
A Meta-Instrument for Interactive, On-the-fly Machine Learning
Rebecca Fiebrink

Department of Computer Science
Princeton University

fiebrink@princeton.edu

Dan Trueman
Department of Music
Princeton University

dtrueman@princeton.edu

Perry R. Cook
Departments of Computer Science & Music

Princeton University
prc@cs.princeton.edu

Abstract
Supervised learning methods have long been used to allow
musical interface designers to generate new mappings by
example. We propose a method for harnessing machine
learning algorithms within a radically interactive
paradigm, in which the designer may repeatedly generate
examples, train a learner, evaluate outcomes, and modify
parameters in real-time within a single software
environment. We describe our meta-instrument, the
Wekinator, which allows a user to engage in on-the-fly
learning using arbitrary control modalities and sound
synthesis environments. We provide details regarding the
system implementation and discuss our experiences using
the Wekinator for experimentation and performance.

Keywords: Machine learning, mapping, tools.

1. Introduction
Copyright remains with the author(s)Joe the musician
would like to build a new instrument for musical
expression. He has an input modality in mind: perhaps he
would like to use his favorite game controller, or dance in
front of his webcam. He also has a synthesis algorithm or
compositional structure that he would like to drive using
these inputs.

Joe sits down at his computer and shows it a few
examples of input gestures, along with his desired output
parameters for synthesis or compositional controls. He
trains a machine learning algorithm to map from inputs to
outputs, runs the trained model, and begins to expressively
perform his new instrument.

Joe gives the computer a few more examples of input
gestures and their corresponding output parameters, re-
trains the model, and continues to play. He repeats the
process several more times, creating an instrument that
becomes more and more complex. Or, he saves the trained
algorithm so he can play the instrument later. Or, still
unsatisfied, he tries out a different learning algorithm
entirely, or changes its parameters, or changes the input
features he uses for control.

Joe does all of this in a few minutes, without writing
any code. And he does it on stage during a live
performance, in front of an audience.

1.1 The Wekinator
We have constructed a new meta-instrument called the
Wekinator, which allows musicians, composers, and new
instrument designers to interactively train and modify
many standard machine learning algorithms in real-time.
The Wekinator is a general tool that is not specialized for
learning a particular concept, using a particular input
controller, or using learning outputs in a particular way.
Users are free to choose among a suite of built-in feature
extractors for audio, video, and gestural inputs, or they can
supply their own feature extractors. They can thus train a
learning algorithm to respond to inputs ranging from
conducting gestures to vocalizations to custom sensor
devices. The user may employ the Wekinator as an
example-based mapping creation tool, using the output of
the learning algorithm to drive sound synthesis in the
environment of her choosing, or she may assign the output
some other function. While the general-purpose nature of
the Wekinator is an asset, it is particularly distinguished
from existing tools by its radically interactive, on-the-fly
learning paradigm.

2. Background and Motivation
Machine learning (ML) methods have long been used in
the creation of new sound and music interfaces. We are
principally interested in the application of supervised ML
methods that learn a function (which we will generally
refer to as a “model”) relating a set of inputs to outputs,
using a training dataset consisting of “true” input/output
pairs. Furthermore, we primarily focus here on applying
ML methods to creating and modifying controller mapping
functions [9], where the input consists of an interface state
or gestural controller position, and the output consists of
one or more parameters driving sound creation. (We
therefore ignore the large body of work on applying ML to
computer improvisation and composition.) Such generative
approaches to mapping creation, and their tradeoffs with
explicit mapping approaches have been compared in
[9,16].

 The early 1990’s saw the first uses of ML, especially
neural networks (NNs) for mapping creation: Lee et al.
[12] used NNs for applications including learning
mappings from commodity and new music controllers to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or a fee.
NIME09, June 3-6, 2009, Pittsburgh, PA
Copyright remains with the Author(s).

NIME 2009280

sound synthesis parameters, and Fels and Hinton [6] built a
system for controlling speech synthesis using a data glove.
That we cannot even begin to acknowledge all the musical
interfaces that have employed NNs as a mapping tool since
is a testament to their usefulness, as is the existence of the
Pd toolkit for NN mappings by Cont et al. [3]. Matrix-
based methods [2] offer yet another tool for generating
mappings by examples, though the methods of [2] are
unable to learn the highly nonlinear functions of NNs.

