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Abstract 
Supervised learning methods have long been used to allow 
musical interface designers to generate new mappings by 
example. We propose a method for harnessing machine 
learning algorithms within a radically interactive 
paradigm, in which the designer may repeatedly generate 
examples, train a learner, evaluate outcomes, and modify 
parameters in real-time within a single software 
environment. We describe our meta-instrument, the 
Wekinator, which allows a user to engage in on-the-fly 
learning using arbitrary control modalities and sound 
synthesis environments. We provide details regarding the 
system implementation and discuss our experiences using 
the Wekinator for experimentation and performance. 
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1. Introduction 
Copyright remains with the author(s)Joe the musician 
would like to build a new instrument for musical 
expression. He has an input modality in mind: perhaps he 
would like to use his favorite game controller, or dance in 
front of his webcam. He also has a synthesis algorithm or 
compositional structure that he would like to drive using 
these inputs. 

Joe sits down at his computer and shows it a few 
examples of input gestures, along with his desired output 
parameters for synthesis or compositional controls. He 
trains a machine learning algorithm to map from inputs to 
outputs, runs the trained model, and begins to expressively 
perform his new instrument. 

Joe gives the computer a few more examples of input 
gestures and their corresponding output parameters, re-
trains the model, and continues to play. He repeats the 
process several more times, creating an instrument that 
becomes more and more complex. Or, he saves the trained 
algorithm so he can play the instrument later. Or, still 
unsatisfied, he tries out a different learning algorithm 
entirely, or changes its parameters, or changes the input 
features he uses for control. 

Joe does all of this in a few minutes, without writing 
any code. And he does it on stage during a live 
performance, in front of an audience. 

1.1 The Wekinator 
We have constructed a new meta-instrument called the 
Wekinator, which allows musicians, composers, and new 
instrument designers to interactively train and modify 
many standard machine learning algorithms in real-time. 
The Wekinator is a general tool that is not specialized for 
learning a particular concept, using a particular input 
controller, or using learning outputs in a particular way. 
Users are free to choose among a suite of built-in feature 
extractors for audio, video, and gestural inputs, or they can 
supply their own feature extractors. They can thus train a 
learning algorithm to respond to inputs ranging from 
conducting gestures to vocalizations to custom sensor 
devices. The user may employ the Wekinator as an 
example-based mapping creation tool, using the output of 
the learning algorithm to drive sound synthesis in the 
environment of her choosing, or she may assign the output 
some other function. While the general-purpose nature of 
the Wekinator is an asset, it is particularly distinguished 
from existing tools by its radically interactive, on-the-fly 
learning paradigm. 

2. Background and Motivation 
Machine learning (ML) methods have long been used in 
the creation of new sound and music interfaces. We are 
principally interested in the application of supervised ML 
methods that learn a function (which we will generally 
refer to as a “model”) relating a set of inputs to outputs, 
using a training dataset consisting of “true” input/output 
pairs. Furthermore, we primarily focus here on applying 
ML methods to creating and modifying controller mapping 
functions [9], where the input consists of an interface state 
or gestural controller position, and the output consists of 
one or more parameters driving sound creation. (We 
therefore ignore the large body of work on applying ML to 
computer improvisation and composition.) Such generative 
approaches to mapping creation, and their tradeoffs with 
explicit mapping approaches have been compared in 
[9,16]. 

 The early 1990’s saw the first uses of ML, especially 
neural networks (NNs) for mapping creation: Lee et al. 
[12] used NNs for applications including learning 
mappings from commodity and new music controllers to 
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sound synthesis parameters, and Fels and Hinton [6] built a 
system for controlling speech synthesis using a data glove. 
That we cannot even begin to acknowledge all the musical 
interfaces that have employed NNs as a mapping tool since 
is a testament to their usefulness, as is the existence of the 
Pd toolkit for NN mappings by Cont et al. [3]. Matrix-
based methods [2] offer yet another tool for generating 
mappings by examples, though the methods of [2] are 
unable to learn the highly nonlinear functions of NNs. 

