
Firmata: Towards making microcontrollers act like extensions of the computer

Hans-Christoph Steiner
Interactive Telecommunications Program, New York University

hans@at.or.at

Abstract
Firmata is a generic protocol for communicating with mi-
crocontrollers from software on a host computer. The cen-
tral goal is to make the microcontroller an extension of the
programming environment on the host computer in a man-
ner that feels natural in that programming environment. It
was designed to be open and flexible so that any program-
ming environment can support it, and simple to implement
both on the microcontroller and the host computer to ensure
a wide range of implementations. The current reference im-
plementation is a library for Arduino/Wiring and is included
with Arduino software package since version 0012. There
are matching software modules for a number of languages,
like Pd, OpenFrameworks, Max/MSP, and Processing.

Keywords: arduino, microcontroller, pure data, processing,
python

1. Introduction
Firmata began in 2006 as a demo for Arduino that I created
while at STEIM for a residency. I had followed devices like
Eroktronix MIDItron [1] which aimed to be an easily con-
figurable microcontroller for musical uses. I had a number
of Arduinos on hand and needed to control Pd with some
sensors. After trying a number of different setups, I rapidly
tired of constantly reprogramming the Arduino for each con-
figuration.

In my work with microcontrollers, they were always tied
to a computer via a serial protocol over a wire. The micro-
controllers were used to get data in from sensors and output
control data out to motors, relays, etc. When used this way,
it is necessary to have a serial protocol for communicating
between the microcontroller and the host computer. Since
the rest of the projects was developed in a single program-
ming environment, it became apparent that the microcon-
troller should behave as an extension of that programming
environment rather than a distinct unit with its own method
of being programmed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or a fee.
NIME09, June 3-6, 2009, Pittsburgh, PA
Copyright remains with the author(s).

Development began with the Arduino microcontroller board,
and that is still the main development environment. The ref-
erence Firmata library has also been ported to the whole Ar-
duino family as well as the Wiring board. Any Arduino- or
Wiring-compatible board can directly use the existing Fir-
mata firmwares 1 and library. Work is underway to port it to
the closely-related Sanguino 2 board.

2. Previous Work
Before Firmata, there were a number of projects also aimed
to turn a standardized microcontroller board into an easily
configurable sensor input/output box. After the initial pro-
totype, I evaluated a number of these in order to compare
the various approaches. In these, I saw examples of how
to make things straightforward to use and configure, which
then inspired the design of Firmata.

STEIM was an early developer of ”sensor box” devices.
The Sensorlab was an sensor-voltage-to-MIDI converter, and
the Junxion Box carried that idea to the next level using
USB HID. The I-CubeX was an early example of a device
that was simple to connect sensors to and get the data in
the computer, inspired by the STEIM Sensorlab. The I-
CubeX extended the possibilities of communication beyond
just MIDI.

Phidgets [4] extended this ”sensor box” idea by making a
range of different hardware configurations for different I/O
needs. Each Phidgets board has a fixed number of I/O pins
which it reports via the USB HID protocol. This allows the
boards to work without installing drivers, and gets the data
to the host software using the standard mechanism that op-
erating systems use to get data from the human to the com-
puter: USB HID [8] and associated APIs. The downside
of Phidgets is that the boards are not configurable and have
their inputs and outputs fixed in hardware.

The MIDItron took this idea to the next step by allow-
ing for configuration via the provided Max/MSP patch. The
MIDItron uses MIDI both for the configuration and com-
munication. If used in an existing MIDI setup, it is very
straightforward to integrate in with other MIDI equipment.
The configuration options make it more flexible than the
similar devices.

3. Review of Protocols
1 a firmware is a program, usually very small, burned into flash memory,

like on a microcontroller
2 http://sanguino.cc/

NIME 2009125



In the process of developing the Firmata protocol, many ex-
isting protocols were reviewed. The core goals in designing
the protocol where: simplicity over super-flexibility, effi-
cient bandwidth usage, and ease of implementation. There-
fore, the focus was on finding an existing protocol that could
be re-purposed.

3.1. ASCII protocols
First off, ASCII-based protocols considered since they are
more easily human readable. There are a number of sim-
ple, ASCII-based protocols out there which are generally
pretty easy to implement and understand. For the sake of
compatibility, the Arduino is limited to classic serial bi-
trates, so the maximum is 115,200 bits/second. One ASCII
protocol considered is the Simple Message System (SMS)
[3] for Arduino. The protocol established for the USB Bit
Whacker [2] is also an ASCII protocol similar to SMS. They
are relatively easy to read and to implement in text-based
programming environments. The first problem is that they
tend to require many more bytes. For example, SMS needs
4 bytes to set one digital pin, 56 bytes to set all digital
pins. This verbosity also makes it much more difficult to im-
plement full duplex communication and multitasking, since
the microcontroller has to spend so much time handling the
serial I/O. As a comparison, the current Firmata protocol
needs 3 bytes to set one digital pin or all digital pins.

