
A Flexible Mapping Editor for Multi-touch Musical Instruments
Greg Kellum 

Geneva Music Conservatory 
Rue de l’Arquebuse 12 

CH-1211 Genève 
greg.kellum@cmusge.ch 

Alain Crevoisier 
University of Applied Sciences Western 

Switzerland (HES-SO / HEIG-VD & HEM-GE) 
Rue Galilée 15, CH-1400 Yverdon, 

alain.crevoisier@heig-vd.ch 
 

Abstract 
This paper introduces a flexible mapping editor, which 
transforms multi-touch devices into musical instruments.  
The editor enables users to create interfaces by dragging 
and dropping components onto the interface and attaching 
actions to them, which will be executed when certain user-
defined conditions obtain.  The editor receives touch 
information via the non-proprietary communication 
protocol, TUIO [9], and can, therefore, be used together 
with a variety of different multi-touch input devices. 

Keywords: NIME, multi-touch, multi-modal interface, 
sonic interaction design. 

1. Introduction 
The SurfaceEditor is a mapping editor for multi-touch 
surfaces.  It enables users to divide a surface up into 
different regions containing different components for 
interaction.  These components may consist of shapes like 
squares and triangles, traditional components like buttons 
and sliders, or user-created plug-ins for particular 
application domains.   
    The SurfaceEditor has a very flexible activation 
architecture.  Users can define different conditions under 
which a component will execute actions like sending a 
MIDI message.  For instance a user could configure a 
button to trigger a MIDI note-on when they press on it, but 
they could just as well configure it to trigger when a finger 
starts dragging inside the right side of the button. 
    The SurfaceEditor works with any multi-touch device 
that supports the TUIO protocol [9].  It can be used with a 
table-top multi-touch instrument such as the reacTable [8], 
with a multi-touch screen with a TUIO bridge, or on any 
arbitrary flat surface using the MultiTouch Everywhere 
technology presented in Crevoisier (2008) [4].  It supports 
not only touch interaction but also interaction with tangible 
objects. 

    The SurfaceEditor is freely available in a community 
edition at:  www.future-instruments.net.  

2. Prior work 
The development of multi-touch technologies as well as 
component based interfaces has already been extensively 
documented elsewhere [25].  So, in this section we will 
consider solely editors created for multi-touch systems. 
    The Lemur, a multi-touch screen from Jazz Mutant, 
comes with an editor for creating interfaces for the screen 
called the Jazz Editor.  The Jazz Editor (in the current 
version 2.0) contains components such as buttons, sliders, 
knobs, multi-balls, ranges, switches, and so on, which can 
be configured to send MIDI and OSC messages.  Users 
create interfaces using the Jazz Editor on their computer, 
and then, they transfer these interfaces to the Lemur.   
    The SurfaceEditor differs from the Jazz Editor in a 
number of ways.  The Jazz Editor is a proprietary 
application, which works only with the Lemur multi-touch 
screen, while the SurfaceEditor can be used with any 
number of input devices as long as they support the TUIO 
protocol.  The SurfaceEditor support interaction with not 
only fingers but also with objects marked with fiducials 
[3].  The SurfaceEditor is used on the user’s computer 
while the Jazz Editor runs on the Lemur screen’s 
processor, and for this reason the Jazz Editor is not 
extensible with plug-ins while the SurfaceEditor can be 
extended with three different categories of plug-ins.  And 
the SurfaceEditor’s activation architecture is more flexible 
than that of the Lemur’s in that it allows users to define 
conditions for the execution of actions as well as to define 
new actions if they wish. 

3. Activation Architecture 
One central aim when designing the SurfaceEditor was 

to find the model of surface interaction that would best 
allow users to define configurable conditions for the 
execution of actions. 

When considering this aim, we found it helpful to think 
about a handful of actual use cases.  For example, it would 
be useful for musicians to be able to trigger MIDI notes 
only when the contact energy of their fingers hitting the 
surface was above or below a certain level.  Or one could 
imagine a scenario in which a user might want to use one 
finger to control an application but might accidentally or 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers, or to redistribute to lists 
requires prior specific permission and/or a fee. 
NIME09, June 3-6, 2009, Pittsburgh, PA 
Copyright remains with the author(s). 

NIME 2009242



could also imagine a scenario in which a user might want 
to trigger different actions when there were different 
numbers of fingers in a component just as one can with the 
multi-touch mouse pad of Apple’s MacBook Pro. 

One way to analyze these scenarios would be to say a 
number of events are occurring, one is waiting for a 
particular type of event or set of events to occur, and one 
would like to filter out or otherwise ignore all other events.  
And when the particular type of event that one is waiting 
for occurs, one would like a particular action to be 
performed.  Based on this analysis we implemented an 
event, filter, and action paradigm of handling user input in 
the hopes of achieving the desired level of user 
configurability. 

