
DRILE: an immersive environment for hierarchical
live-looping

Florent Berthaut
University of Bordeaux -

SCRIME - LaBRI
berthaut@labri.fr

Myriam
Desainte-Catherine
University of Bordeaux -

SCRIME - LaBRI
myriam@labri.fr

Martin Hachet
INRIA - LaBRI

hachet@labri.fr

ABSTRACT
We present Drile, a multiprocess immersive instrument built upon
the hierarchical live-looping technique and aimed at musical per-
formance. This technique consists in creating musical trees whose
nodes are composed of sound effects applied to a musical content.
In the leaves, this content is a one-shot sound, whereas in higher-
level nodes this content is composed of live-recorded sequences
of parameters of the children nodes. Drile allows musicians to
interact efficiently with these trees in an immersive environment.
Nodes are represented as worms, which are 3D audiovisual ob-
jects. Worms can be manipulated using 3D interaction techniques,
and several operations can be applied to the live-looping trees. The
environment is composed of several virtual rooms, i.e. group of
trees, corresponding to specific sounds and effects. Learning Drile
is progressive since the musical control complexity varies accord-
ing to the levels in live-looping trees. Thus beginners may have
limited control over only root worms while still obtaining musi-
cally interesting results. Advanced users may modify the trees and
manipulate each of the worms.

Keywords
Drile, immersive instrument, hierarchical live-looping, 3D interac-
tion

1. INTRODUCTION
In the past decade, the live-looping technique has become more

and more used in musical performances, either for solo singers
who create their accompaniment or for instrumental or electronic
improvisations. However, it has some limitations due to the use
of hardware controllers, such as the impossibility of creating and
manipulating complex musical structures or the impossibility of
modifying all the parameters of recorded loops. We believe that
3D immersive environments can support the evolution of this tech-
nique into a more advanced system for musical performances. In-
deed these environments provide interesting possibilities for 3D
interaction with multiprocess instruments, i.e instruments that are
composed of several sound synthesis processes. They also enable
new way of building, visualizing and navigating complex musical
structures as 3D shapes. Immersion, e.g using large stereoscopic
displays, may be as valuable for the audience as it is for musicians.
For example, comprehension of what musicians are doing and in-
volvment in the musical performance may be improved by the use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME2010, June 15-18, 2010, Sydney, Australia
Copyright 2010, Copyright remains with the author(s).

of stereoscopic vision and large screens. Finally, these immersive
environments are often used in other fields for collaborative tasks,
and thus they may be appropriate for collaborative musical perfor-
mance.

In section 3, we describe an evolution of the live-looping tech-
nique, called hierarchical live-looping technique. Then, in section
4, we present Drile, our immersive musical instrument which re-
lies on this technique. As it can be seen on figure 1, the musician
wears 6DOF tracked stereoscopic glasses, and he interacts with the
instrument, displayed on a large screen, using the Piivert input de-
vice. We define the components of our instrument in section 4.2,
then we describe how we represent and interact with the 3D live-
looping trees in section 4.3. Finally, we present the live-looping
scenes in section 4.4 and the collaboration/learning possibilities
brought by our approach in section 4.5.

Figure 1: Drile used by one expert musician.The live-looping
scene contains a three-level tree on bottom left, a two-level tree
on top right, 1 leaf node/worm and 2 tunnels(scattering/reverb
and color hue/pitch).

2. RELATED WORK

2.1 3D Virtual Instruments
Many existing immersive instruments focus on navigation in

musical environments, like the virtual groove in the Phase project
[10] or the audiovisual grains in Plumage [3]. These applications
allow musicians to play precomposed musical structures, but they
do not give access to the structure of the synthesis processes.