And lastly, ASCII protocols are actually more difficult to
implement in Pd or Max/MSP, and perhaps other languages
relevant to NIME that do not have strong string handling
capabilities. Therefore ASCII protocols were ruled out since
they would slow down the processing a lot and limit the use
in musical controllers because of the latency and jitter.

The problem is not so apparent with a steady stream, like
a continuous stream of analog values. The core problem is
when there is a lot of intermittent data, like button presses, in
between the steady stream. That chunk of intermittent data
could block the stream, adding jitter. If everything is moving
fast enough, then the jitter wouldn’t be noticeable. If rhyth-
mic button presses are slowed down by a large amount of
the analog input data, then performance would degrade. An
ASCII-based protocol would also have to be zero-padded.
Otherwise, you would have 2 bytes for analog values less
than 10 and 5 bytes for analog values ¿=1000, causing a
pretty wide range of jitter.

3.2. Open Sound Control
At first thought, Open Sound Control (OSC) 3 seemed like
a natural choice for the basis of Firmata. It is widely used
and implemented and not too difficult to use. Björn Hart-
mann already had a working OSC implementation for the
Arduino [5], which was consulted during the design phase.
The first problem was that OSC was designed with much
faster connections in mind, e.g. network connections. The

3 http://archive.cnmat.berkeley.edu/OpenSoundControl/OSC-spec.html

minimum size of an OSC ”bundle” is 24 bytes, and that just
sends one value. While the packet size for OSC over se-
rial can be a lot smaller, 11 bytes minimum (1 byte header,
1 byte for packet size, data in 4-byte chunks, type tag in 4
bytes, 1-byte checksum), this is still substantially larger than
the 3 byte MIDI packets. Also, OSC’s larger, more compli-
cated packets require more resources to handle the packets,
perhaps not important on the host computer, but definitely a
concern on microcontrollers. Lastly, OSC is not easy to im-
plement, especially on microcontrollers. Part of the goal of
the Firmata project is to expand to other platforms beyond
the Atmel AVR and the Arduino. 4

3.3. Gainer
The protocol established for the GAINER[6] project was
also considered. It is based on call and response somewhat
similar to USB HID. The host sends a request, the Gainer
board replies. The message size varies from 1 byte to 6
bytes. Only the reply messages from the microcontroller
have terminators, the calls from the host computer are just
a single byte. While this approach does have the advan-
tage of an easily controllable poll time, the asymmetry of
the messages made the protocol more complicated. Perhaps
more importantly, since it is a custom protocol, there are not
many reference implementations to draw from.

3.4. USB HID
The USB HID protocol is very efficient and widespread,
all modern operating systems support it, most programming
environments have USB HID APIs, it uses minimal band-
width, and was designed to be implemented on microcon-
trollers. But it is very difficult to implement, even under-
standing the basics is non-trivial. After years of struggling
with USB HID and its inordinate complexity and reams of
official documentation, [7] it was clear that USB HID is a
bloated and baroque protocol specification.

Also, the Arduino can not be a proper USB HID device
because it uses USB-Serial, though it would be possible to
use the HID packets on top of USB-Serial. I opted not to
use it because it is a very complicated and obfuscated pro-
tocol itself, and the APIs provided by Microsoft and Apple
are as complicated as the USB HID protocol itself. While
USB HID would provide high performance digital and ana-
log I/O, using USB HID as a protocol for sending configu-
ration messages like Firmata does would be very tricky to
implement properly with USB HID.

3.5. MIDI
MIDI is a relatively easy to implement, efficient, and widespread.
The resolution of the analog messages is only 7-bits, which
can be quite limiting. The core MIDI messages range from 1
to 3 bytes. SysEx messages can theoretically be any length.
The initial Firmata protocol was quite similar to MIDI, so it

4 There is currently a PIC implemention of an earlier version of the pro-
tocol.

126



made it easy to port Firmata to use a MIDI compatible mes-
sage format. MIDI has a 7-bit command space, which is also
used for channel information as well. Since the core MIDI
messages have a limited command space and a 3 byte mes-
sage limit, Firmata makes use of MIDI SysEx messages for
configuration messages, which are sent much less frequently
than analog and digital data. For some data types like pul-
seIn pulse measurement which produce 32-bits of data or
more, the data is sent using a specific SysEx message.

