
Beatback: A Real-time Interactive Percussion System
for Rhythmic Practise and Exploration

Andrew Hawryshkewich
Simon Fraser University

250 – 13450 102 Ave
Surrey, BC, Canada, V3T 0A3

+1 778.785.0746
aha50@sfu.ca

Philippe Pasquier
Simon Fraser University

250 – 13450 102 Ave
Surrey, BC, Canada, V3T 0A3

+1 778.782.8546
pasquier@sfu.ca

Arne Eigenfeldt
Simon Fraser University

250 – 13450 102 Ave
Surrey, BC, Canada, V3T 0A3

+1 778.782.6786
arne_e@sfu.ca

ABSTRACT
Traditional drum machines and digital drum-kits offer users the
ability to practice or perform with a supporting ensemble – such
as a bass, guitar and piano – but rarely provide support in the form
of an accompanying percussion part. Beatback is a system which
develops upon this missing interaction through offering a MIDI
enabled drum system which learns and plays in the user's style. In
the contexts of rhythmic practise and exploration, Beatback looks
at call-response and accompaniment models of interaction to
enable new possibilities for rhythmic creativity.

Keywords
Interactive music interface, real-time, percussion, machine
learning, Markov models, MIDI.

1. INTRODUCTION
The use of meta-creative or machine learning systems in the
imitation or generation of musical material provides possibilities
for creating music consistent with a learnt corpus. Combining
imitation and generation of musical material leads to a variety of
applications, and could include composition of music,
augmentation of performance, or simply musical material to
explore or interact with. Beatback works by combining imitative
and generative systems to create user-focused interactions in
percussion exploration, and it is designed with a focus on
encouraging rhythmic practise and exploration.

The concept of combining imitative and generative systems is not
unique. Systems such as Beatback which employ this combination
in a musically reflexive setting are more commonly titled of
Interactive Reflexive Musical Systems (IRMS). These can be
defined as musical interfaces which enable users to interact with a
virtual copy (or mirror) of themselves [1]. Working from this
definition, Beatback develops to see if it could offer any benefits
within the context of percussion practise and exploration.

The system works by taking user input from standard MIDI drum
interfaces – such as trigger pads or a digital drum kit – then learns
and generates supporting patterns for their performance. There are
two modes of interaction offered – call-response and
accompaniment – both of which are modelled off musical
performance interactions. In the call-response mode, Beatback
simply performs when the user is inactive, enabling a back-and-
forth with the system. Whereas in the accompaniment mode, the

system fills in drums the user is not playing through use of
zoning: Once a drum is struck in a preset region of the kit – such
as the toms – none of those drums sound until the user stops
striking them (discussed further in Section 3.6). It is these two
interaction modes that are being researched with the Beatback
system for their approximation of human performer interactions,
and their benefits in self-directed practise and exploration.

Within the realm of IRMS, percussion-based systems have not yet
been explored extensively, and Beatback is designed to further
research this field of interfaces. Looking at how the call-response
and accompaniment modes effect users playing on their own
provides further insight into how Beatback could benefit solitary
practise and exploration of percussion.

2. RELATED WORKS & MOTIVATION
Employing Beatback in a practise setting is meant to help explore
the possible applications and benefits in interactive reflexive
percussion in practise. Within the field of IRMS, of inspiration to
the design of Beatback is the prior work of François Pachet on the
Continuator [2], and his discussion of IRMS [1].

The Continuator [1] is a machine learning system which takes a
user's input through MIDI enabled controllers (primarily
keyboards and guitars), and generates stylistically consistent real-
time continuations based on the input. This is all achieved through
an application of Variable-Order Markov Models (VOMM) which
employ the user's previously recorded input as a learnt corpus
from which to generate continuations. Due to the nature of
VOMM (discussed in Section 3), these generated continuations
tend to be stylistically and rhythmically consistent with the user's
input as they maintain some of the musical structure of the
inputted patterns, and are generated through a stochastic
interpretation of the learnt corpus.

Similarly, Shimon and SHEILA both employ Markov models to
store and generate musical patterns based on a user's material.
While Shimon is a real-time system, focusing on the use of
Markov Models [3], SHEILA instead employs Hidden Markov
Models in a non-real-time setting [4]. Shimon demonstrates an
effective percussion interaction system, while SHEILA is an
example of effective rhythm parsing and generation.