Other immersive instruments are single process instruments, i.e.
instruments that allow to interact with only one synthesis process,
such as the Virtual Xylophone, the Virtual Membrane, or the Vir-
tual Air Guitar developed by Mäki-Patola et al. [4] and the sculpt-
ing instruments developed by Mulder [6]. The application devel-

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

192



oped by Mike Wozniewski et al. [12] relies on users movements
to either control the spatialization of pre-recorded sound sources,
or apply effects on the sound of an accoustic instrument. All these
applications aim at being ordinary instruments, with more control
over synthesis processes than navigation tools, that one may use
for musical performance. However, they do not take advantage of
the possibilities brought by 3D environments in terms of multiple
processes handling and structures creation.

An interesting application designed by Polfreman [8] takes ad-
vantage of 3D environment to build complex musical scores in-
cluding hierarchical organisation of elements. Nevertheless it is
not designed for musical performance but rather for composition.

2.2 Live-Looping
Live-Looping is a musical technique that consists in recording

musical loops from an audio or control(e.g MIDI messages) in-
put and stacking these loops to quickly build musical structures
or sound textures. It has several advantages over other electronic
playing techniques such as triggering sequenced loops, or apply-
ing effects to different tracks of a prepared song. First of all, there
is usually no temporal quantization so it enables more natural mu-
sical patterns as opposed to midi sequences. It may fit any musical
genre since any musical input and any time-signature can be used.
Finally, one can rely on prepared loops or improvise every part of
a musical structure. It is mostly used for live performances by dif-
ferent instrumentalists such as guitar players, beat-boxers, or elec-
tronic musicians1. It is also an interesting tool for music writing,
allowing quick sketching of songs.

Live-Looping originates from tape-delay systems and was ex-
plored by contemporary composers such as Terry Riley or Steve
Reich. This looping system was then implemented in hardware ef-
fects racks or guitar pedals as the Gibson Echoplex, Digitech Jam-
man, Boss RC20 and so on. Usual operations include record, play
and stop/mute. One can also overdub, i.e add material to an exist-
ing loop, multiply the length of a loop, and reverse a loop. Live-
looping has evolved with digital loopers, such as Sooperlooper2 or
Freewheeling3, which include new possibilities such as synchro-
nization, timestretching, graphical interfaces and so on.

Most live-looping systems deal with audio input, so that the
loops are audio buffers. However, some of them, such as LiveLoop4,
deal with control inputs, such as MIDI or OpenSoundControl mes-
sages or other events. They record and playback series of events,
which may be either sound triggers or synthesis/effects parameters
controls. This control live-looping has many advantages over au-
dio live-looping. First of all, loops can be easily modified since
each event is separable. This enables timestretching and addi-
tion/removal of events. Notes and effects controls may be recorded
independently, so that they can be modified separately. Finally the
same recorded loops can easily be rerouted on different synthesis
processes.

Some novel instruments are based on live-looping. For exam-
ple, the BeatBugs [11] are small input devices that record rhythms
played by users and repeat them. Recorded rhythms can then be
modified and several devices can be synchronized, enabling col-
laborative musical interaction. Another very interesting applica-
tion is Fijuu [7], in which users manipulate 3D audiovisual shapes
using a gamepad. Each shape is associated with a specific sound
synthesis process which is triggered when the shape is distorted.
Audiovisual effects can also be applied on produced sounds and
audio loops can be recorded for each shape. These loops can then
be accelerated, muted and amplified. However, creation and mod-
ification of musical structures remain limited, as well as the inter-

1http://www.livelooping.org/
2http://www.essej.net/sooperlooper/
3http://freewheeling.sourceforge.net/
4http://code.google.com/p/liveloop/

action possibilities.

3. HIERARCHICAL LIVE-LOOPING
Basic live-looping does not enable the creation and manipula-

tion of complex musical structures, but only lists of recorded se-
quences. It also reduces the possibilities of advanced modification
of recorded loops, especially when the content is audio data. We
propose to expand the advantages of control live-looping with what
we call hierarchical live-looping. The tree structure used in hier-
archical live-looping is based on the study of Marczak [5]. This
section focuses on the concept of hierarchical live-looping while
section 4 describes its implementation as a 3D immersive instru-
ment.