3.6. SLIP
One protocol which was not examined as part of the initial
design was SLIP 5 . It is simple, efficient, and easy to imple-
ment. It is a very minimal protocol, so something like MIDI
message types would have to be added on top in order to
fulfill the design goals of Firmata. If there is pressing need
for a major protocol revision, SLIP could replace MIDI to
simplify the Firmata protocol further still. Making Firmata
a SLIP based protocol has the potential of making it even
simpler to read and implement, but at the cost of having to
reimplement everything. In the end that would probably not
be worth it.

4. Design
Following these experiences and the experience of using the
Arduino with Pd for musical instruments, it became appar-
ent that the next step was to create a standard protocol to
represent both the Arduino API and the types of data that
would be transferred between the microcontroller and the
host computer. Usability was put first and foremost in the
design, even at the expense of some performance.

One concern of many Arduino developers was that using
MIDI made it difficult for non-technical people to under-
stand the Firmata code. Having a whole firmware, protocol,
and host software that a beginner can understand is defi-
nitely a worthy and laudable goal. But it did not seem possi-
ble to achieve efficiency high enough for use in musical con-
trollers while keeping the protocol and code simple enough
for most Arduino users to understand. Instead the goal was
more akin to TCP/IP. Beginners use them all the time and
they are a robust and efficient. In most environments, they
are quite straightforward to use. But the underlying proto-
cols are quite complicated and far from understandable for
even an advanced beginner. People use them because pro-
gramming languages provide good interfaces, not because
the protocols themselves are easy to understand.

MIDI was chosen as the core data protocol since it is
efficient, relatively easy to implement, and there was a lot
of existing implementations freely available for repurpos-
ing. Only the MIDI message format is used, not the whole
MIDI protocol. Instead of using the standard MIDI message
interpretations (NoteOn, Aftertouch, etc), a new set of inter-
pretations was devised to represent both the data types (14-

5 Serial Line Internet Protocol

Figure 1. Some devices that work with Firmata (left column:
Wiring, Arduino NG, Bare Bones Arduino, Stickduino; and,
right column: Arduino Lilypad, Arduino Mini, Arduino Pro,
Boarduino.

127



bit analog and digital) and the control messages (pinMode,
PWM, etc). This makes it possible to represent the Arduino
API using Firmata messages. The command mappings here
will not be directly usable in terms of MIDI controllers and
synths. It should co-exist with MIDI without trouble and can
be parsed by standard MIDI interpreters. As it stands now,
Firmata can represent 16 analog inputs at 14-bit resolution,
and 128 digital pins.

One thing that the MIDI standard did quite well was it
provided a set of standard interpretations of data, so that it
was possible to plug in and have control over volume, pitch,
bend, and even the type of instrument. MIDI does this with-
out requiring that the messages be interpreted in specific
ways; this opens it up to a wide range of uses. So while OSC
has proven a much more flexible data transmission proto-
col, the lack of standardized messages and interfaces means
that OSC does not address this important aspect of MIDI.
With Firmata, a central part of the project is to provide a
full API for common operations involving microcontrollers,
while leaving things wide open for unstructured exploration.
Each pin is set to a model analog input, digital input, digi-
tal output, PWM output, servo control, shift register control,
and LED matrix controllers are supported. The pinMode
message and other specific configuration messages are used
to switch each pin between these options. This collection
of modes is something similar to the standard TCP/IP port
numbers: a table of numbers which each represent a specific
”service”.

4.1. Bitrates
As part of the process of preparing the Standard_Firmata
firmware to be the default firmware on new Arduino boards,
we needed to choose a default bitrate. Since a central aim
was to support musical controller design, the bitrate needed
to be relatively fast. Initially the bitrate was set at 57600
since some users reported dropped packets at 115200, but
through testing we found that the error rates were compa-
rable for 57600 and 115200. Since the Arduino Bluetooth
requires 115200 for its virtual serial port, 115200 was cho-
sen as the default bitrate.

The introduction of the Arduino Xbee caused us to re-
visit this issue, since it wants to use a bitrate of 111111. We
compared the Arduino’s 16MHz clock rate to serial clock
rates and found that 125000 is the ideal bitrate, and 111111
has very low error rates. The limitations of the FTDI USB-
serial driver forced the issue, meaning that for general re-
lease, only the standard rates could be used. For users who
need lower error rates, 38400 is a better option.

