Samples are transmitted on reasonably 
tight schedules that allow for little random jitter in the time 
intervals between them, and is done without the use of 
timestamps and the overhead of clock coordination. 

3. SOFTWARE 
The base station is connected to the computer via a USB 
connection. FTDI's D2XX drivers1 allow direct access to the 
USB device through a DLL so our software can access it 
through a series of DLL function calls. We wrote this software 
using flext2, a C++ layer for cross-platform development of 

                                                                
1 http://www.ftdichip.com/Drivers/D2XX.htm 
2 http://grrrr.org/ext/flext/ 

Figure 1. A wireless node 
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Max/MSP3 and Pure Data (Pd).4 This gives us an object, or 
external, to use in either of these graphical programming 
languages that interfaces directly with the base station through 
the USB connection and streams the accelerometer data into 
our Max/MSP or Pd programs, or patches. 

We then designed a suite of patches to enable use of the sensor 
network with direct and indirect mappings and to allow the 
user to create or manipulate music in real-time. The 
accelerometer data can be processed in various manners to 
extract inclination and orientation when accelerometers are not 
moving (i.e. when overall acceleration is about 1g) and detect 
movements and gestures when in motion. By creating a library 
of low level data processing patches that analyze the raw 
accelerometer data and extract meaningful parameters about 
the sensor nodes, we were able to provide functional 
components for use in higher-level designs. 

3.1 Data processing 
The low-level library includes patches for calibration and 
converting ADC values to real measures of acceleration in g’s, 
calculating total acceleration, jerk, frequency, and overall 
activity, and determining orientation and inclination. The total 
acceleration patch can be used for detecting overall 
acceleration of a sensor, but is also important in inclination 
error control. If the total acceleration of a sensor goes above 
1g, there are forces other than gravity acting on it and 
inclination calculations are no longer valid. 

One simple orientation patch takes the raw acceleration of 
three axes as input and essentially outputs which axis is facing 
upward, with a check that the accelerometer isn’t in motion 
and a small bias toward the current orientation. For a more 
accurate indication of the accelerometer’s position in three-
dimensional space, we created an inclination patch to use on a 
per-sensor basis. It includes trigonometric calculations that use 
gravity to determine angles referred to as pitch, roll, and yaw 
for rotation about the accelerometer’s x, y, and z axes. The 
method maintains constant sensitivity and allows tilt angles 
greater that 45° to be sensed accurately and precisely by using 
the acceleration of all three axes in each calculation of pitch, 
roll, and yaw [5]. For example, the pitch (X-tilt) calculation is 
given by  in Equation 1. 
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After performing the three inclination calculations, making 
further corrections with sign recognition, and testing whether 
the sensor is moving and its data is valid, the patch outputs 
accurate measures of pitch, roll, and yaw in degrees. 

Note that while designed for our sensor system, these patches 
also work with popular accelerometer-based input devices 
such as the Nintendo Wii Remote and Apple iPhone. 

                                                                
3 http://www.cycling74.com/products/maxmsp 
4 http://puredata.info 

3.2 Motion analysis 
Patches were also written for movement and gesture 
recognition. Patches were created to determine the magnitude 
and direction of movements. Directionality is determined by 
using the last known orientation of the sensor at rest as the 
initial state and comparing this to the detected vector of 
movement. While we often used a simple measure of 
acceleration for the magnitude of a movement, we also found 
it helpful to track the duration of a movement as an important 
basic parameter. 

We considered two forms of gesture recognition, essentially 
separating them into programmed and learned gestures. The 
programmed gesture schemes used a simple patch that detects 
when one specified action follows another within a specified 
time frame. This enabled us to combine multiple movements 
such that the overall gesture occurs when one movement is 
followed by another movement within a certain time period. A 
useful instance of these manually programmed gestures was 
that of recognizing a specified orientation followed by motion 
in certain direction. We designed this example with an 
accelerometer attached to the wrist to detect 6 orientations 
(palm up, palm down, thumb up, thumb down, fingers up, 
fingers down) and 6 directions of movement (up, down, left, 
right, forward, backward), which provide 36 different 
orientation/movement combinations. When combined with a 
second sensor for the other hand, the number of 
orientation/movement combinations is in the thousands. This 
example illustrates the ability to use the system to make 
commands with an “alphabet” of gestures, much like flag 
semaphore signaling uses two flags held in specific positions 
to signify letters.  

The second form of gesture recognition uses machine learning 
techniques to teach the computer a set of gestures. Then, an 
arbitrary motion can be recognized from that set in real-time. 
We explored gesture recognition with hidden Markov models 
(HMM) by utilizing the FTM and MnM libraries [1]. The 
system has the capability to learn gestures, e.g. drawing shapes 
or numbers in the air, perform gesture following, and detect 
gestures with accompanying degrees of certainty. 

4. APPLICATIONS
Our hardware and software infrastructure was applied to a 
number of scenarios with success. One of the most valuable 
was using the system on trained dancers (see Figure 2) with 

Figure 2. Dancer performing with sensor system 
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the intention of not requiring the learning of any specific 
motions or gestures. In this situation, we wanted the design of 
the piece to allow for creativity and freedom of expression of 
the dancer. We attached four sensors to the performer’s hands 
and feet, mapping continuous parameters of the dancer’s 
motion onto algorithmic compositions. In a typical example, 
movement of each sensor would influence particular 
instruments. For each sensor, subtle movements could 
generate quieter sounds while quicker or longer motions 
triggered louder sounds that could be from different sets of 
instruments. Although the performer doesn’t have control over 
the particular notes being played in this scenario, the type of 
movement influences the harmonic direction of the piece. We 
were able to effectively communicate these types of mappings 
to the choreographer, who was free to focus on dance without 
a need for the dancer to correctly perform specific gestures. 
This scheme worked well because the responsibility of musical 
content is shifted to the programmer. 

On the other hand is a contrasting scenario in which the 
performer has a more direct influence over the music. A DJ or 
other musician needs functionality for precise control, so we 
depended more heavily on direct mappings and gesture 
recognition in these instances. For example, in one case we put 
a sensor on one hand that allows the performer to make 
commands and “push buttons” via gesture recognition, and a 
second sensor on the other hand to control continuous 
parameters via multi-dimensional inclination and “twist 
knobs.” This case was successful because the first hand was 
relegated to performing discreet actions with recognized 
gestures while the second could be used for continuous 
parameters. For instance, the gestures of the first hand could 
trigger the next part of a song, control loops, switch 
instruments, etc. while the second hand could do things such 
as control the levels of multiple effects or act as a theremin-
like instrument. 

The system has also been applied in other interactive media 
settings, including use as an alternative gaming controller and 
as a human-computer interface for navigating operating 
systems and controlling computer applications with gestures. 

5. DISCUSSION 
This sensor system has been a powerful tool for musical 
expression in translating human movement to music. Although 
the sensors and auditory output are external processes, they are 
based on internal human motivations, and the system was able 
to capture one’s natural motion and materialize the intangible 
processes of the performer. 

Further work will include increasing the reliability of the 
hardware system as well as decreasing its size and power 
consumption. We also plan to increase the robustness and 
flexibility of the software patches, hope to improve the 
usability of the gesture recognition system, and test scenarios 
using a greater number of sensor nodes. 
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