
A Shift Towards Iterative and Open-Source Design for
Musical Interfaces

Owen Vallis1

New Zealand School of Music1
P.O. Box 2332

Wellington, New Zealand
+064 04 463 5369

vallisowen@myvuw.ac.nz

Jordan Hochenbaum1

New Zealand School of Music1
P.O. Box 2332

Wellington, New Zealand
+064 04 463 5369

hochenjord@myvuw.ac.nz

Ajay Kapur1, 2

California Institute of the Arts2
24700 McBean Parkway

Valencia, CA 91355, USA
+01 661 952 3191

akapur@calarts.edu

Abstract

The aim of this paper is to define the process of iterative
interface design as it pertains to musical performance.
Embodying this design approach, the Monome OSC/MIDI USB
controller represents a minimalist, open-source hardware
device. The open-source nature of the device has allowed for a
small group of Monome users to modify the hardware,
firmware, and software associated with the interface. These user
driven modifications have allowed the re-imagining of the
interface for new and novel purposes, beyond even that of the
device’s original intentions. With development being driven by
a community of users, a device can become several related but
unique generations of musical controllers, each one focused on
a specific set of needs.

Keywords: Iterative Design, Monome, Arduinome, Arduino.

1. INTRODUCTION
As the power of computing devices has increased, the use of
software based musical instruments has become a reality. As a
result of this, musicians often need custom hardware interfaces
to facilitate the expressive potential of these software
instruments.

The laptop already offers a plethora of interface options,
but during a live performance, the nature of the laptop’s screen
can potentially isolate the musician’s actions from the audience.
The cumulative effect of this often leaves the audience feeling
disengaged, and confused about what the performer is actually
doing. Although creative programming can enable a laptop to
provide a performer with engaging expressivity, as is evidenced
by both Hans Koch’s piece bandoneonbook1, and the
framework SMELT[4], laptops are by no means optimized for a
highly expressive musical performance.

The limitations of the laptop as an expressive musical
interface can be mitigated through the use of external devices
optimized for live performance. While there already exist a
wide variety of such hardware interfaces, many of these have a
design based off of existing acoustic instruments. These designs
are often not ideal for interfacing with the diverse set of
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME2010, 15-18th June 2010, Sydney, Australia
Copyright remains with the author(s).

1 www.hans-w-koch.net/performances/bandoneonbook.html,

Febuary 5, 2010

features, parameters, and interactions afforded by software
instruments.

One effective solution has been the development of custom
designed interfaces for musical expression. Artists such as Dan
Trueman, with the BoSSA[15], Andrew Schloss, with the
RadioDrum[10], and Curtis Bahn, with the sBass[1], have all
created new musical interfaces which allow for a high degree of
virtuosity when paired with custom software instruments. These
devices have been refined by the artist to meet their individual
needs, allowing for transparent implementation of the
performer’s musical intentions; however, this high degree of
customization also decreases the potential for augmentation of
the device by individuals other then the creator.

A contrasting approach to predefining interface behaviors
for a particular performer’s needs is to create an interface with a
selection of basic inputs and undefined behaviors. This allows
users to define their own behaviors in order to suit individual
software instrument requirements. Several commercial devices,
including the Stanton LEMUR, successfully take this approach;
however, even though the user can define the parameter
mapping and UI layout in software, the hardware and firmware
are locked away from the user community. This “closed box”
ideology leaves the device’s maturation to the developers, not
the users, potentially stunting the interface’s development.

Recently, a shift in musical interface design has been
occurring, one in which users create new iterations of an
interface, and become the driving force behind development.
The Monome2 embodies this shift towards an open-source and
iterative approach to interface design, both on the software
level, and more importantly, on the hardware level. This
approach has allowed a growing community of users to extend
the device’s original functionality over several generations of
modified devices. Analogous to basic principles in object
oriented computing, a solid and extensible foundation has
allowed users to realize new interface ideas that the original
creators may not have originally intended, at the time of the
device’s creation.

