
Multi-Platform Development of Audiovisual and Kinetic
Installations

Iannis Zannos
Ionian University, Dept. of Audiovisual Arts

Plateia Tsirigoti 7
Kerkyra, 49100 Greece

+30 6977280656

zannos@gmail.com

Jean-Pierre Hébert
UCSB, Kavli Institute for Theoretical Physics

hebert@kitp.ucsb.edu

ABSTRACT
In this paper, we describe the development of multi-platform tools
for Audiovisual and Kinetic installations. These involve the
connection of three development environments: Python,
SuperCollider and Processing, in order to drive kinetic art
installations and to combine these with digital synthesis of sound
and image in real time. By connecting these three platforms via
the OSC protocol, we enable the control in real time of analog
physical media (a device that draws figures on sand), sound
synthesis and image synthesis. We worked on the development of
algorithms for drawing figures and synthesizing images and sound
on all three platforms and experimented with various mechanisms
for coordinating synthesis and rendering in different media.
Several problems were addressed: How to coordinate the timing
between different platforms? What configuration to use? Client-
server (who is the client who the server?), equal partners, mixed
configurations. A library was developed in SuperCollider to
enable the packaging of algorithms into modules with automatic
generation of GUI from specifications, and the saving of
configurations of modules into session files as scripts in
SuperCollider code. The application of this library as a framework
for both driving graphic synthesis in Processing and receiving
control data from it resulted in an environment for
experimentation that is also being used successfully in teaching
interactive audiovisual media.

Keywords
kinetic art, audiovisual installations, python, SuperCollider,
Processing, algorithmic art, tools for multi-platform development

1.INTRODUCTION

1.1 Combining Tools to Span Different Media
The integration of different media both technically and
aesthetically is one of the main challenges in art. This is especially
true in art forms that involve different modes of expression and
sensing such as sound, still or moving image, still or moving
sculpture, text, etc. on equal terms. Digital technology presents
provides new and powerful tools for addressing this challenge.
However, the tools and development environments available are
rarely if ever capable of spanning several media with equal ability.

Most tools are specialized in one medium, or are generic
programing environments that must be extended through libraries
or plug-ins to work with specific media. Moreover, if working
with very specific and experimental technologies such as
particular types of sensors or actuators, web-based environments
etc. it is hardly possible to integrate all aspects of the work in one
programming tool. Thus, the ability to combine several different
tools or environments becomes an important asset, if not a
necessary condition, for integrating different media in works that
address several modes of expression.

1.2 OSC and Communication between

Applications
With the appearance of the Open Sound Control standard (OSC)
[1] many applications have become able to communicate with
each other. OSC has the advantage of being medium-neutral and
easily configurable to meet the needs of each application
independently of its specific internal mode of communication and
control. Thus, OSC is now often used to connect an application to
input devices as well as output and actuator devices. Less
common however is the interconnection of several applications of
different types. Even though this way of working is becoming
popular, it has hardly been treatment as a research topic by itself.
The present paper addresses precisely this issue. It is based on
work done on three parallel tracks: Development of a general
framework for resource management in SuperCollider, called
"Lilt", the application of this framework to connect SuperCollider
as a sound synthesis engine with Python to provide sound for
Jean-Pierre Hébert's art projects with sand and finally educational
of this framework in teaching the programming of interactive
audiovisual applications.

1.3 Initial Work: Python and SuperCollider in

the "Sand" Project
The present paper reports on work that started in 2004 as an
experiment to add sound to a series of kinetic installations by
Jean-Pierre Hébert, which draw figures on sand by means of a ball
moved on a flat surface by a magnet. The magnet is controlled by
a program written in Python which calculates the trajectory as a
sequence of line segments of specified length and direction. The
objective was to derive the sound synthesis parameters in real-
time based on the data representing the position and trajectory of
the ball on the sand. The data were sent from Python to
SuperCollider via OSC. To facilitate development and enable
experimentation with different ways of matching sound physical
to movement, we developed an instrument-orchestra-score model.
While such a paradigm is known from sound synthesis
environments such as Csound, the present implementation differs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME08, June 4-8, 2008, Genova, Italy

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

261

from it in fundamental ways because it requires real-time
synthesis (or "inference") of the score from the parameters of the
ball movement.

