
FrameWorks 3D: Composition in the third dimension

Richard Polfreman
University of Southampton

University Road
Southampton, UK

r.polfreman@soton.ac.uk

Abstract
Music composition on computer is a challenging task,

involving a range of data types to be managed within a
single software tool. A composition typically comprises a
complex arrangement of material, with many internal
relationships between data in different locations -
repetition, inversion, retrograde, reversal and more
sophisticated transformations. The creation of such
complex artefacts is labour intensive, and current systems
typically place a significant cognitive burden on the
composer in terms of maintaining a work as a coherent
whole. FrameWorks 3D is an attempt to improve support
for composition tasks within a Digital Audio Workstation
(DAW) style environment via a novel three-dimensional
(3D) user-interface. In addition to the standard paradigm of
tracks, regions and tape recording analogy, FrameWorks
displays hierarchical and transformational information in a
single, fully navigable workspace. The implementation
combines Java with Max/MSP to create a cross-platform,
user-extensible package and will be used to assess the
viability of such a tool and to develop the ideas further.

Keywords: Digital Audio Workstation, graphical user-
interfaces, 3D graphics, Max/MSP, Java.

1. Introduction
FrameWorks 3D presents a new design for audio and

MIDI sequencing user-interfaces. It extends traditional
approaches with features to aid the mapping of
compositional ideas onto a work, and facilitate rapid
experimentation with musical ideas [1]. While such
elements could be included in a (combination of) 2D
display(s), FrameWorks adopts a 3D space in order to
present complex structural information (hierarchical and
relational) in addition to retaining the visibility of the
existing notation; difficult to achieve effectively in a single
2D space. This allows detailed visual exploration of a work
in a way which may give the composer new insights.

Once limited to games and scientific/bio-medical
visualisation, 3D graphics are becoming pervasive, from
Apple’s Cover Flow [2] and Microsoft’s 3D Flip [3], to
Second Life [4]. As 3D representations proliferate,
FrameWorks offers one approach to the adoption of this
technology for music applications. While 3D has been
used in some music systems [5][6], it has yet to be fully
exploited in direct manipulation music composition tools.

2. FrameWorks: A Brief History

2.1 Origins
The concept was developed in task analysis research in the
late 1990’s focusing on music composition, and was first
implemented in a 2D prototype in 2001 [7]. The primary
concern is to allow rapid experimentation with material
and structural ideas within the same interface. This relates
to one of Green’s Cognitive Dimensions of Notations [8],
viscosity, described as the resistance to change of a
notation. FrameWorks is a highly fluid design, where local
changes to a work can propagate throughout allowing
experimentation to incur a low time-cost.

2.2 Concept
Clips1 which are containers for musical data of a

particular type (MIDI, audio, OSC, etc) and which can be
a) hierarchically arranged on tracks and b) connected
together by one-to-one mono-directional relations
expressing a connection between two clips (and their
descendents). A combination of clips and relations forms a
framework. Clips may be empty, and therefore the
structure of a work can be developed prior to musical
material; alternatively the structure can be built up from
materials. Thus composers can work in both top-down and
bottom-up modes (or some combination thereof) although
a framework itself is a top-down structure.

The relations between clips are processes, which take
the material in a source clip, transform it and place the new
material in a target clip. These are dynamically maintained
at all times, thus any changes to either clips or relations are
immediately reflected throughout the framework. Typical
relations include identity, transposition, time dilatation,

1 Previously referred to as components, the name has been

changed to avoid confusion with the programming concept of
component.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or a fee.
NIME09, June 3-6, 2009, Pittsburgh, PA
Copyright remains with the author(s).

NIME 2009226

reverse and filtering. Relations could be extended to many-
to-one, where data from more than one source are
combined to form the result (somewhat similar to side-
chaining in studio effects).

Hierarchical and computational connections between
music elements are not in themselves new, but have mainly
been used in programming language based algorithmic
composition tools. FrameWorks aim to bring these within
the scope of standard DAW software.

2.3 Initial Prototype: FrameWorks 2D
An initial implementation, written in Java 1.1, lacked

clip hierarchies, supported only MIDI data and was only a
sketch of the intended system [9]. Figure 1 shows the
framework view, where “hanging” from track timelines are
several clips, connected by lines representing relations and
whose colour indicates which relation is being used.

Figure 1. FrameWorks 2D: framework view.