While NNs can map inputs into a continuous output
space, classification is a form of supervised learning in
which the model encodes a function mapping the input
space to discrete set of output classes. Classification is
appropriate for assigning a category to a gesture, for
example [11], and a wide variety of classifier algorithms
exist, each with unique tradeoffs and assumptions about
the learning problem [18].

Merrill and Paradiso [13] studied users operating an
interactive, example-based mapping system for their
FlexiGesture input controller, and they found that users
preferred building personalized mappings to using an
expertly configured static mapping. Their mapping
creation system did not use ML to learn the mappings from
examples, citing the need for “significant amounts of
training data” for successful pattern recognition. However,
our recent work experimenting with “on-the-fly” learning
of music information retrieval problems [8] suggests that
ML techniques might indeed be useful despite very little
training data if the concept to be learned is quite focused, a
claim also made by Fails and Olsen in [5] and discussed
further below. When supervised learning can feasibly be
applied, NNs and classifiers offer a more general and
flexible set of mapping approaches than Merrill’s dynamic
time warping gesture classification approach.

The established efficacy of example-based learning for
interface mapping has inspired us to create a tool that is
general-purpose (not specific to any controller, task, or
music environment) and that supports many learning
algorithms. Moreover, we are interested in applying ML in
a manner that is more radically interactive than existing
tools (e.g., [2][3]), offering a unified environment for all
stages of the learning process and enabling user interaction
to guide and modify the mapping creation in real-time, in
an on-the-fly, even performative manner.

3. Wekinator Interaction and Learning
3.1 Interaction with the Wekinator
The Wekinator enables users to rapidly and interactively
control ML algorithms by choosing inputs and their
features, selecting a learning algorithm and its parameters,
creating training example feature/parameter pairs, training
the learner, and subjectively and objectively evaluating its
performance, all in real-time and in a possibly non-linear
sequence of actions. This interactive learning paradigm is
illustrated in Figure 1.

In the setup phase, the user selects a classifier and sets
its parameters, as well as specifies which features (also
called “attributes”) will be extracted from which input
sources. These features will fully represent the state of the
input controller to the learner; for example, a joystick
feature vector might include the current states of all
buttons and axes, and an audio feature vector would
typically include time- and spectral-domain computations
on the audio signal. The choice of features reflects the
nature of the mapping the user intends the computer to
learn. For example, the spectral centroid audio feature
might be extracted for training a learner to differentiate
among audio sources with different timbres, whereas FFT
bin magnitudes or pitch histograms would be better for
differentiation by pitch range or chroma.

In the training example creation phase, the Wekinator
extracts the selected features in real-time from the input
sources, while the user specifies via a GUI (Figure 2) the
desired class labels or function outputs for the current
features. For example, a user might enter “100” as the
desired output value for a parameter of interest while
singing “Ahhh!” into the microphone one or more times. In
this phase, the user thus creates and cultivates a dataset
that will be used as the training set for the learner.

After creating examples, the user can initiate training,
during which the learning algorithm uses the training
dataset to build the trained model. The user is able to
interact with the training process itself; for example, he can
halt a training process that is taking too long, and readjust
parameters such as a neural network’s learning rate in
order to speed up training. The Wekinator is especially
designed for scenarios for which this training stage takes at
most a number of seconds—an important departure from
traditional ML applications, as we discuss later.

To run a trained model, the same features as were
extracted to construct the training dataset are again
extracted in real-time from the input sources, but now the
model computes outputs from the features. These outputs
can be used to drive synthesis or compositional parameters
of musical code running in real-time. For example, the
singing user above may sing “Ahhh!” into the microphone,
which will result in a well-trained model outputting “100,”
which might be used by a synthesis engine to set the
frequency of an oscillator to 100Hz.

The user can now evaluate the newly learned model. He
might employ traditional objective measures of accuracy,

Figure 1: Real-time interactions with the Wekinator

281

such as cross-validation error. Even more importantly, the
user can form judgments of the quality and suitability of
the model by running it in real time, observing its response
to inputs that may or may not be similar to the training set.
He might sing “Ahhh!” at different pitches or volumes to
informally test the model’s robustness, or he might sing
“Oooh!” just to see what happens (serendipitous harmony?
horrid noise?). The user can immediately add new
examples to the training dataset to correct mistakes or
reinforce positive behaviors, and then retrain the learner
with the augmented dataset and repeat the evaluation
process. Alternatively, the user may decide to use a
different learning algorithm or different features in order to
achieve a different outcome. Of course, in creative context,
the primary goal might not be to train a learner that
perfectly implements a user’s preferred mapping from
inputs to outputs. An instrument designer may simply wish
to make the mapping more varied or interesting, or a
composer may wish to build increasingly complex
mappings from inputs to synthesis parameters in order to
aurally explore a synthesis parameter space. A low
overhead to interacting with the learning algorithm is
beneficial in these circumstances as well.