While NNs can map inputs into a continuous output 
space, classification is a form of supervised learning in 
which the model encodes a function mapping the input 
space to discrete set of output classes. Classification is 
appropriate for assigning a category to a gesture, for 
example [11], and a wide variety of classifier algorithms 
exist, each with unique tradeoffs and assumptions about 
the learning problem [18].  

Merrill and Paradiso [13] studied users operating an 
interactive, example-based mapping system for their 
FlexiGesture input controller, and they found that users 
preferred building personalized mappings to using an 
expertly configured static mapping. Their mapping 
creation system did not use ML to learn the mappings from 
examples, citing the need for “significant amounts of 
training data” for successful pattern recognition. However, 
our recent work experimenting with “on-the-fly” learning 
of music information retrieval problems [8] suggests that 
ML techniques might indeed be useful despite very little 
training data if the concept to be learned is quite focused, a 
claim also made by Fails and Olsen in [5] and discussed 
further below. When supervised learning can feasibly be 
applied, NNs and classifiers offer a more general and 
flexible set of mapping approaches than Merrill’s dynamic 
time warping gesture classification approach. 

The established efficacy of example-based learning for 
interface mapping has inspired us to create a tool that is 
general-purpose (not specific to any controller, task, or 
music environment) and that supports many learning 
algorithms. Moreover, we are interested in applying ML in 
a manner that is more radically interactive than existing 
tools (e.g., [2][3]), offering a unified environment for all 
stages of the learning process and enabling user interaction 
to guide and modify the mapping creation in real-time, in 
an on-the-fly, even performative manner. 

3. Wekinator Interaction and Learning 
3.1 Interaction with the Wekinator 
The Wekinator enables users to rapidly and interactively 
control ML algorithms by choosing inputs and their 
features, selecting a learning algorithm and its parameters, 
creating training example feature/parameter pairs, training 
the learner, and subjectively and objectively evaluating its 
performance, all in real-time and in a possibly non-linear 
sequence of actions. This interactive learning paradigm is 
illustrated in Figure 1.  

In the setup phase, the user selects a classifier and sets 
its parameters, as well as specifies which features (also 
called “attributes”) will be extracted from which input 
sources. These features will fully represent the state of the 
input controller to the learner; for example, a joystick 
feature vector might include the current states of all 
buttons and axes, and an audio feature vector would 
typically include time- and spectral-domain computations 
on the audio signal. The choice of features reflects the 
nature of the mapping the user intends the computer to 
learn. For example, the spectral centroid audio feature 
might be extracted for training a learner to differentiate 
among audio sources with different timbres, whereas FFT 
bin magnitudes or pitch histograms would be better for 
differentiation by pitch range or chroma.  

In the training example creation phase, the Wekinator 
extracts the selected features in real-time from the input 
sources, while the user specifies via a GUI (Figure 2) the 
desired class labels or function outputs for the current 
features. For example, a user might enter “100” as the 
desired output value for a parameter of interest while 
singing “Ahhh!” into the microphone one or more times. In 
this phase, the user thus creates and cultivates a dataset 
that will be used as the training set for the learner. 

After creating examples, the user can initiate training, 
during which the learning algorithm uses the training 
dataset to build the trained model. The user is able to 
interact with the training process itself; for example, he can 
halt a training process that is taking too long, and readjust 
parameters such as a neural network’s learning rate in 
order to speed up training. The Wekinator is especially 
designed for scenarios for which this training stage takes at 
most a number of seconds—an important departure from 
traditional ML applications, as we discuss later.  

To run a trained model, the same features as were 
extracted to construct the training dataset are again 
extracted in real-time from the input sources, but now the 
model computes outputs from the features. These outputs 
can be used to drive synthesis or compositional parameters 
of musical code running in real-time. For example, the 
singing user above may sing “Ahhh!” into the microphone, 
which will result in a well-trained model outputting “100,” 
which might be used by a synthesis engine to set the 
frequency of an oscillator to 100Hz. 