In addition to the generation of continuations, both the
Continuator and Shimon work efficiently enough in real-time so
that users are able to interact with the system, and in essence, their
own musical material. It also provides a form of interaction that
moves the focus from just musical expression, to the interaction
itself: Rather than simply repeating patterns, those engaging the
system would be offered a means to explore their own rhythmic
expressions and practise in a reflexive manner. It is this kind of
reflexive interaction that Pachet has further explored with
Addessi. Of particular interest is the deployment of the
Continuator in a children's classroom, which demonstrated that
IRMS systems such as the Continuator generated higher levels of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

NIME2010, 15-18th June 2010, Sydney, Australia

Copyright remains with the author(s).

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

100

intrinsic motivation and focus in children, when compared to its
non-IRMS counterpart, the keyboard [5]. Both intrinsic
motivation and focus are important in supporting self-directed
learning [6], and are key research elements to demonstrating
Beatback's strengths.

3. SPECIFICATIONS
Beatback explores different models of self-directed percussion
interaction, and therefore requires the ability to generate
stylistically appropriate musical material for this interaction.
When considering the rhythmic practise and exploration context
of Beatback, it is important that the material it generates be
consistent with user input in style, and level of complexity. This
section details how Beatback works to achieve this: Starting with
an overview of its hardware, the focus shifts into a description of
how Beatback reads and stores patterns through the use of
Variable-Order Markov Models. Then discussed are the means by
which pattern generation is triggered, which is outlined along with
an overview of drum zoning, and a look at the GUI.

3.1 Overview

As outlined by Figure 1 and 2, Beatback uses any standardized
MIDI interface for input, though it is intended for drum or trigger
types of interfaces. The information from the interface is fed into
the software end of Beatback – built in Max 5 – which in turn
controls audio output for the system. The combination at
Beatback's core of MIDI and Max 5 enables the use of a variety
of samplers or synthesizers in performance and generation. This
also ensures a real-time appropriate latency not available when
working with audio signals.

Tempo in Beatback is a fixed value set by the user before
engaging with the system (Section 3.8), and can only be changed
by adjusting the value according. As parsing and output of
patterns is based on the tempo set, material learnt by the system at
one tempo can be easily shifted to another.

3.2 Parsing MIDI Data
Beatback focuses on percussion, and there are three attributes in
particular which it parses from incoming data: Note lengths,
velocity and drum type.

Note length values are assigned based upon entry delay between
notes, or the temporal distance between two note-on events.
Beatback is able to measure these distances based on a tempo set
by the user (see Section 3.8), and there are eleven possible note-
lengths varying from the maximum of a half-note to a minimum
sixty-fourth note (see Table 1 for list). Since note lengths are
based on the distance between two notes, there is also an
additional value of zero, for when two notes sound together.
Velocity is taken in as raw data from the MIDI device and is then
quantized into one of eight regions (detailed in Table 1 below).
The drum type value is simply a pitch value from the MIDI
controller.

Table 1: Quantizing of attribute values.
Attribute Quantizing Regions
Note length 1/2, 3/8, 1/4, 3/16, 1/8, 3/32, 1/16, 3/64, 1/32,

1/64, 0
Velocity 0-15, 16-31, 32-47, 48-63, 64-79, 80-95, 96-111,

112-127
Drums Up to 12 definable drums (MIDI note values)

3.3 Pattern Input & Learning
As the user plays, the three attributes collected come in as a
stream of sequential data. Each note played is read and stored as a
combination of the three attributes – drum, velocity, length – and
when it comes time for storage, all three are stored together.

Given that the user's input is always being listened for by
Beatback, the duration and frequency at which it takes in patterns
to be broken down is important. Once every bar, the system will
take the patterns input by the user and break them down for
storage. In addition to reading once every bar, there is also a
maximum of 64 notes played before the system will automatically
store the pattern, which is simply to prevent excessively long
patterns from being stored in the table. It is also technically
unlikely that 64 notes will be played in one bar under normal
circumstances.

3.3.1 Markov models
In the input and learning of patterns, Beatback uses Variable-
Order Markov Models (VOMM) that are probabilistic models in
which the state of a process is described by a single discrete
variable whose possible values describe all the states of the
world [7]. As an example, a common system which functions
similarly to how Markov models do is the T9 predictive text
system available on most cellphones: As you start to input letters,
the system begins narrowing down the possibilities and provides
you with the most probable complete word for your set of letters
[8]. In the case of Beatback, the complete set being described is
the body of patterns being learnt, with the variable being the
combined attributes – drum, velocity, length – of the notes. Each
set of notes (or pattern) is stored in a table which lists the input
and output patterns, and the number of times they have
transitioned. The transition probabilities are calculated in the
query phase, and are based on the number of transitions that have
occurred.