When TUIO messages arrive, they are analyzed with 
regards to a particular component and converted into 
events.  There are both discrete as well as continuous 
events, due to the fact that there are both discrete as well as 
continuous types of actions; for example a discrete action 
might send a MIDI note-on message while a continuous 
action might send a MIDI continuous control message.  
Discrete events include when a user touches down in a 
component, starts moving his finger in a component, slides 
out of the component, or lifts up in the component.  
Continuous events are sent continuously while a finger is 
in a component or while a finger is moving in a 
component.  Converting the TUIO messages into these 
semantically meaningful events provides the first level of 
configurability, because users must choose which type of 
event they would like an action to be triggered by.  

 
Figure 1  The Surface Editor's main page. 

These events are then passed through a filter chain 
before they reach an action.  There are parameter filters, 
which allow only events with a parameter between a 
certain range of values to pass through, e.g. an energy 
value between 0.5 and 1.  There are ordering filters, which 
order a list of events using a given ordering criteria such as 

each event’s age or horizontal position and then selects an 
event with a particular index out of the list.  These can be 
used to specify for example that only the finger that was 
placed in a component first should be passed.  There are 
count filters, which only allow lists of events of a certain 
size to pass through.  These can be used to specify for 
example that the events should be passed through if and 
only if there are two fingers in the component.  And there 
are temporal filters which allow only a certain number of 
events to pass through in a given time interval, e.g. one 
every 50 milliseconds. 

After the events are filtered, if any events remain, they 
cause an action to be executed, and this action may 
possibly use the events’ parameters while executing.  
Actions can do anything from sending a MIDI or OSC 
message to jumping to the next page of an interface or 
saving an interface’s state. 

 
Figure 2 Event, filter, and action design pattern. 

This architecture for handling the user interaction did 
provide much of the user configurability that we sought, 
but it was necessary to make a few departures from the 
event model to incorporate some important use cases.  The 
ordering filter for instance did not work as users expected.  
One user wanted to use this filter to configure a component 
to respond to only one finger’s touch down event.  This 
filter would only filter out a second touch down event, 
however, if two events arrived in the same frame, but 
usually, one touch down event would arrive in one frame 
while a second one would arrive some frames afterward.  
So, it became apparent that users wanted to use this filter 
to filter out additional fingers not additional finger events, 
and events, which are by their nature instantaneous, were 
in this case not a good way to model these persistent 
objects. It was possible to solve this problem and a similar 
problem that arose with the count filter by generating 
dummy events that made these filters behave in the desired 
manner. 

intentionally put more fingers down in a component.  One 

243



This activation architecture is accessible to the users of 
the SurfaceEditor in two pathways: simple and advanced.   
In the simple pathway actions are wrapped up together 
with the most likely default activation condition for the 
selected component, and the user is not given access to the 
event filters.  So, when the user selects a MIDI note action 
for a button for instance, it is already preconfigured to send 
the note-on message when the button is pressed and the 
note-off message when the button is released.  This 
pathway allows users to quickly and easily set up 
components to do the things that they most often will want 
them to do.  In the advanced pathway on the other hand, 
users have access to all of the activation conditions 
including the filters, but they must do a little bit more work 
setting things up.  

 

4. Components 
 
Users create interfaces with the SurfaceEditor by dragging 
and dropping components.  There are different categories 
of components.  There are traditional components, such as 
knobs, buttons, keyboards, multi-sliders, and so on.  There 
are plug-ins, which users can create in the Java language or 
by using the Processing language to generate Java classes.  
And there are zones, which are components for creating 
shapes.   

4.1.1 Controllers 
The SurfaceEditor contains a number of traditional control 
components including buttons, envelopes, keyboards, 
ranges, dials, sliders, multi-sliders, sequencers, and XY 
pads.  Some of these controllers can be used in new ways, 
however, due to the underlying tracking technology.  For 
example one can use drag information to control the pitch 
bend or volume of notes triggered on a keyboard.  There 
are also some new controllers made possible by multi-
touch.  For example in the figure below there is a 3D wave 
controller; the XY position is given by pressing down in 
the controller while the Z value is given by moving the 
adjacent slider. 
 

 
Figure 3 A 3D wave controller in the SurfaceEditor. 

4.1.2 Plug-ins 
The SurfaceEditor supports three kinds of plug-ins: 
controllers, surface components, and actions. Controllers 
and surface components are both visual components, 
which are placed on the interface.  Controllers differ from 
surface components, however, in that controllers use the 
SurfaceEditor’s activation architecture while surface 
components do not.  Controllers are components that 
produce some sort of output messages, e.g. MIDI or OSC 
messages, while surface components are primarily used for 
visual display. (Surface components can also produce 
output messages as well, but then they do so without going 
through the SurfaceEditor’s activation architecture.)  The 
SurfaceEditor can also be extended with new types of 
actions that can send new types of messages.  For example 
if someone wanted to use the SurfaceEditor to control 
lighting, they could create an action to send out DMX 
messages, which would interface with the driver of a 
particular USB to DMX converter.  In the figure below 
two surface components are shown, which are used for 
drawing: a color chooser and a canvas.  This example 
shows that the SurfaceEditor is not limited to musical 
applications and can be used for other purposes as well. 
 

 
Figure 4 A surface component plug-in used for drawing. 