In this paper: we define iterative controller development,
and provide several generations of the Monome as examples of
this concept in practice; focus on our own specific contributions
to the Monome hardware device by detailing our Arduinome,
and Chronome (RGB/Pressure sensitive Arduinome) interfaces;
present a sampling of the vast and varied software applications
developed by both the user community, and the authors; show
how this iterative design process can lead to an extremely broad
application of the interface in performance scenarios; compare
and contrast the Monome with the Yamaha Tenori-On[12], an

2 http://monome.org, January 3, 2010

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

1

instrument designed by Japanese artist Toshio Iwai; define
inspiration based controller development, and present an
example comparing the process to an iteratively designed
device; and finally, discuss the potential difficulties of creating
an effective open and extensible device, and in doing so
illustrate how an iterative design process can lead a minimal
design to become a much more personal interface.

2. ITERATIVE DEVELOPMENT

Figure 1: Iterative development history of the Monome

We define iterative musical interface design as the process by
which a device is augmented by a single individual or a group
of individuals over a number of generations. The iterative
process may fork into separate and unique development streams
as new functionality is explored; these streams may also
converge at a later time, combining functionality from separate
streams into a new device that represents a majority of the
components, but not necessarily all components, from the
previous generation. Lastly, the schematics, firmware and
software of existing generations must all be open-source, and
freely available to the community, in order to facilitate the
creation of new generations of a device.

This process is comparable to software ideas such as open-
source development, object-oriented programming, and version
control systems. Each of these software ideas allow for
extensions of a base framework to create application specific
solutions for users. With the maturity of microcontroller
platforms such as the Arduino, analogous ideas within hardware
development have become a reality for artists.

In this section, we will show how the Monome exemplifies
iterative interface development. We will describe the original
device, and then show several new generations including the
Arduinome, Lumi, Octinct, and Chronome (RGB/Pressure
sensitive iteration).

2.1 Monome
Monome is both a two-layer uncoupled NxN device consisting
of a matrix of silicon buttons situated over a matrix of LEDs,
and the name of the company which designs and builds the
interfaces. Created in 2005 by Brian Crabtree, Monome's
minimalist design philosophy manifests in the company’s
production of interfaces that avoid complexity in order to
promote greater possible versatility. The Monome website
states that “we seek less complex, more versatile tools:
accessible, yet fundamentally adaptable. We believe these
parameters are most directly achieved through minimalistic
design, enabling users to more quickly discover new ways to
work, play, and connect. We see flexibility not as a feature, but

as a foundation.” This minimalist design philosophy is key to
the successful modularity of the interface. By limiting the input
and output components, the Monome allows a user to quickly,
and deeply, understand the interface; this greater understanding
leads to greater exploration as users begin to augment the
Monome’s functionality, and thereby increasingly customize
their connection, through the interface, to various instruments.
The vast array of user created custom applications for the
Monome interface is a testament to the effectiveness of this
design philosophy.

Even though the minimalist design of the Monome
provides a solid foundation on which to augment the
functionality of the device via software, Monome recognized
that hardware flexibility could be explored as well. Monome’s
early support for augmenting their interface with additional
analog sensors is an example of hardware extensibility being a
fundamental idea behind the interface. In addition, Monome
made the firmware for the interface freely available to the
public. This availability led to a Monome user’s firmware
modification to provide LED brightness control using PWM3.

2.2 Arduinome
As a company, Monome only supports locally sourced materials
and labor, and produce a relatively small quantity of units
annually. Subsequently, it can be difficult to purchase a unit,
and if a unit can be procured it comes at a reasonable, but
considerable price (a result of sourcing all the parts locally).
Although Monome has provided online documents explaining
how to construct an interface from scratch, the project still
requires sourcing PCBs and using expensive Atmel
programmers. Additionally, the existing firmware requires
knowledge of the C programming language to modify and add
functionality to the interface.

All of these factors were motivations for a project started
by the authors, along with the help of Monome/Arduino
community members Brad Hill, and Ben Southall, in the
summer of 2008. This project, now the Arduinome, was an
effort to port the firmware, from the custom circuit used by the
original Monome, to the readily available and affordable
Arduino microcontroller platform. The Arduino’s extensive
library, documentation, and additional I/O ports provided even
greater potential for expansion and exploration by the existing
Monome community. This potential has resulted in users adding
components as complex as fully featured LCD displays, and
multiplexed rows of continuous controllers. Monome has fully
embraced this modification and exploration by including the
Arduinome on its website. The individuals working on the
Arduinomes have given back to the Monome community not
only hardware modifications, but also open-source Monome-
compatible software creations, further extending both the
Arduinome’s and the Monome’s functionality.