3.2 Our On-the-fly, Interactive Learning Paradigm
One level of interaction in ML involves providing the user
with options to control the learning parameters, for
example to edit the architecture of a NN. A second level
involves the ability of the computer to extract features and
pass them to a running, pre-trained model to produce
outputs in real-time, enabling musical interaction with a
live performer. Obviously, these two definitions of
interaction must minimally be satisfied in any ML
application for live music, including those in [2,3,6,12].

Agent-based approaches to learning often involve a
notion of learning from the world in real-time, while also
making predictions and taking actions. Musical systems for
machine improvisation (e.g., [1]) often learn from a
performer in real-time, though musical systems for

supervised learning have not taken this approach as far as
we know.

The Wekinator offers a more radical degree of
interaction than existing supervised learning approaches,
which we term “on-the-fly” interactive learning. First, the
training set creation happens in real-time and is actively
guided by the user. Modifying the training set is an explicit
mode of interaction, through which the user can affect the
learning outcomes more effectively and predictably than is
possible by changing the learning algorithm or its
parameters. Second, the entire procedure of modifying the
learning process and training set, re-training, and re-
evaluating results happens on the order of seconds, not
minutes, hours, or longer. Such rapid learning is
computationally feasible for many problems of interest, as
we discuss in Section 5.2. Moreover, the tight integration
of all learning phases of Figure 1 into a single environment
and GUI enables the user to interactively experiment with
the different learning components and evaluate the effects
in an on-the-fly manner. Such an on-the-fly ML system not
only supports faster prototyping and exploration than off-
line systems, but also opens the door to new performance
and composition paradigms, including the live and
performative training and refinement of a model.

As such, our definition of interactivity most closely
matches the ideas of Fails and Olsen [5], who constructed
a system for real-time, on-the-fly training of visual object
classifiers, in which designers interactively labeled objects
on the screen. Fails and Olsen also stress the importance of
the speed of the training and interface in supporting true
interactivity, and they provide a deeper discussion of how
interactive ML’s constraints and possibilities differ from
traditional ML applications.

4. System Architecture
Figure 3 illustrates the architecture of the Wekinator. Two
main components—one in ChucK [17] and one in Java,
communicating using OSC [19]—form the core of the
system. In order to use the Wekinator for a wide variety of
on-the-fly learning tasks, one need use only these
components. Users are also able to incorporate their own
input devices, feature extractors, and synthesis
environments.

4.1.1 Input Setup and Feature Extraction
The Wekinator’s built-in feature extractors for hardware
controllers and audio are implemented in ChucK. Several
of the laptop’s native input capabilities, including the
trackpad and internal motion sensor, can be used as generic
input devices, following our work in [7]. Any USB devices
that act as HID joysticks are also usable as input sources;
this includes many commodity game controllers as well as
custom sensor interfaces built using systems like the CUI1.
Several common time- and spectral-domain audio features

1 http://www.create.ucsb.edu/~dano/CUI/

Figure 2: GUI pane for training and running (NN mode, 3
output parameters).

282

are also available, including FFT bins, spectral centroid,
spectral rolloff, and other features common to music
information retrieval (MIR) and audio analysis [8].

It is possible to implement additional feature extractors
in ChucK, in particular to extract task-specific features
from audio or HID devices. For example, we have
implemented a set of custom features within ChucK’s unit
analyzer infrastructure that indicate the relative strength of
the spectrum around expected formant frequencies, and
used these with the Wekinator to create a personalized
vowel recognizer. It is also possible to perform signal
conditioning or other transformations on HID input to
create features that are less sensitive to jitter, use relative
deltas rather than absolute values of a sensor, etc.

One may also use any feature extractor outside of
ChucK. For example, we have implemented two simple
feature extractors in Processing [14] that use the webcam
input: one extracts a simple matrix of edges detected
within a 10x10 grid over the camera input, and the other
extracts the absolute and relative positions of two
differently colored objects held in front of the camera. Any
standalone feature extractor must merely communicate its
extracted features to ChucK via OSC at the (possibly
variable) extraction rate of its choosing.

