
Wearable Interfaces for Cyberphysical Musical
Expression

Andrew B. Godbehere
Cornell University
Ithaca, NY, USA

abg34@cornell.edu

Nathan J. Ward
Cornell University
Ithaca, NY, USA

njw23@cornell.edu

ABSTRACT
We present examples of a wireless sensor network as applied
to wearable digital music controllers. Recent advances in
wireless Personal Area Networks (PANs) have precipitated the
IEEE 802.15.4 standard for low-power, low-cost wireless
sensor networks. We have applied this new technology to
create a fully wireless, wearable network of accelerometers
which are small enough to be hidden under clothing. Various
motion analysis and machine learning techniques are applied
to the raw accelerometer data in real-time to generate and
control music on the fly.

Keywords
Wearable computing, personal area networks, accelerometers,
802.15.4, motion analysis, human-computer interaction, live
performance, digital musical controllers, gestural control

1. INTRODUCTION
Music and dance are rarely separated, as they complement
each other so fully. The rhythms of music echo in the
movements of the bodies of performers and audience alike.
We describe a digital interface which seeks to fully integrate
music and dance by transforming the human body itself into a
musical instrument.

The system described in this paper allows the user to create
and manipulate music with motion and dance. To offer the
maximum flexibility for the musician, dancer, performing
artist, or DJ, the system is fully programmable and
configurable for a wide variety of musical scenarios. Machine
learning techniques offer robust customizable gesture support
to create motion-based control commands. When coupled with
choreography, performance of electroacoustic compositions is
possible with organic input introduced by the motions of a live
performer.

2. HARDWARE
The hardware components of the system, in essence, comprise
a basic Motion Capture (MC) system. Accelerometers placed
at different points on the arms, legs, and head, track the
motion of the user. This data, collected at different points
around the body, must be transmitted to a computer for
analysis and translation into music. To minimize hindrance to
the user, our MC system completely eliminates wires. Data is
transmitted wirelessly and independently from each
accelerometer to a base station, which is attached to a
computer.

This constitutes a wearable wireless sensor network, made
possible by the emergence of the IEEE 802.15.4 standard [4].
Though each node in the network is independently battery
powered, each uses such little power that a small, light battery
is used for each, which can last for tens of hours of continuous
use. The robustness of the IEEE protocol enables reliable
communication within 100 feet of the base station, suitable for
a typical performance environment.

2.1 Sensor Node Design Background
While sensor networks are relatively new, several have
previously been implemented [3] [7]. In one instance, sensor
networks comprised of Eco motes have been applied to dance
[8]. Sensor networks used in live performance situations have
strict design requirements. Our system, focusing on real-time
music creation, is subject to these constraints and requires a
high level of perceived interactivity with minimal latency.

The system in [8] utilizes a mix of low-data-rate wireless
nodes in the 2.4 GHz band (with similar characteristics to
802.15.4 networks) co-located with 802.11 transceivers. The
802.11 transceivers were responsible for communication
across the performance environment. However, 802.11
transceivers are bulky and consume a lot of power.
Additionally, it has been indicated that 802.11 networks co-
located with 802.15.4 networks significantly interfere with the
communication of the 802.15.4 networks [9]. Because of these
concerns, our design relies solely on 802.15.4 nodes. These
nodes are still capable of communicating across a performance
environment. A basic interference prediction technique,
similar to a more sophisticated version [6], is applied to
minimize incidental 802.11 interference and allow for fast and
reliable data throughput.

2.2 Sensor Node Design
Each sensor node, or mote, consists of three main components:
the accelerometer, the radio, and the microcontroller. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME08, June 5-7, 2008, Genova, Italy
Copyright remains with the author(s).

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

237

microcontroller and the radio (see Figure 1) are available
together from Atmel’s Z-Link series, designed for Zigbee and
802.15.4 networks. The Atmel radio, the AT86RF230, offers a
digital radio solution that requires a bare minimum of external
components, allowing for low cost and a physically small
footprint. A Linx chip antenna is used to minimize the form
factor of the devices. The three-axis accelerometers from
Kionix offer 6-g sensitivity and 12 bits of resolution, allowing
the sensors to detect fluctuations in acceleration as small as
0.003 g’s in any direction. The radio and the accelerometer
both interface with the microcontroller through an SPI (Serial
Peripheral Interface) link, with speeds up to 2 Mbps, as the
ATMega644 microcontroller is operated at 4 MHz.