2.3 LUMI
Although the LUMI[6] constitutes a major departure from
previous generations—possibly stretching its inclusion as an
iterative Monome device—it does contain a major refinement to
the Monome design. Created at Stanford in 2009, this project
added pressure sensitivity to the Arduinome through
implementing a simple and effective method described by
Adrien Freed[5]. In addition, several continuous input devices
were added, such as potentiometers, IR sensors, and a pressure
sensitive touch screen. Although this work represents a serious

3 http://post.monome.org/comments.php?DiscussionID=913,

November 20, 2009

Monome Iterations

Monome

Arduinome Octinct

Lumi
Arduinome

LCD

Arduinome

Knobs

RGB/Pressure

Arduinome

Monome

PWM Leds

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

2

extension of the Monome’s functionality, the project has not
been fully integrated by the larger user community. This could
be due to several factors, including custom firmware, custom
serial protocols, unreleased build information, or the larger user
community’s unfamiliarity with the work. It is possible that for
these reasons, the LUMI’s significant modifications have not
yet had as broad an impact on the iterative design process as
they potentially could.

2.4 Octinct
Almost as soon as the 40h model of the Monome was released,
users began to contemplate the possibility of adding RGB LEDs
to the device. One of the first successful iterations to include
this was the Octinct. Started by Brad Hill, Jonathan Guberman,
and Devon Jones, the Octinct was originally not publicly
available. In 2008, Brad Hill was given permission to make all
the code freely available and has since made several updates to
the firmware and hardware. The RGB LEDs require a
significant modification to the serial protocol in order to
facilitate the color control. For this reason, the Octinct
communicates with the host computer using a custom Python
serial application.

3. Chronome
The authors have designed a new iteration of the Arduinome
that takes inspiration from both the RGB LED support of the
Octinct, and the pressure sensitivity of the LUMI. The RGB
hardware implementation has been improved from the Octinct’s
current design, and the serial protocol for the Arduinome has
been updated to support both the RGB and the pressure data
now coming from the buttons. A key goal of the new device
was to bring both the RGB and pressure functionality into the
existing ArduinomeSerial application, while at the same time
continuing to use the Arduino platform as the microcontroller.

4. HARDWARE DESIGN

Figure 2: Arduinomes using two seperate silicon buttons

The authors have made several contributions to the iterative
designs process of the Monome, initially with the Arduinome,
and more recently with the Chronome. Both of these projects
helped expand the original device’s potential user base, and
promote further generations of design development by
providing new functionality, software, and documentation.

4.1 Arduinome Build
Both the Monome 40h schematics, and the firmware were made
available to the public when the original device was released.
This allowed individuals to source their own components and
build, or modify, the interface. With this information publicly
available, it could be asked why a port of the code to a new
micro controller platform was necessary? In response to this
question, when compared to the number of custom Monomes,
the huge number of Arduinomes built shows that there was a
need for a more “accessible” way to modify the device’s design.

The Arduino provided that access with its strong
community of builders, whom support both development and
user questions. Additionally, prior to the Arduinome, loading

firmware onto the Monome’s Atmel chip required a jtag
programmer. Although these are not difficult to acquire or use,
the level of difficulty is greater then loading firmware to an
Atmel via an Arduino, which provides a USB programmer. This
distinction between the jtag and the USB programmer is small,
but significant. Subtle differences like a USB programming port
are essential for increasing the likelihood that an individual
without prior microcontroller experience will attempt to build a
project like the Arduinome. Recently there has been great
development in tools that allow artists easier access to
technically challenging tasks such as electronics and software
programming. Projects such as Arduino4, Processing5, and
openFrameworks6 aim to provide artists with usable and
accessible tool sets for expression. The Arduino’s accessibility
made it an ideal platform on which to build the Arduinome and
has significantly contributed to the popularity of the project and
its development as an iterative controller.