4.1.2 Machine Learning
The Wekinator uses the Weka library [18] for all learning
algorithms. Weka is a powerful, free, open-source library
written in Java that has enjoyed popularity among music
information retrieval researchers [10]. It provides
implementations of a wide variety of discrete classifiers
and function approximators, including k-nearest neighbor,
AdaBoost, decision trees, support vector machines, and
NNs. When running a classification algorithm, the
Wekinator provides the option of outputting a probability
distribution (interpretable as the likelihood of a data point
actually belonging to each class) or outputting a single
class label (i.e., the class with maximum likelihood).

The Wekinator also supports the learning of multiple
concepts simultaneously, for example for the learning of a
mapping between controller inputs and several synthesis
parameters (a many-to-many mapping). In this case, the
Wekinator trains one model per parameter. (While it is in

theory possible to assign multiple output nodes of a single
NN to different synthesis parameters, Weka only supports
architectures with a single output node.) The GUI pane in
Figure 2 allows the user to specify values for all output
parameters simultaneously.

4.1.3 Synthesis
The Wekinator comes with several example ChucK
synthesis classes that can be driven by the model outputs
without modification. A user can write his own ChucK
class for using the Wekinator outputs, and it will
seamlessly integrate into the existing infrastructure
provided it implements our simple API for communicating
to the Wekinator its expected number and type of
parameters and receiving these parameters from the
learner(s). Alternatively, a user can implement sound
synthesis in another environment, provided it can perform
this parameter communication over OSC.

4.1.4 GUI
Once a user has chosen or implemented the desired
synthesis code, and optionally additional feature extraction
code, the Wekinator’s 4-pane GUI is the single point of
interaction with the learning system. The first pane enables
the setup and monitoring of OSC communication with the
ChucK component of the Wekinator. The second allows
the user to specify the features to use and their parameters
(e.g., FFT size), create and save configurations for any
custom HID devices, and optionally save and reload
feature setting configurations. The third pane allows the
user to specify the creation of a new model, or to reload a
saved, possibly pre-trained model from a file. The fourth
(shown in Figure 2 for a NN) allows real-time control over
training set creation, training, adjusting model parameters,
and running. Its appearance varies depending on the
learner; for example, the pane for discrete classifiers
includes a button to compute cross-validation accuracy,
and the NN pane includes a pop-up window for viewing
and editing the network architecture and monitoring the
back-propagation learning process and parameters.

5. Discussion
5.1 Mapping as Play
For a practicing composing performer, the process of
manually mapping control inputs to audio synthesis and
signal processing parameters can be tedious and
frustrating. It is generally difficult to predict what kinds of
mappings will be “successful,” especially when using data-
rich audio analysis sources, and the constant mode-shifting
between carefully building a complex mapping (which
might involve some coding) and then actually auditioning
that mapping can be exhausting; in the end, many
musicians simply decide to focus their efforts elsewhere.

With instruments like the Bowed-Sensor-Speaker-Array
and the R-bow [15], for instance, dozens of sensor
parameters and an audio input signal must be mapped (or

Figure 3: Wekinator architecture. Arrows indicate OSC
communication; dotted-line components are optional.

283

ignored) to an audio generating algorithm, itself likely
having many parameters; exploring this space through
manually created mappings is overwhelming and time
consuming. What the Wekinator system encourages is a
high-level, intuitive approach, where particular mapping
“nodes” can be quickly defined via training examples and
then the instrument immediately auditioned. Rather than
laboriously mode-shifting, the instrument builder now
takes part in a playful process of physically interacting
with a malleable complex mapping that can be shaped but
does not have to be built from the ground up. Furthermore,
the surprises that the mapping inevitably generates, while
sometimes undesirable, are often inspiring. Being able to
save these mappings and revisit them, perhaps modifying
them on-the-fly in performance, allows for continuity but
also continual evolution.

5.2 On-the-fly Learning in Performance
Six Princeton performers (all of whom were musicians and
none of whom were the authors) recently performed a
piece, nets 0, which employed the Wekinator for on-the-fly
learning of controller mappings during the performance.2
Performers chose their own input devices, resulting in two
joysticks, two webcams (one using color tracking and one
using the edge detection), one laptop’s internal
accelerometers, and one hand-made sensor box HID
device. Each performer ran the Wekinator on a laptop,
connected to a personal 6-channel speaker and subwoofer.
Each laptop ran the same ChucK FM synthesis algorithm,
which used one Wekinator output to drive the frequency of
an oscillator and one output to drive both the gain and
reverb wet/dry mix.