The user can now evaluate the newly learned model. He 
might employ traditional objective measures of accuracy, 

 
Figure 1: Real-time interactions with the Wekinator 
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such as cross-validation error. Even more importantly, the 
user can form judgments of the quality and suitability of 
the model by running it in real time, observing its response 
to inputs that may or may not be similar to the training set. 
He might sing “Ahhh!” at different pitches or volumes to 
informally test the model’s robustness, or he might sing 
“Oooh!” just to see what happens (serendipitous harmony? 
horrid noise?). The user can immediately add new 
examples to the training dataset to correct mistakes or 
reinforce positive behaviors, and then retrain the learner 
with the augmented dataset and repeat the evaluation 
process. Alternatively, the user may decide to use a 
different learning algorithm or different features in order to 
achieve a different outcome. Of course, in creative context, 
the primary goal might not be to train a learner that 
perfectly implements a user’s preferred mapping from 
inputs to outputs. An instrument designer may simply wish 
to make the mapping more varied or interesting, or a 
composer may wish to build increasingly complex 
mappings from inputs to synthesis parameters in order to 
aurally explore a synthesis parameter space. A low 
overhead to interacting with the learning algorithm is 
beneficial in these circumstances as well. 

3.2 Our On-the-fly, Interactive Learning Paradigm 
One level of interaction in ML involves providing the user 
with options to control the learning parameters, for 
example to edit the architecture of a NN. A second level 
involves the ability of the computer to extract features and 
pass them to a running, pre-trained model to produce 
outputs in real-time, enabling musical interaction with a 
live performer. Obviously, these two definitions of 
interaction must minimally be satisfied in any ML 
application for live music, including those in [2,3,6,12]. 

Agent-based approaches to learning often involve a 
notion of learning from the world in real-time, while also 
making predictions and taking actions. Musical systems for 
machine improvisation (e.g., [1]) often learn from a 
performer in real-time, though musical systems for 

supervised learning have not taken this approach as far as 
we know. 

The Wekinator offers a more radical degree of 
interaction than existing supervised learning approaches, 
which we term “on-the-fly” interactive learning. First, the 
training set creation happens in real-time and is actively 
guided by the user. Modifying the training set is an explicit 
mode of interaction, through which the user can affect the 
learning outcomes more effectively and predictably than is 
possible by changing the learning algorithm or its 
parameters. Second, the entire procedure of modifying the 
learning process and training set, re-training, and re-
evaluating results happens on the order of seconds, not 
minutes, hours, or longer. Such rapid learning is 
computationally feasible for many problems of interest, as 
we discuss in Section 5.2. Moreover, the tight integration 
of all learning phases of Figure 1 into a single environment 
and GUI enables the user to interactively experiment with 
the different learning components and evaluate the effects 
in an on-the-fly manner. Such an on-the-fly ML system not 
only supports faster prototyping and exploration than off-
line systems, but also opens the door to new performance 
and composition paradigms, including the live and 
performative training and refinement of a model. 

As such, our definition of interactivity most closely 
matches the ideas of Fails and Olsen [5], who constructed 
a system for real-time, on-the-fly training of visual object 
classifiers, in which designers interactively labeled objects 
on the screen. Fails and Olsen also stress the importance of 
the speed of the training and interface in supporting true 
interactivity, and they provide a deeper discussion of how 
interactive ML’s constraints and possibilities differ from 
traditional ML applications. 

4. System Architecture 
Figure 3 illustrates the architecture of the Wekinator. Two 
main components—one in ChucK [17] and one in Java, 
communicating using OSC [19]—form the core of the 
system. In order to use the Wekinator for a wide variety of 
on-the-fly learning tasks, one need use only these 
components. Users are also able to incorporate their own 
input devices, feature extractors, and synthesis 
environments. 