The radio operates in the 2.4 GHz band, although the IEEE
specification defines two other bands, around 800 and 900
MHz, which may be used when there is too much noise in the
2.4 GHz band. The radio, when operating at 2.4 GHz is
capable of a raw throughput of 250 kbps. As each sample from
the accelerometer contains approximately 50 bits (12 bits * 3
axes plus protocol overhead bits), each node is itself
theoretically capable of transmitting around 5000 samples per
second. With a 5-sensor node system, the theoretical limit of
the rate at which samples may be collected from the entire
system is around 1000 samples every second. This time
resolution is more than sufficient for a responsive system
without noticeable latency. Our experiments have used as few
as 60 samples per second with excellent results and no
noticeable latency. This wide range allows for successful
operation of the system even in electrically noisy
environments where the communications rate is forced to
drop.

2.3 Network Layer Design
The software that runs on each node in the network is built on
top of a custom library, designed according to an AT86RF230
software programming document [1], which encapsulates the
physical layer of the network. The network layer is kept very
simple to allow for fast implementation of new techniques,
which are not incorporated into a typical 802.15.4 Medium
Access Control (MAC) layer. In addition, we are interested in
a single-hop network and do not need many of the features the
full 802.15.4 specification provides. The networking layer we
have implemented is not 802.15.4 compatible, although the
physical layer is.

Our system requires several independent sensor nodes to
communicate with a single base-station. Communication
latencies must be kept to a minimum, samples should be
collected from each node at regular intervals, and power
consumption should be minimized. The 802.15.4 standard
describes the Guaranteed Time Slot (GTS) feature that allows
rigid, reliable data transmission rates between network slaves
and a network master. However, the GTS feature requires the
slaves to be either persistently listening, which wastes power,
or time-synchronized, which requires extra communication.

To solve this problem, our system utilizes a collaborative
virtual time slot allocation technique, which takes advantage
of the Carrier Sense Multiple Access with Collision Avoidance
(CSMA-CA) feature. In essence, when each node wants to
transmit, it listens to see if the channel is busy. If it is not
busy, it will wait a random interval before transmitting. After a
successful transmission, the node starts a deterministic timer,
corresponding with the desired sampling rate, which indicates
when the node should transmit its next sample. In the steady
state, the node will transmit the next message after this pre-
determined interval and will settle into a regular transmission
schedule. If the node listens and finds the channel busy, it will
wait a random interval before attempting to transmit again. It
will continue to wait and check the channel until it finds the
channel is not busy. At this point, the node will transmit its
message.

With every node following this behavior, and using the same
sampling rate, they will eventually settle into a schedule that
fits for every node, where no message overlaps, assuming the
message lengths are short enough given the sampling rate that
is used. In addition, between each sample, the node can enter a
standby mode to reduce power consumption and extend
battery life. This scheme works well in a system such as this
sensor network where each data frame to be transmitted will
be of exactly the same length, and each node is taking samples
at exactly the same rate. Since the clocks are not
synchronized, however, and may actually run at slightly
different rates, the "set" schedule for each node is not actually
fixed. This scheme is flexible: as each sample timer is started
only after a successful transmission, the schedule is readjusted
such that no messages overlap. To minimize the latency jitter
this may introduce, a reasonably low sampling rate is required,
to allow some room in the transmission schedule for
readjustments.

In short, this transmission scheme allows for high throughput
without the communication overhead that would be required
with other schemes. Samples are transmitted on reasonably
tight schedules that allow for little random jitter in the time
intervals between them, and is done without the use of
timestamps and the overhead of clock coordination.

3. SOFTWARE
The base station is connected to the computer via a USB
connection. FTDI's D2XX drivers1 allow direct access to the
USB device through a DLL so our software can access it
through a series of DLL function calls. We wrote this software
using flext2, a C++ layer for cross-platform development of

1 http://www.ftdichip.com/Drivers/D2XX.htm
2 http://grrrr.org/ext/flext/

Figure 1. A wireless node

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

238

Max/MSP3 and Pure Data (Pd).4 This gives us an object, or
external, to use in either of these graphical programming
languages that interfaces directly with the base station through
the USB connection and streams the accelerometer data into
our Max/MSP or Pd programs, or patches.