An important distinction between different types of Markov
models is the order of the model, which defines how many
previous states are considered when computing the probability of
future states. In a VOMM, the length of the chain – or in this case
pattern – can vary based on the input. This is important musically,

Figure 1: The system setup.

Figure 2: The MIDI trigger pad and input data.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

101

as it can consider complete musical patterns of varying lengths, as
opposed to fixed-order Markov models, which can only consider a
fixed length of input pattern [9]. For example, if given a transition
of A to B to C to D, or for this paper's purposes {A,B,C,D}, a first
order Markov model will consider on one prior state, and would
consider only {B} given {A}, {C} given {B} and so forth. A
second order Markov model would result in transitions such as
{C} given {A,B}, providing two orders leading to the next value.
Beatback draws on the benefit of variable-order Markov models
to store all subdivisions of a pattern, while maintaining the
original content. Doing so with the previous example would yield
transitions such as {B,C,D} given {A}, {C,D} given {A,B} and
{D} given {A,B,C}. The pattern itself is not further broken down
into smaller portions such as {B,C} given {A} as this begins to
remove it further from the musical context of the user's input.

3.3.2 Pattern storage
Presume that the user has input some notes, for which the drum-
velocity-length attribute groups are: Kick-60-0 (same time as),
Snare-81-1/4. Hi-hat-50-1/8, Crash-68-1/2. Using Table 1 on the
prior page to quantize the values, the resulting pattern is {K-4-0,
S-6-1/4, H-4-1/8, C-5-1/2}, or {K,S,H,C} for short. Assuming
that the bar has just finished and triggered storage, these notes are
taken into Beatback inclusion in the pattern table, detailed below.
The system reads the pattern of {K,S,H,C} for storage and
separates it into a series of possible in-out combinations which
show all the possible starting and ending chains for the pattern.
This results in three transitions for the system to store: {S,H,C}
given {K}, {H,C} given {K,S} and {C} given {K,S,H}. As show
in Figure 3, the drum-velocity-length groupings are stored
together in the table, to ensure they are kept associated for
generating output. Once stored in the pattern table, the number of
times the transition has occurred is updated, in this case to one
time each. The calculation of probabilities in Beatback occur

during the querying stage of pattern generation (Section 3.4).
One other important item is how notes that sound together are
listed in the pattern. As shown in the example, the kick drum has a
length of zero, meaning that it should sound at the same time as
the next drum, the snare. When parsing input, Beatback ensures
that when two drums sound together, the drum assigned a zero
length comes first. The priority for zero-length notes is as follows:
Kick, snare, hi-hat, hi-tom, mid-tom, low-tom, crash, and ride.

Now having input one pattern into the table, assume that the next
pattern is played by the user and read by the system to be: Kick-
49-0, Snare-88-1/4, Hi-hat-58-1/4, Crash-72-1/2. Again
referencing the quantization table, this results in a pattern of {K-
4-0, S-6-1/4, H-4-1/4, C-5-1/2} or {K,S,H,C} for short. Now the
short-form of this pattern is the same as the prior, but the length of
the hi-hat note in this pattern is different from the prior. As a
result, the table needs to reflect this difference (Figure 4).

Note that even though the drum type pattern was the same, the
length of the notes require Beatback to generate new columns and

rows to accommodate the new transitions. This ensures that the
original rhythms are kept intact even though certain elements of
the pattern may be the same. The one exception in this case is
with regards to velocity ranges: given two patterns that match in
everything except velocity ranges, the transitions will reflect the
same pattern being played, though the velocity values will be an
average of the preexisting and new velocity value. Having
established a pattern table to work with, albeit small, Beatback
can now continue and use the learnt information to begin
generating patterns.

3.4 Pattern Generation
Pattern generation occurs at the end of every bar. The only point
at which Beatback is not generating patterns is when the user first
starts the system, as it will not have any learnt material. Once
there is material though, Beatback will generate patterns in two
stages: Query and build.

In the query stage, the last pattern input (the last bar) by the user
is used to query for possible patterns into which to transition.
Assume that the last pattern input by the user was Kick-57-1/4
then Snare-84-1/4, {K-4-1/4, S-6-1/4}, shortened to {K,S}.
Beatback will try and locate exact matches in the table to see if
they exist. Working from Figure 5 (on the next page), there are no
exact matches for the full set of drum-velocity-length attributes,
so the system removes the velocity attribute and searches again
for {K-1/4, S-1/4}. In this case there are still no matches, so
Beatback would remove the length attribute, and search for just
the drum types {K,S}. As shown in Figure 5, there are two
possible matches, so probabilities are calculated. Given {K,S},
there is a 66% chance of transitioning into {H-1/8,C-1/2}, and a
33% chance of transitioning into {H-1/4,C-1/2}, which are then
taken into consideration during the build stage.