4.1.1 Input Setup and Feature Extraction 
The Wekinator’s built-in feature extractors for hardware 
controllers and audio are implemented in ChucK. Several 
of the laptop’s native input capabilities, including the 
trackpad and internal motion sensor, can be used as generic 
input devices, following our work in [7]. Any USB devices 
that act as HID joysticks are also usable as input sources; 
this includes many commodity game controllers as well as 
custom sensor interfaces built using systems like the CUI1. 
Several common time- and spectral-domain audio features 

                                                             
1 http://www.create.ucsb.edu/~dano/CUI/ 

 
Figure 2: GUI pane for training and running (NN mode, 3 
output parameters). 
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are also available, including FFT bins, spectral centroid, 
spectral rolloff, and other features common to music 
information retrieval (MIR) and audio analysis [8].  

It is possible to implement additional feature extractors 
in ChucK, in particular to extract task-specific features 
from audio or HID devices. For example, we have 
implemented a set of custom features within ChucK’s unit 
analyzer infrastructure that indicate the relative strength of 
the spectrum around expected formant frequencies, and 
used these with the Wekinator to create a personalized 
vowel recognizer. It is also possible to perform signal 
conditioning or other transformations on HID input to 
create features that are less sensitive to jitter, use relative 
deltas rather than absolute values of a sensor, etc. 

One may also use any feature extractor outside of 
ChucK. For example, we have implemented two simple 
feature extractors in Processing [14] that use the webcam 
input: one extracts a simple matrix of edges detected 
within a 10x10 grid over the camera input, and the other 
extracts the absolute and relative positions of two 
differently colored objects held in front of the camera. Any 
standalone feature extractor must merely communicate its 
extracted features to ChucK via OSC at the (possibly 
variable) extraction rate of its choosing.  

4.1.2 Machine Learning 
The Wekinator uses the Weka library [18] for all learning 
algorithms. Weka is a powerful, free, open-source library 
written in Java that has enjoyed popularity among music 
information retrieval researchers [10]. It provides 
implementations of a wide variety of discrete classifiers 
and function approximators, including k-nearest neighbor, 
AdaBoost, decision trees, support vector machines, and 
NNs. When running a classification algorithm, the 
Wekinator provides the option of outputting a probability 
distribution (interpretable as the likelihood of a data point 
actually belonging to each class) or outputting a single 
class label (i.e., the class with maximum likelihood). 

The Wekinator also supports the learning of multiple 
concepts simultaneously, for example for the learning of a 
mapping between controller inputs and several synthesis 
parameters (a many-to-many mapping). In this case, the 
Wekinator trains one model per parameter. (While it is in 

theory possible to assign multiple output nodes of a single 
NN to different synthesis parameters, Weka only supports 
architectures with a single output node.) The GUI pane in 
Figure 2 allows the user to specify values for all output 
parameters simultaneously. 

4.1.3 Synthesis 
The Wekinator comes with several example ChucK 
synthesis classes that can be driven by the model outputs 
without modification. A user can write his own ChucK 
class for using the Wekinator outputs, and it will 
seamlessly integrate into the existing infrastructure 
provided it implements our simple API for communicating 
to the Wekinator its expected number and type of 
parameters and receiving these parameters from the 
learner(s). Alternatively, a user can implement sound 
synthesis in another environment, provided it can perform 
this parameter communication over OSC. 

4.1.4 GUI 
Once a user has chosen or implemented the desired 
synthesis code, and optionally additional feature extraction 
code, the Wekinator’s 4-pane GUI is the single point of 
interaction with the learning system. The first pane enables 
the setup and monitoring of OSC communication with the 
ChucK component of the Wekinator. The second allows 
the user to specify the features to use and their parameters 
(e.g., FFT size), create and save configurations for any 
custom HID devices, and optionally save and reload 
feature setting configurations. The third pane allows the 
user to specify the creation of a new model, or to reload a 
saved, possibly pre-trained model from a file. The fourth 
(shown in Figure 2 for a NN) allows real-time control over 
training set creation, training, adjusting model parameters, 
and running. Its appearance varies depending on the 
learner; for example, the pane for discrete classifiers 
includes a button to compute cross-validation accuracy, 
and the NN pane includes a pop-up window for viewing 
and editing the network architecture and monitoring the 
back-propagation learning process and parameters. 