Figure 1: Example of a Sand Piece by Jean-Pierre Hébert

2. CONFIGURABILITY IN OPEN

DEVELOPMENT ENVIRONMENTS
A basic motivation for the development of the library was the
need to organize code so as to maximize reuse while not limiting
the access of the programmer to all aspects of the system. The
objective of the library was therefore not to require of the
programmer to master and use the API of the given tool
exclusively, but rather to offer the option of wrapping any code in
a construct that provides essential features of control and
interconnection. The fundamental concept that was born to
address this need was that of a "Script" as a unit of code with
uniform but configurable features.

2.1 The "Script" Concept
The script concept was born out of the need to create and manage
a library of code snippets that realize ideas in SuperCollider. By
providing a uniform interface for starting, stopping, controlling
and interconnecting scripts.

Figure 2: The Script Browser

2.2 GUI Generation
One further feature of the script concept is the ability to create its
own GUI for control based on a list of simple specifications that
determine the names and ranges of parameters. To provide
maximum flexibility, it is possible to override the default action of
the GUI element that is generated by the script by a user-defined
function.

Figure 3: Basic GUI example

2.3 Connecting Scripts
Connecting Scripts refers to making one script read one input
from the output of another script. For example, a script that
contains a synth f that adds reverberation may read its audio input
from another synth s that produces an audio output. Thus the
reverberation effect of script f is added to the signal produced by
the audio output of synth s. A single script may at the same time
receive input from several other scripts, on one or several different
of its inputs. Similarly, a single script may send its output to one
or more other scripts. In most cases a script will have several
inputs but only one output. The inputs of a script that runs one
single synth are the synth's inputs while the output of that script is
the synth's output.

Implementing the dynamic interconnection of scripts proved to be
a major task. A number of constraints and conditions at different
levels must be met: Synths have to be able to start and stop
independently of each other, be placed in the right order of
computation in the synth graph of the server, and employ the right
configuration of busses for writing and reading signals.
Automatically computing the right configuration of busses was
perhaps the most complicated part of the work. As shown in figure
3, to enable two sources (w1 and w2 to write to two effect
processes r1 and r2 where w1 writes only to r1 and w2 writes both
to r1 and to r2, it is necessary to copy the output signal of w2 to
the bus that reads the separate output of w1.

r2 r2

A Ba

w2

A

r1

w1 w2

r1

w1

no
t p

os
si

bl
e

Figure 3: Signal Copying For n-to-n Configurations

An algorithm was devised that can compute the necessary bus and
copying synth structures for any configuration of synth
interconnections dynamically and realize it even while the synths
are running. Figure 4 shows one of several cases that where
analyzed in the process of developing the algorithm.

BA

w

Ca

r

Db c

Figure 4: Generalized n-to-n Configuration Case

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

262

Output

Inputs

Figure 5: Inputs and Outputs in a Script GUI

2.3.1 Extensions of the Interconnection Scheme
Interconnections are not limited to audio signals, but can also be
created for control signals. Additionally, there is a similar scheme
for linking scripts so that they can exchange messages or function
calls. This is implemented by attaching editable pieces of code,
called "snippets" to scripts, which can be used to further control or
automate the script's behavior.