4.1.3 Zones 
Zones are components that can be given an arbitrary shape.  
There are five different ways of creating zone components.  
There are rectangular, elliptical, and triangular shapes, 
which can be stretched and rotated into different sizes.  
There is a tool for creating polygons by connecting line 
segments, and there is a free hand drawing tool for 
drawing arbitrary shapes.  Using these five tools one can 
draw any shape, which means that one can create 
interfaces by dividing existing images into different parts.  
In the figure below a replica of the map of Europe was 
created using zones for a children’s game.  Interfaces could 
be made in a similar manner to enable the sonification of 
images. 

 

244



 
Figure 5 A map of Europe created using zones for a game. 

5. Other features 
 The SurfaceEditor provides all of the editing 

functionality one would expect from an editor.  It supports 
editing operations such as cut, copy, paste, undo, and redo.  
It supports user definable interface sizes and grid 
dimensions.  It supports user-defined variables, which can 
be used to transform the values of input parameters.  And it 
offers a number of features for using it as a musical 
instrument such as multiple interface pages, which may be 
changed with a MIDI foot pedal, and support for multiple 
MIDI and OSC outputs.   

The SurfaceEditor supports communication between 
components.  This allows users to control the behavior of 
complex components like sequencers with simpler 
components like buttons.  And in the future it will allow 
the values of components to be updated by external 
applications such as Max/MSP. 

  

6. Acknowledgments 
The project presented here is supported by the Swiss 

National Funding Agency and the University of Applied 
Sciences. Special thanks to all the people involved in the 
developments presented here, in particular Pierrick Zoss 
his help in the programming of the SurfaceEditor. 

References 
[1] Aimi R.M. ”New Expressive Percussion Instruments,” 

Masters Thesis, Massachusetts Institute of Technology, 
2002 

[2] Blaine, T. and Perkis, T. Jam-O-Drum, A Study Interaction 
Design. Proc. ACM DIS 2000 Conference. NY: ACM Press 
(2000). 

[3] Costanza E., Huang J., "Designable Visual Markers," in 
ACM CHI2009, April 2009, Boston, MA, USA. 

[4] Crevoisier, A., Kellum, G., “Transforming Ordinary 
Surfaces into Multi-touch Controllers”, in Proc. of the Conf. 
on New Instruments for Musical Expression (NIME), 2008. 

[5] Crevoisier, A. Future-instruments.net: Towards the Creation 
of Hybrid Electronic-Acoustic Musical Instruments, Proc. of 
the CHI workshop on Sonic Interaction Design, 2008. 

[6] Hahn, J.Y. Low-Cost Multi-Touch Sensing through 
Frustrated Total Internal Reflection, Proc. of the ACM 
Symposium on User Interface Software and Technology 
(UIST), 2005. 

[7] Jones, R., “Intimate Control for Physical Modeling 
Synthesis,”  M.Sc. Thesis, University of Victoria, 2008 

[8] Jordà, S., Kaltenbrunner, M., Geiger, G. and Bencina, R., 
The reacTable*, Proceedings of the International 
Computer Music Conference (ICMC2005), Barcelona 
(Spain). 

[9] Kaltenbrunner, M., Bovermann, T., Bencina, R. and 
Costanza, E., “TUIO - A Protocol for Table Based Tangible 
User Interfaces”, Proceedings of the 6th International 
Workshop on Gesture in Human-Computer Interaction 
and Simulation (GW 2005), Vannes (France). 

[10]   M. Mathews, “The Radio Drum as a synthesizer 
controller”, In Proc. Int. Computer Music Conference, 
42-45, 1989 

[11]  McAvinney, Paul, “The Sensor Frame - A Gesture-Based 
Device for the Manipulation of Graphic Objects”,  
Carnegie-Mellon University, 1986. 

[12]  Oliver, J., Jenkins, M., The Silent Drum Controller: A New 
Percussive Gestural Interface, Proceedings of the 
International Computer Music Conference, 2008. 

[13]  Patten, J., Recht, B. and Ishii, H., Audiopad: A Tagbased 
Interface for Musical Performance. Proc. Conference on 
New Interface for Musical Expression, (2002), 24-26. 

[14]  SmallFish: http://hosting.zkm.de/wmuench/small_fish, 
Referenced October 20, 2006.  

[15]  Wilson, A. PlayAnywhere: A Compact Tabletop Computer 
Vision System, Proceedings of the ACM Symposium on 
User Interface Software and Technology (UIST), 2005. 

[16]  Wilson, A. TouchLight: An Imaging Touch Screen and 
Display for Gesture-Based Interaction, Proceedings of the 
International Conference on Multimodal Interfaces, 
2004. 

[17] http://www.future-instruments.net 
[18] http://www.jazzmutant.com 
[19] http://www.surface.com 
[20]  http://www.celluon.com 
[21]  http://www.lumio.com 
[22]  http://nuigroup.com 
[23] http://www.naturalpoint.com 
[24] www.tactex.com 
[25] http://www.billbuxton.com/multitouchOverview.html

 
 

245


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Greg Kellum
	Also by Alain Crevoisier
	------------------------------