A basic piano-roll display allowed clip editing, while

relation editors specified transformation parameters. For
example, time relations chain together an arbitrary number
of source segments, with start and end points, playback
speed and direction settings. In figure 2, the entire source
is played once forwards and once again in reverse.

Figure 2. FrameWorks 2D: time relation editor

Informal feedback from composers was positive in
terms of being able to create (and recreate) works in a fluid
manner, particularly lending itself to process based music,
but the interface was too limited in basic functionality for
serious work and formal evaluations, while support for
audio was indicated as essential.

3. FrameWorks 3D
FrameWorks 3D is a new implementation written in Java
5, using the Java 3D API [10] and Max/MSP as an audio
engine [11]. Hierarchical arrangements of clips are now
supported and audio data is used rather than MIDI. Java’s
MIDI and Audio API, Java Sound [12] has been criticised
for a number of limitations in terms of latency and jitter
[13], and while a number of solutions have been proposed
(e.g [13]), an alternative strategy of using Max/MSP as an
audio engine for Java has been adopted here.

3.1 Audio Engine Separation
FrameWorks 3D has been designed so that the audio/MIDI
engine, wrapped in an AMSEngine class, can be re-
implemented for various audio/MIDI API’s. Earlier
versions used an AMSEngine purely for data i/o, i.e.
playback and recording of MIDI data, while the data itself
was hosted and manipulated in the main FrameWorks
code. While this limits the size of the AMSEngine and so
simplifies switching to different implementations, such a
design leads to frequent large data transfers between the
FrameWorks model and the AMSEngine. While a
relatively minor issue when both are written in Java and
MIDI data is used, with an external engine and audio data,
this may become a significant overhead. The new
implementation expands the role of the engine to include
managing the audio (and other) data and providing the
processing for relations, thus minimising the data crossing
the model/engine boundary. In the case of Max/MSP, this
also allows us to use Max patches as relation
implementations, leveraging a vast resource of audio
processing objects, and permitting very rapid development
of new relations, potentially by users themselves.

Figure 3. Internal structure of FrameWorks 3D

3.2 Max/MSP Integration
Several programming languages can be used to define new
objects that can be used freely in Max patches: Max itself
(i.e. abstractions), Javascript (js objects), Java (mxj
objects) and C (native). In FrameWorks 3D we subvert this
role, with our mxj~ class “taking over” the operation of
Max from the user, providing a new application user
interface and hiding as much of Max as possible. Max

AMS Engine

GUI: Java 3D & Swing

FrameWorks Model

Data (Audio) Processing

Audio I/O

Core Application

227

patches are loaded and scripted behind the scenes in order
to carry out audio operations. The mxj~ object loads Java
code and communicates with hidden Max patches to
control audio i/o, the real-time clock, etc. The technical
details and issues involved are described elsewhere [14].

3.3 FrameWorks 3D GUI
Figure 4 shows the main FrameWorks 3D window.
Around the edge of the central 3D framework are various
editing and navigation tools: a tree view of the framework
structure, clip parameters (editable), and zoom controls.

Figure 4. FrameWorks 3D main window.

Figure 5. FrameWorks 3D: tree view and clip parameters.

Navigation is via the computer keyboard as in many 3D
environments, which changes the virtual camera position
and orientation and thus the user’s viewpoint. The tabbed
pane for the 3D view provides three independent views of
the framework, to help keep track of the various clips and
relations being used. The tree view provides an alternate
representation of the framework, and selecting a clip in
either, selects that clip in both views and displays its
parameter settings where they can be edited (figure 5).

3.4 The Framework
In the 3D space, the x-axis represents time, the y-axis
separates one track from another and the z-axis (vertical) is

used group clips into hierarchical arrangements. Tracks are
narrow strips extending along the time axis, from which
rectangular clips are suspended. Relations are shown as
pipes that connect a source clip to a destination clip. The
current playback position is shown as a flat sheet in the y-z
plane that moves along the x-axis. A small Head-Up
Display (HUD) in the 3D space shows the clock and basic
transport controls. Figure 6 shows the same framework
viewed from different positions and orientations.

Figure 6. Two views of the same framework structure

3.5 Clips
Clips contain audio data and can be arranged in
hierarchical groups (Figure 7 below). Only leaf clips hold
audio directly, and these display an overview of the sound
waveform when loaded. An audio clip is similar to an
audio region in standard DAW software; the user can load
a sound file and define a segment of that file to be the
current data (by Command-dragging the ends of the clip,
or by editing clip parameter values). Clips can be played
back individually and the framework played as a whole.