5. Discussion 
5.1 Mapping as Play 
For a practicing composing performer, the process of 
manually mapping control inputs to audio synthesis and 
signal processing parameters can be tedious and 
frustrating. It is generally difficult to predict what kinds of 
mappings will be “successful,” especially when using data-
rich audio analysis sources, and the constant mode-shifting 
between carefully building a complex mapping (which 
might involve some coding) and then actually auditioning 
that mapping can be exhausting; in the end, many 
musicians simply decide to focus their efforts elsewhere. 

With instruments like the Bowed-Sensor-Speaker-Array 
and the R-bow [15], for instance, dozens of sensor 
parameters and an audio input signal must be mapped (or 

 
Figure 3: Wekinator architecture. Arrows indicate OSC 
communication; dotted-line components are optional. 
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ignored) to an audio generating algorithm, itself likely 
having many parameters; exploring this space through 
manually created mappings is overwhelming and time 
consuming. What the Wekinator system encourages is a 
high-level, intuitive approach, where particular mapping 
“nodes” can be quickly defined via training examples and 
then the instrument immediately auditioned. Rather than 
laboriously mode-shifting, the instrument builder now 
takes part in a playful process of physically interacting 
with a malleable complex mapping that can be shaped but 
does not have to be built from the ground up. Furthermore, 
the surprises that the mapping inevitably generates, while 
sometimes undesirable, are often inspiring. Being able to 
save these mappings and revisit them, perhaps modifying 
them on-the-fly in performance, allows for continuity but 
also continual evolution.     

5.2 On-the-fly Learning in Performance 
Six Princeton performers (all of whom were musicians and 
none of whom were the authors) recently performed a 
piece, nets 0, which employed the Wekinator for on-the-fly 
learning of controller mappings during the performance.2 
Performers chose their own input devices, resulting in two 
joysticks, two webcams (one using color tracking and one 
using the edge detection), one laptop’s internal 
accelerometers, and one hand-made sensor box HID 
device. Each performer ran the Wekinator on a laptop, 
connected to a personal 6-channel speaker and subwoofer. 
Each laptop ran the same ChucK FM synthesis algorithm, 
which used one Wekinator output to drive the frequency of 
an oscillator and one output to drive both the gain and 
reverb wet/dry mix.  

The performance began with each player loading up the 
Wekinator and creating a new NN from scratch. Each 
player first supplied two initial training examples matching 
inputs (e.g., joystick positions) to pre-specified values of 
the two synthesis parameters, trained the network, and 
began making sound. Over the next five minutes, players 
interactively built up their controller mappings as they 
wished, modifying their training set and re-training in an 
unconstrained manner. Over the second five minutes, 
players improvised as a group using their established 
mappings, and the piece culminated with a synchronous, 
conducted crescendo and decrescendo. As each player 
created a more complex mapping, the sonic space 
broadened to include a wider range of sounds and the sonic 
palette of each player became unique. Also, each player’s 
ability to play expressively grew as time went on. 

In this performance, we found the Wekinator to be 
useable for performers who are not ML experts. We did 
explain and rehearse the necessary sequence of recording 
training examples, training, running, etc., until everyone 
understood well how to play the piece. One performer 
improvised extensively using her controller with our 

                                                             
2 Video at http://wekinator.cs.princeton.edu/nets0/ 

synthesis algorithm outside the performance, remarking 
that she enjoyed “exploring a whole new sonic space.”  

The main source of confusion among performers was 
the GUI options for changing NN parameters (e.g., 
learning rate); the piece did not require modifications to 
these parameters, but performers were confused about their 
purpose. One can imagine an alternative GUI that exposes 
“parameters” that are more meaningful to the performers, 
for example a slider presenting a continuum from “very 
fast training” to “very accurate training.” Such a loss of 
precise control may be acceptable in exchange for the 
increased likelihood that performers will feel comfortable 
trying out the slider and experimenting with its effects. On 
the other hand, exposing the standard parameters of an 
algorithm may make the Wekinator an exciting tool to 
teach students about ML, allowing them to immediately 
experience the effects of changing parameters. 