There is also a possibility of errors with very high speed,
bidirectional traffic in echo tests. At 115200, it’s possible
to send a byte every 0.069 ms, so there problem lies else-
where. Our best estimate based on the testing is that this
problem is caused by the microcontroller’s processor being
overloaded with tasks and therefore not able to keep up with

the serial data coming in. While these errors are possible to
reproduce with very specific test setups, we have found that
in real world use, they are rarely a problem. Perhaps more
importantly, it is most likely not a problem with the proto-
col, as MIDI is well proven, therefore there is the possibility
for software and hardware improvements as a remedy.

4.2. Life Without Zero
Some programming environments, most notably Adobe Flash 6 ,
can only communicate using null-terminated string types.
So while individual characters could easily be interpreted as
their binary values, 0 was not available, since it was reserved
to mean the end of a string. The binary value of 0 is reserved
to represent the end of the string. There was early discussion
on how best to support this case in the protocol itself, since
Flash is commonly used in conjunction with Arduinos. In
the end it was agreed that the serial proxy that was already
required for Flash to communicate with the Arduino should
just be modified to convert the binary protocol to something
that made sense in terms of null-terminated strings.

5. Using Firmata
5.1. Firmata as Library
For the Arduino and Wiring platforms, Firmata is imple-
mented as a library. That means that custom firmwares can
use the Firmata protocol so that they can be controlled from
the host computer using the existing Firmata software. With
the Arduino software, the library is built in and includes a
collection of example firmwares to guide users to develop-
ing their own custom firmwares.

5.2. Code Examples
Here are three very simple examples of using native library
to access a microcontroller running a Firmata-based firmware.
These examples all assume that the microcontroller is at-
tached to the first serial port.

5.2.1. Processing
import processing.serial.*;
import cc.arduino.*;

Arduino arduino;

void setup() {
arduino = new Arduino(this, Arduino.list()[0]);
arduino.pinMode(5, Arduino.INPUT);

}

void draw() {
if (arduino.digitalRead(5) == Arduino.HIGH)
println("Digital pin 5 is HIGH");

else
println("Digital pin 5 is LOW");

print("Analog pin 0 value is ");
println(arduino.analogRead(0));

}

6 as far as I know, this has changed as of ActionScript 3

128



5.2.2. Python
import pyduino, sys, time

arduino = pyduino.Arduino(0)
arduino.digital[5].set_mode(pyduino.DIGITAL_INPUT)
arduino.digital_ports[0].set_active(1)
arduino.analog[0].set_active(1)
while 1:

arduino.iterate()
value = arduino.digital[5].read()
if value == 1:

print "Digital pin 5 is HIGH"
else:

print "Digital pin 5 is LOW"
value = arduino.analog[0].read()
print "Analog pin 0 value is %f"% value

5.2.3. Pure Data

5.3. What Works Now
Firmata started out as a single firmware for Arduino. As
users of Firmata had more and more ideas for what to do
with it, it became clear that it should be an Arduino/Wiring
library instead of just a single firmware. The original sin-
gle firmware then became Standard_Firmata. This
firmware is meant to include as much functionality as pos-
sible into a single firmware. Since it is not always easy nor
possible to include new functions into the big
Standard_Firmata, new firmwares can be created us-
ing the Firmata library. Standard_Firmata and some
example firmwares are included in the Arduino environment.
This includes a simple implementation of a firmware that
routes analog messages to the instances of the Arduino Servo
library.

As of this writing, the version of Standard_Firmata
included in Arduino 0014 includes support for digital input
and output, analog input, PWM output, switching pins be-
tween digital input and digital output. Additionally, there
are messages that control the reporting of analog and digital
inputs, so that it is possible to receive only the inputs that are
of interest. There are other versions of Standard_Firmata
which include support for servos, LED matrices, poll-time

Figure 2. The arduino-test.pd patch which outlines the pos-
sibilities with Pd+Firmata

configuration, and I2C. Over time, as this code proves sta-
ble and unintrusive to other functions, it will be incorporated
into the reference Standard_Firmata.

All of these messages are part of the protocol and the
library, but the authors of Firmata implementations on the
host computer are encouraged to make that software behave
as naturally as possible in that programming environment.
For example, the Processing Arduino library uses an event
callback interface that is common in that environment while
Pd’s [arduino] outputs messages on its outlet as it receives
them. Not all implementations even expose the controls over
the input reporting, instead they automatically send those
messages when the user requests data from that input.