We then designed a suite of patches to enable use of the sensor
network with direct and indirect mappings and to allow the
user to create or manipulate music in real-time. The
accelerometer data can be processed in various manners to
extract inclination and orientation when accelerometers are not
moving (i.e. when overall acceleration is about 1g) and detect
movements and gestures when in motion. By creating a library
of low level data processing patches that analyze the raw
accelerometer data and extract meaningful parameters about
the sensor nodes, we were able to provide functional
components for use in higher-level designs.

3.1 Data processing
The low-level library includes patches for calibration and
converting ADC values to real measures of acceleration in g’s,
calculating total acceleration, jerk, frequency, and overall
activity, and determining orientation and inclination. The total
acceleration patch can be used for detecting overall
acceleration of a sensor, but is also important in inclination
error control. If the total acceleration of a sensor goes above
1g, there are forces other than gravity acting on it and
inclination calculations are no longer valid.

One simple orientation patch takes the raw acceleration of
three axes as input and essentially outputs which axis is facing
upward, with a check that the accelerometer isn’t in motion
and a small bias toward the current orientation. For a more
accurate indication of the accelerometer’s position in three-
dimensional space, we created an inclination patch to use on a
per-sensor basis. It includes trigonometric calculations that use
gravity to determine angles referred to as pitch, roll, and yaw
for rotation about the accelerometer’s x, y, and z axes. The
method maintains constant sensitivity and allows tilt angles
greater that 45° to be sensed accurately and precisely by using
the acceleration of all three axes in each calculation of pitch,
roll, and yaw [5]. For example, the pitch (X-tilt) calculation is
given by in Equation 1.

22
arctan

zy

x

aa

a
 (1)

After performing the three inclination calculations, making
further corrections with sign recognition, and testing whether
the sensor is moving and its data is valid, the patch outputs
accurate measures of pitch, roll, and yaw in degrees.

Note that while designed for our sensor system, these patches
also work with popular accelerometer-based input devices
such as the Nintendo Wii Remote and Apple iPhone.

3 http://www.cycling74.com/products/maxmsp
4 http://puredata.info

3.2 Motion analysis
Patches were also written for movement and gesture
recognition. Patches were created to determine the magnitude
and direction of movements. Directionality is determined by
using the last known orientation of the sensor at rest as the
initial state and comparing this to the detected vector of
movement. While we often used a simple measure of
acceleration for the magnitude of a movement, we also found
it helpful to track the duration of a movement as an important
basic parameter.

We considered two forms of gesture recognition, essentially
separating them into programmed and learned gestures. The
programmed gesture schemes used a simple patch that detects
when one specified action follows another within a specified
time frame. This enabled us to combine multiple movements
such that the overall gesture occurs when one movement is
followed by another movement within a certain time period. A
useful instance of these manually programmed gestures was
that of recognizing a specified orientation followed by motion
in certain direction. We designed this example with an
accelerometer attached to the wrist to detect 6 orientations
(palm up, palm down, thumb up, thumb down, fingers up,
fingers down) and 6 directions of movement (up, down, left,
right, forward, backward), which provide 36 different
orientation/movement combinations. When combined with a
second sensor for the other hand, the number of
orientation/movement combinations is in the thousands. This
example illustrates the ability to use the system to make
commands with an “alphabet” of gestures, much like flag
semaphore signaling uses two flags held in specific positions
to signify letters.

The second form of gesture recognition uses machine learning
techniques to teach the computer a set of gestures. Then, an
arbitrary motion can be recognized from that set in real-time.
We explored gesture recognition with hidden Markov models
(HMM) by utilizing the FTM and MnM libraries [1]. The
system has the capability to learn gestures, e.g. drawing shapes
or numbers in the air, perform gesture following, and detect
gestures with accompanying degrees of certainty.

4. APPLICATIONS
Our hardware and software infrastructure was applied to a
number of scenarios with success. One of the most valuable
was using the system on trained dancers (see Figure 2) with

Figure 2. Dancer performing with sensor system

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

239

the intention of not requiring the learning of any specific
motions or gestures. In this situation, we wanted the design of
the piece to allow for creativity and freedom of expression of
the dancer. We attached four sensors to the performer’s hands
and feet, mapping continuous parameters of the dancer’s
motion onto algorithmic compositions. In a typical example,
movement of each sensor would influence particular
instruments. For each sensor, subtle movements could
generate quieter sounds while quicker or longer motions
triggered louder sounds that could be from different sets of
instruments. Although the performer doesn’t have control over
the particular notes being played in this scenario, the type of
movement influences the harmonic direction of the piece. We
were able to effectively communicate these types of mappings
to the choreographer, who was free to focus on dance without
a need for the dancer to correctly perform specific gestures.
This scheme worked well because the responsibility of musical
content is shifted to the programmer.