3.1 Principle
We define live-looping trees containing leaves l :< cl, x > and

nodes n :< ch, c, x >. x is a list of audio effects. cl is a one-shot,
i.e no sequences or loops, musical content which can be a soundfile
or another synthesis process. ch is a list of children nodes. c is a
musical content composed of live-recorded sequences of children
events. These events are effects parameters and triggers of the mu-
sical content. The audio effects available for all nodes are pitch,
volume, distortion and reverb. In addition to these audio effects,
the tempo of sequences can be modified, and other high-level mu-
sical effects could be added. Each node and leaf also has a content
play mode, which can be trigger, i.e the content is played until its
end, normal, i.e the content is played until its end or the reception
of a stop event, and loop, i.e the content is looped until it receives
a stop event. The loop mode is not used for leaves,

Control and audio data follow different paths in hierarchical
live-looping. Control data go top-down the tree because nodes
contain their children sequences. Audio data go bottom-up the
tree, which means that the sequences of sounds contained in the
leaves will be successively modified by the effects of their parent
nodes. The audio and control data flows and the structure of a
live-looping trees can be seen on figure 2.

Node2

Node1

Leaf1 Leaf2

Sound1

Effects

Sound2

Effects

Sequences1

Effects

Sequences2

Effects

Audio Output Control Input

Hierarchical Live-Looping

Input (Audio/Control)

B
uf

fe
r3

B
uf

fe
r2

B
uf

fe
r1

B
uf

fe
r4

B
uf

fe
r5

Basic Live-Looping

Figure 2: Basic live-looping data flow (left) and hierarchical
live-looping control (in black) and audio (in red) data flows.

Hierarchical live-looping has several advantages over traditional
live-looping approaches. First of all, it allows musicians to build
musical sequences of any complexity by creating and manipulating
trees. A simple example can be seen in figure 3.

It also provides direct access to any level of the trees. One may
trigger only the snare or kick to produce a fill, or the drums node
to completely modify the rhythm. Effects can be applied to any
node independently, whether they are leaves or high-level nodes,
in which case the effects will affect all their children. For exam-
ple one may filter all the drums by modifying the drums node, or

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

193



Hip-Hop
Loop

Bass
Drums
Loop Scratch

SnareKick Hi-Hat

Figure 3: Hip-Hop live-looping tree example.

pitchshift only the hi-hat.
Live-looping trees also adapt to user with different levels of ex-

perience. Beginners can play with tree roots, thus triggering musi-
cally interesting parts and applying simple effects to it. Advanced
users can go down the tree and manipulate each node. They may
change any sequence by re-recording it, or modify the effects as-
sociated to the different nodes.

Furthermore, advanced users can easily collaborate to build mu-
sical structures. For example, they may add nodes to existing trees,
or duplicate nodes to remix loops prepared by others.

Finally, several live-looping trees can coexist, allowing musi-
cians to experiment with non-synchronized loops. This may be
useful to create complex sonic textures.

3.2 Node operations
Two operations are available for the nodes. Nodes content can

be triggered, and nodes audio effects can be modulated. Trigger-
ing a leaf node will play its sound whereas triggering a higher-level
node will play its sequences of events and parameters. Audio ef-
fects parameters can also be modified. In leaves, this will directly
affect the musical content, i.e the audio file, whereas in higher-
level nodes it will affect the resulting audio output of all children.
Musical effects, such as tempo modification, affect higher-level
nodes sequences.

3.3 Tree operations
We propose a set of operations for the live-looping trees, which

are shown in figure 4: build, merge, duplicate, extract.

Node1

Leaf1

Leaf1 Leaf1

Build

Record Create

Node 1

Leaf 1

Node 2

Leaf 2

Node 1

Leaf 1 Leaf 2

Merge

Node1

Leaf1 Leaf2

Node1

Leaf1 Leaf2

Leaf2

Duplicate

Node1

Leaf1 Leaf2

Node1

Leaf1

Leaf2

Extract

Figure 4: Hierarchical live-looping operations.