The performance began with each player loading up the
Wekinator and creating a new NN from scratch. Each
player first supplied two initial training examples matching
inputs (e.g., joystick positions) to pre-specified values of
the two synthesis parameters, trained the network, and
began making sound. Over the next five minutes, players
interactively built up their controller mappings as they
wished, modifying their training set and re-training in an
unconstrained manner. Over the second five minutes,
players improvised as a group using their established
mappings, and the piece culminated with a synchronous,
conducted crescendo and decrescendo. As each player
created a more complex mapping, the sonic space
broadened to include a wider range of sounds and the sonic
palette of each player became unique. Also, each player’s
ability to play expressively grew as time went on.

In this performance, we found the Wekinator to be
useable for performers who are not ML experts. We did
explain and rehearse the necessary sequence of recording
training examples, training, running, etc., until everyone
understood well how to play the piece. One performer
improvised extensively using her controller with our

2 Video at http://wekinator.cs.princeton.edu/nets0/

synthesis algorithm outside the performance, remarking
that she enjoyed “exploring a whole new sonic space.”

The main source of confusion among performers was
the GUI options for changing NN parameters (e.g.,
learning rate); the piece did not require modifications to
these parameters, but performers were confused about their
purpose. One can imagine an alternative GUI that exposes
“parameters” that are more meaningful to the performers,
for example a slider presenting a continuum from “very
fast training” to “very accurate training.” Such a loss of
precise control may be acceptable in exchange for the
increased likelihood that performers will feel comfortable
trying out the slider and experimenting with its effects. On
the other hand, exposing the standard parameters of an
algorithm may make the Wekinator an exciting tool to
teach students about ML, allowing them to immediately
experience the effects of changing parameters.

In rehearsals and performance, on-the-fly learning was
always fast enough for real-time interaction, even for the
100 edge detection features. While this represents a
dramatic departure from typical ML applications, the
ability to learn fast and well enough to provide control is
not so surprising. First, real-time creation of the training
set results in a few hundred training examples at most, a
tiny dataset for ML algorithms designed to accommodate
thousands of points. Second, the task is focused in scope:
creating a mapping for a single performer to a single
synthesis algorithm within a single piece. This is trivial
compared to the broader problems for which learning
algorithms have been designed, for example decoding
handwritten digits written with any handwriting style, or
recognizing the face of any human in a photo. Third, the
learning is done in a somewhat subjective context, in
which it is possible to produce undesirable output (e.g., a
painfully high frequency), but where unexpected outcomes
are often acceptable and interesting. The explicit goal for
each performer throughout our piece was therefore
unrelated to traditional metrics of accuracy and generality;
performers aimed to create a mapping that was interesting
and controllable, and in that everyone was successful.
Also, the performers themselves discovered which gestures
were learnable and effective. For example, the performer
using coarse webcam edge detection learned to play using
very large gestures.

5.3 Further Evaluation and Reflection
The Wekinator is not an all-purpose mapping tool, and it is
not appropriate for creating especially simple mappings
(e.g., one-to-one) or encoding very specific and inflexible
mappings that might be better accomplished via explicit
coding of the mapping function. It will not work well if the
features are a poor match for the task (e.g., using edge
detection features to recognize subtle gestures in front of a
moving crowd). Weka’s learning methods do not
incorporate any time domain information, so classification
of moving gestures is only possible with custom features

284

that take time-domain behavior into account (e.g., sensor
deltas) or with another learning system (e.g., hidden
Markov models).

On the other hand, the Wekinator is a powerful tool for
creating mappings very quickly, for any input features and
synthesis method. And its uses go beyond mapping
creation: it seems to be a promising tool for the exploration
of large parameter spaces for synthesis algorithms such as
physical models. Also, using appropriate audio features, it
can be used for on-the-fly learning of high-level musical
concepts such as pitch, instrumentation, or style. For more
complicated learning problems of any nature, one could
use Weka’s own GUI to train a learner off-line on a larger
dataset (such as those used in music information retrieval
benchmarking [4]) then load the model into the Wekinator
to run on real-time input. Furthermore, the output of the
Wekinator could be applied to interactive video or any
other systems capable of communicating via OSC.

Future work may further improve the Wekinator for
musical contexts by incorporating the ability to constrain
which features are used to learn which outputs (e.g., to
support one-to-one and one-to-many mappings), and to
allow the use of different learning methods for different
outputs (e.g., to use a discrete classifier for one output and
a neural network for another). The ability to map certain
controller inputs to controlling the GUI itself would also
offer practical benefits for on-the-fly mapping of
controllers that require two hands.