On the other hand is a contrasting scenario in which the
performer has a more direct influence over the music. A DJ or
other musician needs functionality for precise control, so we
depended more heavily on direct mappings and gesture
recognition in these instances. For example, in one case we put
a sensor on one hand that allows the performer to make
commands and “push buttons” via gesture recognition, and a
second sensor on the other hand to control continuous
parameters via multi-dimensional inclination and “twist
knobs.” This case was successful because the first hand was
relegated to performing discreet actions with recognized
gestures while the second could be used for continuous
parameters. For instance, the gestures of the first hand could
trigger the next part of a song, control loops, switch
instruments, etc. while the second hand could do things such
as control the levels of multiple effects or act as a theremin-
like instrument.

The system has also been applied in other interactive media
settings, including use as an alternative gaming controller and
as a human-computer interface for navigating operating
systems and controlling computer applications with gestures.

5. DISCUSSION
This sensor system has been a powerful tool for musical
expression in translating human movement to music. Although
the sensors and auditory output are external processes, they are
based on internal human motivations, and the system was able
to capture one’s natural motion and materialize the intangible
processes of the performer.

Further work will include increasing the reliability of the
hardware system as well as decreasing its size and power
consumption. We also plan to increase the robustness and
flexibility of the software patches, hope to improve the
usability of the gesture recognition system, and test scenarios
using a greater number of sensor nodes.

6. ACKNOWLEDGMENTS
The authors would like to thank Bruce Land and Kevin Ernste
for providing an environment conducive to this work. They
would also like to thank Cisco Systems, Inc., Kionix, Inc., and
Atmel Corporation for their support in developing this system.
This work was performed while Andrew Godbehere and
Nathan Ward were students at Cornell University where
Godbehere was studying Electrical and Computer Engineering
and Ward was studying Computer Engineering and Music.
Godbehere focused on the hardware for sensor data acquisition
while Ward focused on the software for data interpretation.
Both authors contributed equally to this paper.

7. REFERENCES
[1] Atmel Corporation. AVR2001: AT86RF230 Software

Programmer’s Guide, 2007.
http://www.atmel.com/dyn/resources/prod_documents/do
c8087.pdf.

[2] Bevilacqua, F., Muller, M., and Schnell, N. MnM: a
Max/MSP mapping toolbox. In Proceedings of the 2005
International Conference on New Interfaces for Musical
Expression (NIME05), Vancouver, Canada, 2005.

[3] Gao, T., Massey, T., Selavo, L., Crawford, D., Chen, B.,
Lorincz, K., Shnayder, V., Hauenstein, L., Dabiri, F.,
Jeng, J., Chanmugam, A., White, D., Sarrafzadeh, M.,
and Welsh, M.: “The Advanced Health and Disaster Aid
Network: A Light-weight Wireless Medical System for
Triage” in IEEE Transactions on Biomedical Circuits and
Systems, in press, 2007.

[4] Gutierrez, J., Callaway, E., and Barrett, R. Low-Rate
Wireless Personal Area Networks: Enabling Wireless
Sensors with IEEE 802.15.4, Second Edition. IEEE Press,
New York, NY, 2007.

[5] Kionix, Inc. Tilt-Sensing with Kionix MEMS
Accelerometers, (Nov. 30, 2007). http://kionix.com/App-
Notes/AN005%20Tilt%20Sensing.pdf

[6] Mus loiu-E., R. and Terzis, A., Minimizing the effect of
WiFi interference in 802.15.4 wireless sensor networks.
Int. J. Sensor Networks, Vol. 3, No. 1, 2008

[7] Park, C., and Chou, P., Eco: ultra-wearable and
expandable wireless sensor platform. International
Workshop on Wearable and Implantable Body Sensor
Networks, 2006.

[8] Park, C., Chou, P., and Sun, Y., A Wearable Wireless
Sensor Platform for Interactive Dance Performances.
Proceedings of the Fourth Annual IEEE National
Conference on Pervasive Computing and
Communications, Pisa, Italy, 2006.

[9] Petrova, M., Wu, L., Mahonen, P., and Riihijarvi, J.
Interference Measurements on Performance Degradation
between Colocated IEEE 802.11g/n and IEEE 802.15.4
Networks. Sixth International Conference on Networking,
2007.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

240