The build operation has two steps. The first step starts the record-
ing of the events of a node. The second step stops the recording,
creates a parent node and define the recorded sequences of events
as its content. The playing mode of the parent content is automat-
ically set to loop so that its children sequences keep playing, as it
would occur with a traditional live-looping application. The play-

ing mode can then be changed to trigger or normal. When a build
operation is performed on a node that already has a parent, this
operation simply records sequences over existing ones.

The merge operation consists in linking two trees by merging
two parent nodes into a single parent node. The oldest sequence
of these nodes, i.e the one which was recorded first, is taken as
a pulse. Another sequence could be chosen as the pulse, but the
usual playing technique in live-looping is to first record the pulse,
then the other loops. All the other sequences are then synchronized
to multiples of this pulse according to their length, as depicted in
figure 5.

Node1

Node2

Node3

Node4

Node1

S1

S2

S3

S4

S1

S2

S3

S4

Merge

Figure 5: Example of sequences synchronization when merg-
ing several nodes. Here the oldest sequence is S1.

Thus the parent node synchronizes all its children together, which
allows musicians to build regular rhythms. The build and merge
operations can be combined if multiple sequences are recorded at
the same time. In that case, all simultaneously built parent nodes
are merged into a single node. One must note that this operation
is not possible if both nodes have parents, since it may lead to too
much changes in the live-looping tree.

The duplicate operation consists in duplicating a part of a live-
looping tree. This is a useful operation because hierarchical live-
looping results in nodes being locked to their parents content, as
one node can not have two parents, for musical structure under-
standing reasons. Thus nodes can not be used in two different
sequences at the same time. Using the duplicate operation, one
can copy a node in order to use it to build another sequence, with
different effects parameters for example.

With the extract operation, one may remove any node and its
children from a live-looping tree, making it the root of a new tree,
or a leaf if it has no children.

3.4 Implementation
Hierarchical live-looping adds new theoretical possibilities to

basic live-looping. However, its relevance heavily depends on its
implementation. Indeed operations on trees and manipulations of
nodes need to be efficient. 3D immersive environments provide
new possibilities in terms of interaction, visualization and immer-
sion. They are thus fitted to the control of complex musical struc-
tures, especially in a performance context.

4. DRILE
Drile implements the hierarchical live-looping technique in a

3D immersive environment. In this implementation, leaves con-
tain multisampled sounds which can be played normally or using
granular synthesis. Live-looping trees are represented by 3D vir-
tual structures. Musicians interact with these structures in front of
a large screen. They are immersed in the 3D environment thanks
to stereoscopic glasses and head-tracking. A video of Drile can be
watched on http://vimeo.com/9206485.

4.1 Technical setup
Drile is composed of three applications which run on Gnu/Linux:

drile-audio, drile-ui and drile-ui-display. Drile-audio handles the

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

194



sound processes and it outputs audio via the Jack sound server.
It also uses LV2 audio effects plugins, and VAMP audio analy-
sis plugins. Drile-ui handles the scene graph of the 3D environ-
ment. They may run on two separate computers and communi-
cate via OpenSoundControl messages. The stereoscopic display is
done by two instances of drile-ui-display synchronized with drile-
ui and connected to separated projectors, one for each eye. In addi-
tion, one user (or several with split screens) can be equipped with
tracked glasses, to improve immersion and interaction with the en-
vironment. Users wear passive stereoscopic glasses and the sound
is played using an external usb soundcard and two active speakers.

4.2 Worms, Tunnels and Piivert
In Drile, nodes of live-looping trees are represented by what

we call worms. These worms, which can be seen on figure 1,
have several graphical parameters such as color hue, size, trans-
parency, scattering and so on. These parameters are associated to
the nodes audio effects parameters, so that modifying the worms
appearance modifies the nodes audio effects. Current mappings are
size/volume, color hue/pitch, transparency/distortion and scatter-
ing/reverb. They were chosen as a result of a user study, following
user preferences and trying to preserve the independance of graph-
ical perceptual dimensions. One must note that the mappings are
relative, not absolute. For example, two worms with the same color
hue do not necessarily have the same pitch, but their initial pitch
is modified by the same amount. Graphical parameters thus give
the current value of the effect, like a cursor on a graphical slider,
which is essential for efficient interaction.