5.4. Users in the Real World

Firmata has already seen wide use in the Processing and Pd
user communities, and has recently started to see more use
with Flash, OpenFrameworks, Max/MSP, and Python. Fir-
mata was also an integral part of the course work for classes
such as Björn Hartmann and Bill Verplank’s HCI courses at
Stanford’s Institute of Design 7 , Zach Lieberman and Ayah
Bdeir’s Making Things Move course at Parsons School of
Design 8 , and the author’s NIME class at ITP/NYU 9 . Through
the process of incorporating Firmata in their course work, all
of them have become contributors to the development and
expansion of the protocol, the libraries and the firmwares.
This has lead to the development of the firmata.org
website, a set of online resources to open up the further de-
velopment.

7 http://protolab.pbwiki.com/
8 http://makingthingsmove.org/
9 http://itp.nyu.edu/nime/

129



Figure 3. Ayah Bdeir’s Firmata shift register setup control-
ling a matrix of LEDs

6. Future Work
The next milestone for Firmata is make Standard_Firmata
the default firmware that is installed on every new Arduino
board. Additionally, we are working on expanding the flex-
ibility of Firmata by extending the Arduino library to be
transport-neutral. That enables seamless use of Firmata over
USB-serial, bluetooth, Xbee, and even ethernet. There are
working implementations of Firmata over all of those trans-
ports, the hard part is making all o them coexist in the same
library.

Also, the standard protocol elements for more specific
things like PWM have proven quite useful, so the aim is
to create a registry where people can add a wide range of
specific additions to the protocol, allowing plug-and-play
programming of things like SPI and I2C devices, and other
standard pieces of electronics using in physical computing.

Lastly, since the current reference Firmata implementa-
tion was completed in February 2008, the micro-OSC firmware
was published at NIME 2008. Since I do not use OSC at in
my own work, I have not followed its development closely.
I am interesting in how the managed the USB connection.
The Arduino’s USB-serial interface is a source of latency
and jitter problems, so the micro-OSC could serve as an ex-
ample of how to use different USB classes with a microcon-
troller.

7. Acknowledgements
While I am the sole author of this paper, Firmata would
never have gotten far without the contributions of many other
people. Jamie Allen helped get the first redesign underway
and coined the name ”Firmata”. Tom Igoe, David Mel-
lis, Massimo Banzi, Shigeru Kobayashi, Erik Sjödin, Björn
Hartmann, Casey Reas, and many others provided lots of
valuable discussion, feedback on the Arduino Developers’
list. Björn Hartmann exposed me to pair programming and

we got the first SysEx and Servo support working. NYC Re-
sistor provided a community for me to take this to the next
level. Adam Mayer taught me about writing C++ classes.
Joe Turner wrote PyDuino; David Mellis wrote the Process-
ing implementation; Erik Sjödin wrote the ActionScript/Flash
implementation; Zach Lieberman and Ayah Bdeir wrote the
Open Frameworks implementation; Marius Schebella wrote
the Max/MSP implementation; Eirik Arthur Blekesaune wrote
the SuperCollider implementation; and, ”dkapell” wrote the
Perl implementation. Last but not least, thanks to the Ar-
duino Team for their support of my work on Firmata. I am
sure I forgot some people that I should credit, please accept
my apologies in advance.

References

[1] MIDItron. http://eroktronix.com/.
[2] Documentation for Firmware D, version 1.4.3 for USB

Bit Whacker Boards, 2007. http://greta.dhs.org/
UBW/Doc/FirmwareDDocumentation v140.html.

[3] T. O. Fredericks. Simple message system.
http://www.arduino.cc/playground/Code/
SimpleMessageSystem.

[4] S. Greenberg and C. Fitchett. Phidgets: Easy development of
physical interfaces through physical widgets. In Proceedings
of the ACM UIST Symposium on User Interface Software and
Technology. ACM Press, 2001.

[5] B. Hartmann. d.tools: Arduino support. http://hci.
stanford.edu/dtools/arduino.html.

[6] S. Kobayashi, T. Endo, K. Harada, and S. Oishi. Gainer:
a reconfigurable i/o module and software libraries for edu-
cation. In Proceedings of the 2006 conference on New In-
terfaces for Musical Expression (NIME’06), pages 346–351.
IRCAM Centre Pompidou, 2006.

[7] H.-C. Steiner, D. Merrill, and O. Matthes. A unified toolkit
for accessing human interface devices in Pure Data and
Max/MSP. In Proceedings of the 2007 conference on New
Interfaces for Musical Expression (NIME’07). New York
University, 2007.

[8] USB Implementers’ Forum. Universal Serial Bus
(USB) Device Class Definition for HID 1.11,
2001. http://www.usb.org/developers/
devclass docs/HID1 11.pdf.

130


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	No Other Manuscripts by the Author
	------------------------------