Initial research revealed several existing attempts to port
the Monome to the Arduino. We found two critical components
of the build process already implemented: a detailed method for
re-flashing the Arduino’s FTDI chip with a Monome 40h-
compliant serial number, thus making it possible for the
Arduinome to be recognized by a computer as a Monome; and
an Arduino breakout PCB, which allowed for multiplexing of
the Arduino’s I/O pins to support all 128 connections on the
Arduinome (8x8 buttons & 8x8 LEDs). The authors were able
to provide the remaining component, a working port of the
Monome firmware to the Arduino platform. This new firmware
created an exact duplicate of the Monome functionality, while
creating an easy environment for adding features in the future.
Although the firmware worked, there was a difference between
the way in which the Arduino’s and the Monome’s FTDI chips
handled serial data. This difference led to a potential serial
buffer overflow, corrupting incoming data, and causing
intermittent behavior. Community member Ben Southall made
additional firmware modifications, converted the Arduino pin
calls to Atmel direct port calls, and added some Arduino
specific initializations to ArduinomeSerial, all of which
increased the Arduinome’s response/speed significantly and
eliminated the buffer issue.

Since the project was initially released to the Monome
community, significant Arduinome activity within the
community has warranted a separate and dedicated Arduinome
category in the Monome user forums. The easier access to the
firmware has provided the basis for a plethora of new firmware
modifications and off shoot projects. One remaining hurdle is
the lack of extensibility in the existing 40h serial protocol. This
makes it difficult to add completely new and novel functionality
to the current firmware without creating completely custom
versions of ArduinomeSerial. A community project is currently
underway at Monome to create such an extensible
“Multifunctional Protocol Router” allowing for this greater
growth and exploration of the device’s hardware potential.

4.2 Chronome Build
The Chronome build is a product of the RGB work done on the
Octinct, the pressure sensitivity work explored by the Lumi, and
the authors’ effort to create a new serial protocol to support this
additional functionality. We have also focused additional
research on optimizing the power consumption of the device,

4 http://www.arduino.cc/, November 20, 2009

5 http://processing.org/, November 20, 2009
6 http://www.openframeworks.cc/, November 20, 2009

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

3

and increasing the response of the pressure sensor data. Finally,
with the release of the arduino mega, the Chronome is able to
do analog multiplexing for the pressure data, and drive the RGB
LED matrix using the same TI5940 chips used in the Octinct.

5. SOFTWARE

Figure 3: Software development for the

Monome/Arduinome
Along with strong iterative hardware development, the
Monome community also creates a variety of open source
software to interface specifically with the device. The design of
these software programs parallel the iterative design process of
the hardware devices, including new software features to take
advantage of additional functionality in newer generations of
the interface. Monome community software developers actively
listen to requests from non-programming users, and implement
these ideas into new applications for the device. Although many
of these programs are not restricted to the Monome, the
applications are designed with a monome-centric mindset,
taking advantage of the decoupled matrices of the device.
Created with such programming languages as MaxMSP, Java,
Python, and Chuck, applications like MLR, Polygome, and
SevenUp-Live7 take unique approaches to utilizing the minimal
and undefined behaviors of the Monome devices. The authors
have also contributed several new applications, including a
library of functions in Chuck, a behavior-mapping utility in
Reaktor, and a Self Organizing Map visualization using the new
Chronome.

5.1 Community Software
MLR is an application originally developed by Brian Crabtree
in 2006, and has since moved through several iterations created
by both Brian and Monome users. The application takes an
audio buffer and then maps it into eight segments along a row
of the Monome buttons. As the buffer progress through the
audio, the Monome displays buffer-position by lighting LEDs
sequentially along a single row. Users can “chop” or re-
sequence the audio by pressing the buttons along the row
corresponding to the desired buffer. The program is quite
powerful, including support for several banks of audio, time
stretching, and audio effects.

Polygome is an application developed by Matthew
Davidson. The NxN grid of the Monome is used to divide up
separate pitch intervals along rows and columns. Patterns are
then defined by the user, and can be activated by holding down
buttons on the Monome. The resulting music is very
reminiscent of minimalist compositions by composers such as
Steve Riech, Phillip Glass, and Terry Riley.

While the two prior examples are fully functional stand
alone applications, both written in Max/MSP, SevenUp-Live,

7 http://docs.monome.org/doku.php?id=app

written by Adam Ribaudo, is a utility application meant to
extend the functionality of another program through the use of
the Monome. This application provides many utility functions
for seamlessly integrating the Monome with the Digital Audio
Workstation, Ableton Live. Additionally, the application allows
for basic MIDI sequencing, Ableton clip launching, control of
sliders and other track parameters, as well as a setting for
manipulating playback position of audio clips. This particular
application of the Monome provides more traditional controller
functionality than the previous examples, however it still shows
the ability for the Monome to be highly customized to a
particular user or group of users needs.