Figure 7. An example of hierarchical arrangement of clips.

228

3.6 Relations
Relations are implemented as plug-ins hosted by the
audio/MIDI engine. These are currently in the form of
specifically designed Max patches, which provide both the
user-interface and the processing algorithm, much like
commercial plug-in architectures such as Steinberg’s VST.
When FrameWorks 3D is launched, the relation plug-in
files are scanned and made available to the user.

Figure 8. User interface for the Pitch Shifter relation.

Figure 8 shows a Pitch Shifter relation editor. This

applies a constant transposition to the source material
using either a time or a frequency domain algorithm. Once
the required settings are set, the update framework button
applies the new settings to the audio, which will in turn
update all dependent audio throughout the framework.

A number of relations have been developed so far,
including identity, reverse, filter (biquad), brassage and
pitch shifter.

4. Further Work
Current development is focussed on refining the
interaction between Java code and Max/MSP, designing
additional relations, and including further user-interface
features in order to aid user testing. The 3D interface is
deliberately sparse at this stage in order to focus on user-
assessment of the basic concept and gain user input on how
additional interface elements might be developed.

As the tool develops we expect to reinstate MIDI data,
add automation of clip parameters, add track parameters
and effects, to bring the whole system closer to a DAW
style environment.

In addition we are looking for further opportunities to
exploit 3D user-interface elements within the environment,
such as in relation editors.

5. Conclusions
FrameWorks 3D represents a novel approach to
sequencing tasks by extension of existing DAW metaphors
into a 3D space which features both hierarchical
arrangements of content and dynamically maintained
relationships between elements within the structure.

An initial 2D prototype showed some promise, and this
has now been significantly enhanced with a true 3D
implementation. While it is still early in the overall
development of the system, we are aiming to disseminate
the ideas embodied in the software and gain feedback from
composers. A useable demonstrator system will be freely
available to users in late 2009.

6. Acknowledgments
FrameWorks 3D development was in part funded by the
i10 (www.i10.org.uk) by way of an Enterprise Fellowship.

References
[1] R. Polfreman, “A task analysis of music composition and

its application to the development of Modalyser,”
Organised Sound, vol. 4, pp 31-43, 1999.

[2] http://www.apple.com/pro/tips/coverflow.html, last
accessed 20/01/2009.

[3] http://www.microsoft.com/windows/products/windowsvista
/features/details/flip3D.mspx, last accessed 18/01/2009.

[4] http://secondlife.com/whatis, last accessed 18/01/2009.
[5] T. Kunze and H. Taube, “SEE—A Structured Event Editor:

Visualizing Compositional Data in Common Music”, in
Proceedings of the 1996 ICMC, 1996, pp. 63-66.

[6] N. Castagne, and C. Cadoz, “L’environnement GENESIS :
créer avec les modèles physiques masse-interaction”, in
Journées d'Informatique Musicale, 9e édition, 2002, pp 71-
82.

[7] R. Polfreman, “Supporting Creative Composition: the
FrameWorks Approach,” in Les Actes des 8e Journées d
Informatique Musicale, 2001, pp. 99-111.

[8] T. R. G. Green, “Cognitive dimensions of notations”, in
People and Computers V, A Sutcliffe and L Macaulay, Eds.
Cambridge : CUP, 1989 pp. 443-460.

[9] R. Polfreman, “FrameWorks - A Structural Composition
Tool,” in Music without walls? Music without instruments?
Proceedings of the International Conference, 2001, CD-
ROM.

[10] “Java3D API Tutorial”,
http://java.sun.com/developer/onlineTraining/java3d/index.
html

[11] M. Puckette, “Max at 17”, Computer Music Journal. Vol
26, no. 4, pp 31-43, 2002.

[12] “JavaSound API Programmer’s Guide”,
http://java.sun.com/javase/6/docs/technotes/guides/sound/in
dex.html

[13] N. Juillerat, S. M. Arisona, S. Schubiger-Banz. “Real-Time,
Low Latency Audio Processing in Java,” in Proceedings of
the International Computer Music Conference, ICMC
2007.

[14] R. Polfreman, “Role-Reversal: Max/MSP as an Audio
Engine for Java,” in preparation, submitted to ICMC 2009.

229

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Author