The build stage uses the probability distributions of possible
transitions identified during the query stage and begins to build a
pattern. Continuing from the earlier example of {K,S}, one of the
possible transitions is stochastically selected from the weighed
options, and added to the end of the initial pattern. Let us assume
that given {K,S} the less probable transition of {H-1/4,C-1/2}
was chosen, which means {K,S,H-1/4,C-1/2} is formed, and the
new pattern is output by the system. Beatback then returns this
pattern to the query stage only to discover that the new pattern is
not in the table. With no listing for {K,S,H-1/4,C-1/2} in the
table, the system will start looking again at the sub-patterns off
which to build.

Figure 4: Second pattern read is added.

Figure 3: First pattern read and stored.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

102

It is important to note that when looking for a transition in the
initial query stage, Beatback will take values from the end of the
chain if it cannot find entries. In the example, had the system
been unable to find entries for {K,S}, it would search for only
{K}. Once the initial query stage has passed and a transition has
been built onto the original pattern, the removal of values occurs
at the beginning of the chain. This is done to prevent the system
from always selecting similar transitions as the end of the pattern
is the constantly changing element while the system builds the
pattern. Resuming the prior example, when {K,S,H-1/4,C-1/2} is
not found in the table, Beatback would first remove the length
values, and search again for {K,S,H,C}. Search would then repeat
with values being removed from the beginning of the pattern until
a match is found: None of {S,H,C}, {H,C}, {C} have any
transitions associated with them, so at this stage, Beatback would
randomly choose a transition from its table to build onto the
original pattern.

There are most commonly very few entries near the beginning of
the learning process, so random choices will happen most
frequently early on. Once the user has input a variety of patterns,
the likelihood of having to chose completely randomly diminishes
drastically, and output can proceed smoothly.

3.5 Output
As has been discussed, there are two main interaction modes in
Beatback: Call-response and accompaniment, which as their
names suggest, either respond to inputted patterns or accompany
them. In both cases, Beatback begins output after two beats (half a
bar) of user inactivity, which is referred to as the output delay.
This means that the system's ability to generate material based on
the user's input is always two beats behind their performance.

With call-response, once the user has stopped playing and the
output delay has transpired, the system will output the generated
patterns until the user starts to play again. As soon as the user
starts playing again, the system stops.

The output of the system in the accompaniment mode is the exact
same as that of the call-response mode, but the output – coupled
with the drum-zoning feature (Section 3.6) – filters out the drums
that the user is playing. The idea with the accompaniment mode is
to support tentative users or to cue possible other rhythmic
patterns for the user to explore.

In both modes, the actual output of the system is MIDI data which
is sent back to the digital drum-kit's built in sample-bank. Though
this data could easily be sent back to a synthesizer, sampler or
otherwise.

3.6 Drum Zoning
Perhaps the most significant yet simplest addition to Beatback is
the concept of drum zoning. In the zoned system, each drum zone
(see Figure 6) can be filtered out by the system when it receives
user input within that zone. This enables the system to only fill in
drums not being played by the user. While Beatback is preset to
use the drum-zoning model listed below, the user can assign their
own zoning should they see fit.

Beatback is set up to work with a digital drum-kit, so the model
used for zoning it is as follows: The set of cymbals, the toms, the
snare, the kick and the hi-hat are all assigned separate zones. As
long as the user does not play within a zone, any of the drums
within that zone can be played by the system. When the user
strikes a drum within a zones – for example the floor tom – none
of the drums in that zone – the high, mid and low toms – will
sound until the user has not played within that zone for two beats.

The one important contingent for playing an accompaniment in a
given zone is that the user has to have played patterns within that
zone before. To maintain respect for the users inputted material,
Beatback does not take patterns learned with one drum and
associate them with another. Therefore to have Beatback play the
hi-hat while the user plays the snare, the user first has to play the
hi-hat. Then, once the system has learnt how to play the hi-hat, the
user can play along with the snare.