5.2 Author’s Software
While the Monome’s basic button functionality is immediately
useful to performing musicians as event actuators, the true
potential of the device is realized when the simple button
behavior is creatively extended through the use of software
programs. With this in mind the authors have created a library
of extended functions using the Chuck programming language.
This library can be used in the designing of complex behaviors
for the Monome.

While the Chuck library provides a powerful set of
functions for extending behaviors, the authors wanted an
application to provide quick, basic behavior definitions using a
simple and intuitive graphical interface. Built in Reaktor,
nomeState represents the second iteration of behavior mapping
applications written by the authors, and provides a matrix of
behavior options; each cell can define three separate button
behaviors, as well as groupings for radio button functionality.
The program also links a button press with the underlying LED
to provide visual feedback of a press event, while still allowing
access to the LED from other applications for additional
visualization data. Finally, Reaktor’s support for saving
application state provides the ability to easily save a snapshot of
any behavior configuration created.

Lastly, a SOM visualization application has been created
to explore music information retrieval research using the
Chronome; the authors, for use with multi-touch surfaces, have
already designed a similar application[3]. The application
allows user to navigate a library of audio material that has been
sorted according to similarities between the audio samples.
Several different features are extracted from each audio sample,
and then used for the comparisons. These samples are then
automatically grouped by similarities, and mapped across the
RGB spectrum in order to visualize their similarity distribution.

6. PERFORMANCE SCENARIOS
Through the application of custom hardware modifications, as
well as software development, iteratively designed interfaces
can be used in many novel ways. Due to the customization, the
Monome, and its many iterations, can be found in live
performance, installations, and pedagogical contexts.

6.1 Live electronic music performance
The Monome is an effective instrument for live performance for
several reasons. The arrangement of 8x8, 8x16, or 16x16
buttons makes for musically relevant subdivisions of material
with respect to a 4/4 time signature, although the device’s
undefined button behavior allows for mapping to any time
signature the performer would like. This potential emphasis on
time versus pitch as the delimiting factor between buttons, leads
to interesting reimagining’s of a musical material’s temporal
components. Additionally, the decoupled LED matrix acts as a
rich source of visual feedback for both the performing musician
and the audience watching the performer. Finally, the grid

Monome Software

MonomeSerial/
AruinomeSerial

NomeState7up-Live

MLR

PolyGome
SOM

Visualization

Chuck Library

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

4

layout of buttons invites musicians to explore pitch groupings
and relationships in interesting ways, e.g., allowing for 2D tonal
relationships.

Popular musicians such as Daedelus, Sahy-uhns, Tehn and
FlipMu all take advantage of the Monome/Arduinome’s ability
to visualize the physicality of their musical performance, using
this to engage the audience and create new music.

6.2 Installations
The Monome’s simple interface provides an effective solution
for intuitive interactive installation work. In 2007 artist Robert
Henke created the piece “Cyclone”, a commissioned work for
the Dis-patch festival in Belgrade, Serbia. This work centered
on a large 16x16 Monome which acted as an interface for a
surrounding circle of speakers. In 2008 the design group
Squidsoup, using two 8x8 Monomes for interaction with a 3D
visualization cube, created “The Stealth Project” installation
shown at the Ormeau Baths Gallery in Belfas. Both of these
installations used the minimal inputs available to act as an
intuitive and approachable interface to their work.

6.3 Pedagogical Interface (Theka Display)
We have developed software to for pedagogical purposes to
allow a rhythm structures to be taught to a student studying
North Indian Classical music. One of the key elements of
practicing is to keep time with a commercial Tabla Box, which
has a number of rhythmic cycles including Tin taal (16 beats),
Dadra(6 beats), Jhaap Taal (7 beats), Kherva (8 beats). We use
the Arduinome as a feedback system to give visual cues of
position in the cycle. The user can also tap in where they would
like to start the cycle, based on what they are rehearsing.

7. DISCUSSIONS & CONCLUSIONS
The Monome represents an interesting, subtle, and significant
shift in how a community of users may approach interface
design. This paper has shown how a simple minimalist design
can elicit a variety of custom uses of, and modifications to, an
interface. Instead of being a veritable “Swiss-army knife”
interface, through an iterative process of functionality
expansion, the Monome has become a custom device for many
different people, modified by users for specific needs. This
ability to modify the core functionality of the Monome is its
greatest strength, allowing for re-imaginings of the interface’s
intended use.