Worms shapes are associated to the analysed spectrum of nodes
audio outputs, to allow users to identify which worm is associated
to a node. Finally, each worm rotation on the y-axis is associated
to the position of the read pointer in its associated node content.
This allows musicians to follow the playback of nodes sequences.

Worms graphical parameters, and thus their associated sound
parameters, can be modified by grabbing and sliding the worms
through what we call tunnels. Two of them can be seen on figure
1. Each tunnel is associated to one or several graphical parameters,
and one or several scales for each parameter. The tunnels are made
of a succession of thin cylinders which reflect the values of the
parameters scales. The scales can be continuous or discrete. For
example, if one associates size with pitch, one may define musical
notes with an array of sizes. One may modify only one worm
at a time by passing it through a tunnel, but one may also grab
and move a tunnel to modify several worms at the same time, for
example to mute several loops.

To interact with the environment, we use an input device called
Piivert [1]. Piivert is a bimanual input device that combines 6DOF
tracking, using infrared targets detection, with high-sensitivity pres-
sure sensing. It allows musicians to benefit from the possibilities
of graphical interaction while preserving accurate musical con-
trols. Force-resistive sensors are positionned under the thumb, in-
dex, middle and ring fingers, allowing us to detect different ges-
tures. These include low-level gestures such as hit and pressure,
and high-level percussion gestures such as flam, three-strikes roll
and four-strikes roll. This device allows us to select and grab
worms and tunnels using a ray-casting technique, i.e a virtual ray
that sticks out of the device and goes through the 3D environment.
To grab a worm or tunnel, users perform a pressure gesture with
their thumb. Low-level gestures transmit vibrations to the worms
with the virtual ray, and thus trigger the associated node. Hit ges-
tures play the entire content of the node while pressure gestures
play the content using random small grains of the content, which
results in granular synthesis for the leaves. Tunnels scale presets
can also be changed by selecting the tunnels and performing a hit
gesture. Finally, high-level gestures are used to trigger hierarchical
live-looping operations. A user holding this device can be seen in
figure 1.

4.3 Hierarchy
Common 3D selection and manipulation techniques such as the

virtual ray technique are more efficient for objects at short dis-
tances, as evaluated by Poupyrev et al. [9]. Furthermore, as the
size parameter is used to control the volume of worms, allowing
continuous modification of worms depth may disrupt the percep-
tion of worms size. Thus we propose to keep most worms and
tunnels on what we call the interaction plane, at a fixed distance.
This preserves spatial and temporal accuracy for musical actions
such as selecting and manipulating worms and tunnels. Depth and
navigation in the environment may then be used for actions that
require less temporal accuracy.

4.3.1 Live-looping trees
As depicted in figure 6, live-looping trees are represented by

connected worms organized by depth. Each level of the tree is dis-
played at a discrete depth. The level that is the closest to the users
is on the interaction plane. Worms children are placed in kind
of appendages. Musicians may only select and grab the worms
on the interaction plane and their direct children. By physically
moving in front of the screen, musicians can easily point directly
at children with the virtual ray, thanks to head-tracking. When
grabbed, the children jump to the depth of the interaction plane so
that they can be modified using the tunnels. To access lower-level
and higher-level worms, musicians respectively pull and push one
of the worms, as depicted in figure 6. When going down the tree,
high-level worms move towards users and disappear. Their ap-
pendage remain visible, to indicate that displayed worms are chil-
dren. When users grab and move the root worm of a tree, all the
tree follows its translations. When users grab a children worm,
move it and release it, it jumps back to its parent appendage.