6. Conclusions and Future Work
We have presented the Wekinator, a general-purpose
system for radically interactive, on-the-fly machine
learning for controller mapping creation and other musical
applications. Our experiences with the Wekinator have
reinforced our conviction that on-the-fly learning in music
is an exciting new paradigm that enables new performance
methods and experiences, even with relatively old learning
algorithms and synthesis methods. We look forward to
continuing to investigate the implications of this new
paradigm from the perspectives of human-computer
interaction, music performance and composition, and
machine learning.

The Wekinator is available to download at
http://wekinator.cs.princeton.edu/.

7. Acknowledgments
We thank the autumn 2008 LAP seminar participants for
their feedback. This material is based upon work supported
under a National Science Foundation Graduate Research
Fellowship. This work is also supported by a John D. and
Catherine T. MacArthur Foundation Digital Media and
Learning grant.

References
[1] G. Assayag, G. Bloch, M. Chemillier, A. Cont, and S.

Dubnov, “OMax Brothers: A dynamic tyopology of agents

for improvization learning,” ACM Wkshp. Audio and Music
Computing Multimedia, 2006, pp. 125-132.

[2] F. Bevilacqua, R. Müller, and N. Schnell, “MnM: A
Max/MSP mapping toolbox,” NIME, 2005, pp. 85-88.

[3] A. Cont, T. Coduys, and C. Henry, “Real-time gesture
mapping in Pd environment using neural networks,” NIME,
2004, pp. 39-42.

[4] J. S. Downie, K. West, A. Ehmann, and E. Vincent, “The
2005 music information retrieval evaluation exchange
(MIREX 2005): Preliminary overview,” Intl. Conf. on
Music Information Retrieval (ISMIR), 2005, pp. 320-323.

[5] J. Fails and D. R. Olsen, Jr., “Interactive machine
learning,” Intl. Conf. on Intelligent User Interfaces, 2003,
pp. 39-45.

[6] S. S. Fels and G. E. Hinton, “Glove-Talk: A neural network
interface between a data-glove and a speech synthesizer,”
IEEE Trans. on Neural Networks, vol. 4, 1993.

[7] R. Fiebrink, G. Wang, and P. R. Cook, “Don't forget the
laptop: Using native input capabilities for expressive
musical control,” NIME, 2007, pp. 164-167.

[8] R. Fiebrink, G. Wang, and P. R. Cook, “Support for MIR
prototyping and real-time applications in the ChucK
programming language,” Intl. Conf. on Music Information
Retrieval (ISMIR), 2008, pp. 153-158.

[9] A. Hunt and M. M. Wanderley, “Mapping performer
parameters to synthesis engines,” Organised Sound, vol. 7,
pp. 97-108, 2002.

[10] P. Lamere, “The tools we use,” http://www.music-
ir.org/evaluation/tools.html, 2005.

[11] M. Lee, A. Freed, and D. Wessel, “Neural networks for
simultaneous classification and parameter estimation in
musical instrument control,” Adaptive and Learning
Systems, vol. 1706, pp. 244-55, 1992.

[12] M. Lee, A. Freed, and D. Wessel, “Real-time neural
network processing of gestural and acoustic signals,”
ICMC, 1991, pp. 277-280.

[13] D. J. Merrill and J. A. Paradiso, “Personalization,
expressivity, and learnability of an implicit mapping
strategy for physical interfaces,” Extended Abstracts:
Human Factors in Computing Systems (CHI’05), 2005, pp.
2152-2161.

[14] C. Reas and B. Fry, “Processing: A learning environment
for creating interactive web graphics,” Intl. Conf. on
Computer Graphics and Interactive Techniques
(SIGGRAPH), 2003.

[15] D. Trueman and P. R. Cook, “BoSSA: The deconstructed
violin reconstructed,” Journal of New Music Research, vol.
29, no. 2, 2000, pp. 121-130.

[16] M. M. Wanderley, ed. “Mapping strategies in real-time
computer music,” Organised Sound, vol. 7, 2002.

[17] G. Wang and P. R. Cook, “ChucK: A concurrent, on-the-fly
audio programming language,” ICMC, 2003.

[18] I. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, 2nd ed. San Francisco:
Morgan Kaufmann, 2005.

[19] M. Wright and A. Freed, “Open sound control: A new
protocol for communicating with sound synthesizers,”
ICMC, 1997.

285

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Rebecca Fiebrink
	Also by Dan Trueman
	Also by Perry R. Cook