In rehearsals and performance, on-the-fly learning was 
always fast enough for real-time interaction, even for the 
100 edge detection features. While this represents a 
dramatic departure from typical ML applications, the 
ability to learn fast and well enough to provide control is 
not so surprising. First, real-time creation of the training 
set results in a few hundred training examples at most, a 
tiny dataset for ML algorithms designed to accommodate 
thousands of points. Second, the task is focused in scope: 
creating a mapping for a single performer to a single 
synthesis algorithm within a single piece. This is trivial 
compared to the broader problems for which learning 
algorithms have been designed, for example decoding 
handwritten digits written with any handwriting style, or 
recognizing the face of any human in a photo. Third, the 
learning is done in a somewhat subjective context, in 
which it is possible to produce undesirable output (e.g., a 
painfully high frequency), but where unexpected outcomes 
are often acceptable and interesting. The explicit goal for 
each performer throughout our piece was therefore 
unrelated to traditional metrics of accuracy and generality; 
performers aimed to create a mapping that was interesting 
and controllable, and in that everyone was successful. 
Also, the performers themselves discovered which gestures 
were learnable and effective. For example, the performer 
using coarse webcam edge detection learned to play using 
very large gestures. 

5.3 Further Evaluation and Reflection 
The Wekinator is not an all-purpose mapping tool, and it is 
not appropriate for creating especially simple mappings 
(e.g., one-to-one) or encoding very specific and inflexible 
mappings that might be better accomplished via explicit 
coding of the mapping function. It will not work well if the 
features are a poor match for the task (e.g., using edge 
detection features to recognize subtle gestures in front of a 
moving crowd). Weka’s learning methods do not 
incorporate any time domain information, so classification 
of moving gestures is only possible with custom features 
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that take time-domain behavior into account (e.g., sensor 
deltas) or with another learning system (e.g., hidden 
Markov models).  

On the other hand, the Wekinator is a powerful tool for 
creating mappings very quickly, for any input features and 
synthesis method. And its uses go beyond mapping 
creation: it seems to be a promising tool for the exploration 
of large parameter spaces for synthesis algorithms such as 
physical models. Also, using appropriate audio features, it 
can be used for on-the-fly learning of high-level musical 
concepts such as pitch, instrumentation, or style. For more 
complicated learning problems of any nature, one could 
use Weka’s own GUI to train a learner off-line on a larger 
dataset (such as those used in music information retrieval 
benchmarking [4]) then load the model into the Wekinator 
to run on real-time input. Furthermore, the output of the 
Wekinator could be applied to interactive video or any 
other systems capable of communicating via OSC.  

Future work may further improve the Wekinator for 
musical contexts by incorporating the ability to constrain 
which features are used to learn which outputs (e.g., to 
support one-to-one and one-to-many mappings), and to 
allow the use of different learning methods for different 
outputs (e.g., to use a discrete classifier for one output and 
a neural network for another). The ability to map certain 
controller inputs to controlling the GUI itself would also 
offer practical benefits for on-the-fly mapping of 
controllers that require two hands. 

6. Conclusions and Future Work 
We have presented the Wekinator, a general-purpose 
system for radically interactive, on-the-fly machine 
learning for controller mapping creation and other musical 
applications. Our experiences with the Wekinator have 
reinforced our conviction that on-the-fly learning in music 
is an exciting new paradigm that enables new performance 
methods and experiences, even with relatively old learning 
algorithms and synthesis methods. We look forward to 
continuing to investigate the implications of this new 
paradigm from the perspectives of human-computer 
interaction, music performance and composition, and 
machine learning. 

The Wekinator is available to download at 
http://wekinator.cs.princeton.edu/.  
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