Contrasting the Monome with the Yamaha Tenori-On
reinforces the idea that an open and iterative design approach,
compared to a closed box design approach, can lead to greater
versatility in use. The Tenori-On was introduced by Yamaha in
2008, and like the Monome, contains a two-layer, uncoupled,
NxN device consisting of a matrix of buttons situated over a
matrix of LEDs. Unlike the Monome however, the Tenori-On’s
firmware is locked, its design specs are not made public, and
the device does not easily support hardware modifications.
When compared with the Monome, the Tenori-On has not seen
the same community of users, library of applications, or variety
of uses develop. In fact, ideas such as firmware modifications
are not even possible with the Tenori-On. Even though these
two devices share a very similar form, the history and function
of the two interfaces could not be more divergent. The Monome
has spawned a wealth of custom applications, a thriving user
community, and several major hardware iterations, while the
Tenori-On has remained an interesting and well-conceived
instrument, though unchanged in its design and fixed in its
functions.

This ability for an interface to mutate is found not only in
iteratively designed devices, but also in devices that are

designed from inspiration. Both iterative design and inspiration
based design share a process in which a device is augmented by
a single user or group of users; however, while iteratively
designed devices keep the vast majority of the preceding
generation’s design intact, inspiration based interface design
may only keep a single idea from the original device. Both
approaches are valid processes, but one may be preferable to the
other depending on the designer’s intentions—to refine an
existing device, or to create something novel. By creating
entirely novel, but loosely related interfaces—instead of
incrementally modifying them—fewer related iterations are
likely; inspiration based devices have a proclivity to be the final
realization of a device, expending no further energies towards
refinement of the design. As an example of inspiration based
development, the authors will take the evolution of musical
head based controllers.

Figure 4: Iterative vs. Inspiration based Design

The KiOm project[8] is an inspiration based design that
drew on many years of previous research from seemingly
disparate devices. Motion tracking interfaces using a variety of
sensors[13, 16], camera based head tracking interfaces[9, 11],
and experiments in the musical applications of
accelerometers[2, 7, 14] were all used as inspiration for the
KiOm. Even though some of these projects explored seemingly
separate ideas, they all shared a focus on translating natural
body movement into control sources for the manipulation of
sound. By taking small ideas from all of these individual
projects, the KiOm developers were able to create a novel
device; however, to date, the KiOm remains developmentally
fixed at the same place it was at the time the paper was written.
No community of users has sprung up around the device, no
additional functionality has been added, and no work towards
integrating updated components into the device has been
attempted. There is no doubt that the KiOm will inspire future
projects to explore and expand upon some aspect of itself, but it
seems unlikely that any further refinements will occur.

Finally, while this paper has advocated the design of
hardware without pre-defined functionality, there is a downside
to a highly programmable approach[2]. The increase in
modularity requires an initial investment to set up the desired
functionality. This allows for the user to create a custom
interface, but also creates an initial decrease in “plug-n-play”
productivity. Once the device is configured, productivity will
begin to increase as the interface allows the user an extremely
custom and intuitive device. In contrast, fixed functionality
provides immediate productivity, but very often prevents the
interface from communicating in exactly the way the user

Iterative

Monome
Arduinome

Octinct

Lumi

Arduinome
LCD

Arduinome
Knobs

RGB/Pressure
Arduinome

Monome
PWM Leds

Inspiration

KIOM

TapShoe

The
Mouthesizer

PikaPika TGarden

FaceSense

Winkler, T. Paradiso, J.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

5

desires, thus preventing as high a level of virtuosity as possible.
These two examples can be thought of as extremities of a
spectrum, onto which you can map the usability versus
customization of a device. At one end you can place sensors,
micro controllers, and software development, on the opposite
end you can place volume controls, panning knobs, filter knobs,
or any input or output device assigned to only a single task. The
Monome effectively sits over a very large area of this spectrum,
allowing for both complete hardware customization, and
immediate use. This broad usage is due to several factors
including open-source hardware/software, limited hardware
components, and a strong community involvement in the
device’s application development. The Monome represents an
iterative model in which expert users, making up a small
percentage of the user community, develop new and innovative
uses of the device, while the majority of the users benefit from
these applications and express new ideas to the rest of the
community. This community aspect may be the most important
component to the Monome’s success as an iteratively designed
interface. Although a matrix of buttons and LEDs is not a novel
idea by itself, allowing for a community to develop, modify,
and re-envision the device through an iterative process has
created a new model for open-source interface design; a model
that encompasses both basic users and advanced developers
alike.