3. RESOURCE MANAGEMENT
A characteristic difference of experimental and programmable
development environments to commercial tools for image or
sound processing is the relative lack of management facilities of
the former. Applications such as FinalCut Pro, DVD Studio, Logic
Audio, Cubase etc. use their own file formats for saving "project
data" which include settings such as the paths of audio files used,
processing data on the files etc. One of the objectives of the
present work is to provide such resource management facilities to
SuperCollider. The usefulness of such facilities is easy to
demonstrate: When experimenting with several scripts that require
synthesis algorithms, buffers, and bus interconnections it is
convenient to be able to save the configuration of scripts, buffers,
synthesis algorithms and interconnections onto file per mouse-
click. This is implemented in Lilt by the concept of a Session. A
session saves all the above data as a Script that can recreate the
sessions elements. The Script is generated in SuperCollider code
and can therefore be inspected by the user.

Figure 6: The Sessions Pane

Figure 7: The Resource Pane Window

4. APPLICATION EXAMPLE: AN

AUDIOVISUAL SEQUENCE
The tools described above are currently being evaluated for
application in mixed media for artistic production and for
education. Figure 6. shows the results of work done by two
students, Alexandros Synodinos and Christos Mousas, at the
Department of Audiovisual Arts at the Ionian University as part of
4th year undergraduate coursework. These students had no
experience in programming at all.

stage 1
stage 2

stage 3 stage 4

Figure 8a: Initial Sections of an Algorithmic Audiovisual Piece

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

263

stage 5

stage 6

Figure 8b: Further Stages of an Algorithmic Audiovisual Piece

The examples of Figures 8a and 8b. show several phases in the
unfolding of an algorithmically composed audiovisual piece
running on Processing and SuperCollider. It is visible how the
students created a work with several distinct sections, starting

from a given initial spiral and adding their own variations in
increasing freedom. The starting point was an example provided
by Jean-Pierre Hébert. This was first modified radically to reduce
to the basic functioning principles. Then an interface to
SuperCollider was provided using the Lilt library. Two versions
were prepared: In the first one, sound synthesis on SuperCollider
is driven from Processing. Conversely, in the second one,
SuperCollider drives graphic synthesis on Processing. The second
approach has the advantage that timing can be controlled
accurately and independently from the frame rate of the draw
function in Processing.

5. CONCLUSION
In this paper, we presented a framework for mixed-media
interactive installations that run distributed on the three
development environments SuperCollider, Python and Processing.
The central part of the framework is the Lilt library written in
SuperCollider, which enables the modularization and re-use of
code, the easy configuration and interconnection of modules, and
the saving of configurations in SuperCollider code as scripts. We
showed applications that used this environment both in an artistic
and in an educational setting. While the initial stages of work on
this project were hard, because the design solutions were not yet
mature, more recent results are encouraging. Besides the
undergraduate work shown here, there exist also several graduate
projects that employ Lilt for multimedia work in connection with
Max/MSP and Jitter as well as vvvv (see http//vvvv.org).
Certainly, the graphic elements shown in the present example are
simple, and remind one of early phases in the development of the
Logo environment for programmable graphics [3]. However, there
is a big difference here, in that both timing and sound are
involved, and that it is possible to connect further independent
tools to the framework via OSC. The advantage of the present
approach is that it can support the combination of software
specialized in different domains, thereby helping to exploit the
full potential of these applications in work that involves several
different media.

6. ACKNOWLEDGMENTS
Thanks are due to 4th year undergaduate students Alexandros
Synodinos and Christos Mousas for providing the visual examples
in this paper.

7.REFERENCES
[1] Wright, M. and Freed, A. Open Sound Control: A New

Protocol for Communicating with Sound Synthesizers.
Proceedings of the 1997 International Computer Music
Conference, Thessaloniki, Hellas (Greece), 1997, 101-104.

[2] Alvaro, J. Miranda, E. and Barros, B. EV Ontology:
Multilevel Knowledge Representation and Programming,
Proceedings of the 10th Brazilian Symposium on Computer
Music (SBCM), Belo Horizonte (Brazil) 2005.

[3] Papert, S. Mindstorms: Children, Computers, and Powerful
Ideas. Basic Books, N.Y. 1980.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

264