The immersive environment allows us to display the live-looping
hierarchy without overloading the interface and disrupting the in-
teraction. Indeed, manipulation of nodes is done within the inter-
action plane whereas access to the trees levels relies on the depth
of the environment and on the use of head-tracking. These simul-
taneous manipulations of trees and nodes would be more compli-
cated with a 2D interface, since they could not be done in separated
dimensions.

Figure 6: Three-levels live-looping tree (left). Pulling a worm
goes down the tree (right).

4.3.2 Tree Operations
The build operation needs to integrate closely in a sequence of

musical gestures since it records a musical loop. Thus we have
defined a high-level gesture with Piivert, actually a ring-middle
finger flam. First the user needs to select a worm with the virtual
ray. When the record step is triggered, the worm changes shape
to highlight its rotation around the y-axis. When the create step
is triggered, the created parent node appears and the child worm
moves behind it, in its appendage, as depicted on figure 7.

The merge operation is a less temporally critical operation. This
it is done by colliding worms. When two worms collide for more
than 1 second, the system will try to merge them. All children
of one of the worms are transferred to the other, and this empty

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

195



node is deleted from the scene. Children worms are automatically
arranged behind their parent worm in its appendage, as depicted in
figure 7.

Figure 7: Live-looping trees operations (from right to left, top
to bottom): Build, Merge, Duplicate, Extract

The duplicate operation is also done graphically by grabbing a
worm with two rays, i.e two hands, and stretching it, as it can be
seen on figure 7. A copy of the stretched worm and all these chil-
dren, with all contents, is then added to the scene. The stretched
worm thus become the root of a new live-looping tree, and is brought
to the interaction plane.

Since the extract operation is the opposite of the build operation,
it is also triggered by a high-level Piivert gesture. This gesture is a
flam with the same fingers but in the opposite direction, i.e middle
finger before ring finger. The extracted worm is brought to the
interaction plane, its children remaining behind it, as depicted in
figure 7. This results in a new live-looping tree.

4.4 Live-looping scenes
As explained in section 2.2, the live-looping technique often in-

cludes the idea of scenes. A scene is composed of several loops
which are synchronized, or which simply fit together musically.
With hardware systems, like guitar pedals, scenes are selected us-
ing buttons or rotary encoders. Thus each scene is only associ-
ated with a number. With 2D looping software, like Freewheeling,
scenes are selected with a menu, and are associated with a name.
Their musical features, such as tempo or mood, may thus be better
described.

In Drile, we define scenes as 3D rooms containing several worms,
which can be leaves or high-level nodes of pre-built live-looping
trees, and several tunnels.

When the user walks backward from the screen and reaches a
specific distance, the camera moves backward, revealing the grid
of scenes, as depicted in figure 8. A scene can then be selected
simply by looking at it. The head movement needs to be a little
exagarated though, as the selection is computed from the position
and orientation of the user’s head. Finally, the user move to the
selected scene simply by walking towards the screen.

Such an approach has several advantages. Visual properties of
each scene/room, such as colors, 3D objects, walls and so on, may
be used to reflect the musical ”mood” of the live-looping trees.
Users can refer to these properties to choose the musical content
they want to play with. The appearance of the scenes is defined in
a configuration file with a XML syntax.

Different tunnels can be chosen for each scene, as audio effects
needs may be different for different musical content.

Figure 8: View of all scenes (here 4). Here one tree is being
moved from one scene to another.

A worm can be brought from a previous scene, to make smooth
transitions between musical parts. This worm can be a leaf, with
a single sound, so that musicians may play it a last time while
starting the new musical part. It may also be the root of complex
tree, so that the new musical part will consist in modifying the
previous tree by progressively adding new sounds.

Performances may follow very different paths, as any transition
between scenes is possible and may be done at anytime.

Finally, each scene has a floor. Musicians can bypass worms or
complete trees by moving them below this semi-transparent floor.
Their audio data is then sent another stereo Jack output, which can
be connected to earphones for example. This may be used as a
monitor system to prepare trees and then play them, or it can be
simply used to quickly mute trees.