8. ACKNOWLEDGMENTS
The authors would like to acknowledge the hard work, vision,
and openness of Brian Crabtree and Kelly Cain at Monome.
The great work of Brad Hill and Ben Southall in helping to
make the Arduinome a reality. As well as the inspiration for
these devices and ideas, stemming from the work of creative
interface designers Perry Cook, Curtis Bahn, and Dan Trueman.

9. REFERENCES
[1] Bahn, C. and Trueman, D. interface: electronic chamber

ensemble. In Proceedings of the 2001 Conference on New
Interfaces for Musical Expression. National University of
Singapore, Seattle, Washington, 2001.

[2] Cook, P. Principles for designing computer music
controllers. In Proceedings of the 2001 Conference on New
Interfaces for Musical Expression. National University of
Singapore, Seattle, Washington, 2001.

[3] Diakopolus, D., Vallis, O., Hochenbaum, J., Murphy, J.,
and Kapur, A. 21st Century Electronica: MIR Techniques
for Classification and Performance. In Proceedings of the
10th International Society for Music Information Retrieval
Conference, Kobe, Japan, 2009.

[4] Fiebrink, R., Wang, G., and Cook, P. R. Don't forget the
laptop: using native input capabilities for expressive
musical control. In Proceedings of the 2007 Conference on
New Interfaces for Musical Expression. ACM, New York,
NY USA 2007, 164-167.

[5] Freed, A. Application of new Fiber and Malleable
Materials for Agile Development of Augmented
Instruments and Controllers. In Proceedings of the 2008
Conference on New Interfaces for Musical Expression,
Genova, Italy 2008.

[6] Gao, M. and Hanson, C. LUMI: Live Performance
Paradigms Utilizing Software Integrated Touch Screen and
Pressure Sensitive Button Matrix. In Proceedings of the
2009 Conference on New Interfaces for Musical
Expression, Pittsburgh, PA USA 2009.

[7] Hahn, T. and Bahn, C., "Pikapika - The Collaborative
Composition of an Interactive Sonic Character,"
Organised Sound, vol. 7, pp. 229-238, 2003.

[8] Kapur, A., Tindale, A. R., Benning, M. S., and Driessen, P.
F. The KiOm: A Paradigm for Collaborative Controller
Design. In Proceedings of the 2006 Conference on New
Interfaces for Musical Expression, Paris, France, 2006.

[9] Lyons, M. J. and Tetsutani, N. Facing the music: a facial
action controlled musical interface. In Conference on
Human Factors in Computing Systems. ACM, Seattle,
Washington, 2001, 309-310.

[10] Mathews, M. and Schloss, W. A. The Radio Drum as a
Synthesizer Controller. In ICMC, Ohio State, Ohio, 1989.

[11] Merrill, D. Head-tracking for gestural and continuous
control of parameterized audio effects. In Proceedings of
the 2003 Conference on New Interfaces for Musical
Expression. National University of Singapore, Montreal,
Quebec, Canada, 2003, 218-219.

[12] Nishibori, Y. and Iwai, T., Tenori-on. In Proceedings of
the 2006 Conference on New Interfaces for Musical
Expression. IRCAM, Paris, France, 2006, 172-175.

[13] Paradiso, J. Wearable Wireless Sensing for Interactive
Media. In First International Workshop on Wearable &
Implantable Body Sensor Networks, London, 204.

[14] Ryan, J. and Salter, C. TGarden: wearable instruments and
augmented physicality. In Proceedings of the 2003
Conference on New Interfaces for Musical Expression.
National University of Singapore, Montreal, Quebec,
Canada, 2003.

[15] Trueman, D. and Cook, P. R. Bossa: The deconstructed
violin reconstructed. In ICMC, Beijing, China, 1999.

[16] Winkler, T. Making Motion Musical: Gestural Mapping
Strategies for Interactive Computer Music. In ICMC, San
Francisco, 1995.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

6