Drum zoning offers support to the user when they are playing or
learning new patterns. Users could easily load a pattern, and then
learn the pattern drum by drum – having the system continue to
play the missing parts – until they are comfortable with the entire
pattern. Zoning also offers the potential of auditory suggestions in
interaction: Beatback could be continuously cueing users with
their own musical material on the non-engaged drum zones. This
sort of interaction is key to accompaniment which engages and
supports the user with their own material while they are
performing themselves. The further development of a reflexive yet
supportive performance system offers another way of cueing self-
directed musical exploration.

Figure 6: Drum-zones.

Figure 5: After some further input, {K,S} has a transitioned
twice into {H-1/8,C-1/2} and once into {H-1/4,C-1/2}

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

103

3.7 Pattern Storage & Loading
In addition to the ability to learn patterns from user input,
Beatback also offers the ability to play along with pre-recorded
drum tracks, and to save and load prior sessions. To enable this
functionality, Beatback simply encodes and saves the table data –
the stored patterns – into a file which can be saved and sent to
others. This can be beneficial for users who would like to trade or
learn patterns. Learning from a set of drum patterns through
zoning enables interactive practise of the pattern, piece by piece.

3.8 The GUI
The GUI for Beatback includes a basic pad-based visual cueing
for when a drum pad is struck by the user or the system. A similar
visual model using a standard drum-kit is designed to allow for an
appropriate visual-to-physical relationship when using a digital
drum-kit. In addition to this visual feedback, the GUI allows the
user to select different sets of sounds, switch between interaction
modes, set tempo, and the zoning of drums.

As seen in Figure 7, there are twelve pads or drums available to
the user, a metronome in the top left, and the interaction controls
below. Each pad has a switch which enables it to learn a MIDI or
keyboard assignment, along with a zone and drum sound setting.
In the drum-kit version of the GUI, the zones are preset and the
drum-kit will be graphically represented in the GUI itself.

As a final note, users do not engage the GUI during research
(Section 4). This is of relevance with regards to IRMS, as Pachet
discusses that the lack of GUI interrupting the user makes the
Continuator successful as a interactive system [1]: With no other
visual stimuli (GUI) present apart from the instrument, the user
only has the interface itself to focus on.

4. EMPIRICAL STUDY
As Beatback has been designed for use in rhythmic learning and
exploration, the first step in research looks at those who have little
to no experience with a drum-kit. In particular, it looks at two
different contexts under which they may interact with the system
– practice or exploration – and the affordances or benefits offered
by the different accompaniment modes. Described below are the

results of some early research, and proposed future research. As
this paper focuses on detailing the system, this section only
provides an overview of results and directions. The underlying
interest in furthering this research is to look at how and why
Beatback and drum-kit zoning may benefit rhythmic practise and
exploration.

4.1 Drum-kit Zoning Research
Under the context of rhythm practise, Beatback offers a system
with which users could engage in self-directed learning. Self-
directed learning is a model of learning where the student
motivates themselves to learn and develop a skill alone [10].

Using this context for learning, the early research looks solely at
drum-kit zoning with naive percussionists, or individuals with ten
hours or less behind a drum-kit. In the study, participants are
introduced to the drum-kit, and given two tasks with which to
practise a pattern. For one task, the pattern plays continuously in
the background, while for the other task, drum-zoning is applied
to their playback. During the task, each participant's performance
was recorded as MIDI data, and after each task, they were given a
brief – statistically validated [11] – questionnaire on their intrinsic
motivation questionnaire to assess perceived enjoyment, tension
and competence [12].

Understandably, the majority of participants felt less enjoyment
and more tension with drum zoning enabled. Having never played
the drums before, many participants felt further overwhelmed
when drums would be removed from the pattern as they played
them. At the same time, participants felt more confident overall
when working with zoning.

The next step in looking at zoning will be with skilled
percussionists. In particular, it is expected that the heightened
tension and lower enjoyment found in naive percussionists will be
reversed for skilled percussionists.

4.2 Future Rhythm Exploration Research
The assessment of exploration of rhythm will focus much more on
the use of Beatback in a reflexive musical manner. Using the call-
response and the accompaniment modes, this portion of the

Figure 7: The GUI for Beatback.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

104

research will assess how both effect the rhythmic exploration of
users.

Similar to the drum-kit zoning research the rhythm exploration
research will look self reports of motivation, competence and
tension (elements of intrinsic motivation), and the timing
accuracy and complexity of the users' performance. Although in
the context of timing and complexity, the research in this case will
focus more on how the system effects the user's exploration of the
two elements. Looking at whether or not the user spends a
significant amount of time exploring different types of timing and
complexity in rhythm or if they fall into a common pattern will
help to understand how a system such as Beatback influences
rhythmic exploration.

5. FUTURE WORK
Beatback and it associated research presents an early work which
may be beneficial in fostering exploration and engagement in
musical creativity. In particular, the assessment of two interaction
styles in a different context from the usual self-directed modes
could positively inform how to further software based systems for
supporting musical creativity or musical learning.

Again, Beatback is only one example of an interactive rhythmic
system, and there are a variety of directions for exploring
interaction, augmentation and rhythmic creativity. Possible
avenues of future development include:

1) Multi-agent interaction: Explore using Beatback with
more than one user or system simultaneously. It would
be of interest to see how interaction occurs between the
two users performance while mediated by Beatback.

2) Develop drum augmentation: In addition to developing
a more full-featured GUI and set of controls, enabling
further reading and interpreting of other types of MIDI
data such as aftertouch [13] and enhancing velocity
sensitivity could offer more control. This could also be
of benefit to more professional drummers, looking to
augment their own performances.

3) Explore richer accompaniment: As Beatback is already
capable of being tied to MIDI generated music, research
into whether the call-response and accompaniment
interaction modes would be enhanced with an ensemble
accompaniment would be valuable.

6. CONCLUSION
Beatback demonstrates a system capable of generating live
rhythmic responses based on a user's input, and offers a new
realm of research into rhythmic exploration and practice. By
looking the contexts of rhythmic practice and exploration with the
two interaction modes of call-response and accompaniment,
Beatback looks to explore how these models may benefit user
engaging rhythm. The proposed research of this system will offer
further insight into if and how these models of interaction benefit
self-directed percussion practice.

7. ACKNOWLEDGEMENTS
The authors would like to acknowledge the financial contributions
of the Natural Sciences and Engineering Research Council of
Canada which have made this paper and research possible.

8. REFERENCES
[1] Pachet, F. Enhancing Individual Creativity with Interactive

Musical Reflective Systems. Musical Creativity: Current
Research in Theory and Practice, Deliege, I. and Wiggins,
G, Ed. Psychology Press: London, England, 2006, Section 7.

[2] Pachet, F. The Continuator: Musical Interaction With Style.
Journal of New Music Research: 32(3), 2003, 333-341.

[3] Weinberg, G., Raman, A. and Mallikarjuna, T. Interactive
Jamming with Shimon: A Social Robotic Musician. In
Proceedings of the 4th Human-Robot Interaction Conference
(HRI '09), La Jolla, USA, Mar. 11-13, 2009, 233-234.

[4] Tidemann, A. and Demiris, Y. (2008). A Drum Machine That
Learns to Groove. Proceedings of the 31st annual German
conference on Advances in Artificial Intelligence (KI '08),
Heidelberg, Germany, Sept. 23-26, 2008, 144-151.

[5] Addessi, A. R. Interactive Reflexive Musical Systems for
Music Education. In Proceedings of the 1st International
Technology, Education and Development Conference
(IATED '07), Valencia, Spain, Mar. 7-10, 2007.

[6] Fredericks, J. A., Blumenfeld, P. C. and Paris, A. H. School
Engagement: Potential for the Concept, State of the
Evidence. Review of Educational Research: 74(1), 2004,
59-109.

[7] Russell, S. J. and Norvig, P. Artificial Intelligence: A Modern
Approach. 2nd Edition. Pearson Education, Inc.: New Jersey,
USA, 2003.

[8] Dunlop, M. D. And Crossan, A. Predictive text entry
methods for mobile phones. Personal and Ubiquitous
Computing: 4(3), Jun. 2000, 134-143.

[9] Ching, W. K. and Ng, M. K. Markov Chains: Models,
Algorithms and Applications. Springer Science + Business
Media, Inc.: New York, USA, 2006.

[10] Knowles, M. S. (1975). Self-directed learning: A guide for
learners and teachers. Cambridge Book Company: London,
England, 1975.

[11] Tsigilis, N. And Theodosiu, A. Temporal Stability of the
Intrinsic Motivation Motivation Inventory. Perceptual and
Motor Skills: 97, 2003, 271-280.

[12] University of Rochester. Self-Determination Theory,
Retrieved March 4, 2010, from
http://www.psych.rochester.edu/SDT/measures/
IMI_description.php

[13] MIDI Manufacturers Association Incorporated. (n.d.). MIDI
Message Table 1, Retrieved January 17, 2010, from
http://www.midi.org/techspecs/midimessages.php

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

105