4.5 Learning and Collaboration
Thanks to hierarchical live-looping, learning Drile is progres-

sive. Indeed, following Birnbaum et al. classification of new in-
struments in dimension spaces [2], Drile happens to be between
two different configurations, as depicted in figure 9. New users
may begin by interacting only with the root worms of pre-built
live-looping trees. This allows them to manipulate musically in-
teresting sequences without much expertise. To push this idea fur-
ther, we have developed an interaction technique in addition to the
ones available with Piivert, which we call the bucket. Users manip-
ulate a virtual bucket using a 6DOF tracked device with a single
button. They may then grab and move only worms on the inter-
action plane. They are not allowed to trigger the sequences, but
only pass these worms through tunnels, or bypass them. Interac-
tion is quite simple, i.e grabbing and moving worms, and the musi-
cal possibilities are reduced to high-level processes manipulation.
Thus required expertise, musical control and degrees of freedom
are low.

When users get accustomed to this subset of Drile interaction
techniques, they can switch to Piivert. By going down the tree,
musicians progressively access rawer musical content, i.e simpler
sequences and finally single sounds. Symmetrically, the degree
of interaction needed to produce an interesting result, i.e the re-
quired expertise, rises. At first, they may interact only with the
root worms, this time being able to trigger the musical content.
When gaining expertise, they may access lower levels of pre-built
live-looping trees, to trigger their nodes and make more complex
manipulations. Finally, after more learning, they may modify trees
structures by using the available operations, and even build new
trees. Obviously required expertised increases as hierarchical live-
looping operations and low-level worms manipulations are com-
plex. The number of degrees of freedom also increases because Pi-
ivert enables new musical gestures and 3D interaction techniques.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

196



Symmetrically, the musical control evolves from high-level con-
trol of a musical process to a complete control of the sound and
musical parameters of each worm.

Musical
Control

Required ExpertiseRole of sound

Distribution
in space

Inter-actors

Feedback Modalities
(output)

Degrees of freedom
(input)

Figure 9: Drile Dimension Space, in purple for beginners with
buckets and only access to root worms, in blue for advanced
users with piivert and access to all worms of the live-looping
trees.

Collaborative performances may rely on these different exper-
tise levels. An advanced user can easily collaborate with one or
several beginner users, as seen in figure 10. In this configuration,
the expert builds live-looping trees, and pass them to the beginners
so that they can manipulate worms at the foreground, i.e interesting
musical sequences. As the bucket does not allow to manipulate the
tunnels, the expert may also choose which tunnels should be used
by the beginners.

Figure 10: Collaboration between one advanced user with Pi-
ivert (left) and two beginner users with buckets

5. CONCLUSION
In this paper, we presented Drile, an immersive multiprocess

instrument especially suited for musical performances. It relies
on the concept of hierarchical live-looping, which enhances basic
live-looping by allowing musicians to create and manipulate com-
plex musical structures. Drile enables efficient use of this tech-
nique thanks to the possibilities brought by immersive environ-
ments. In particular, musicians make use of head-tracking, nav-
igation in 3D environments and combination of hierarchy visual-
ization with 3D interaction. Moreover, Drile is well adapted to
learning and collaboration between users with different levels, be-
cause live-looping trees include different steps of musical interac-
tion complexity.

Collaboration between several beginners users and a single ad-
vanced user is simple to setup with one screen, as beginners do

not need head-tracking to use the bucket technique. Collaboration
between advanced users, i.e using virtual rays and head-tracking,
on the same screen could be implemented with a more complex
hardware setup.3D avatars may also be used for distant collabora-
tion, as multiple environments could be synchronized using Open-
SoundControl messages together with OpenSG internal synchro-
nization features. Following Birnbaum et al. classification, dis-
tribution in space would then be maximized. Another interesting
issue is the immersion of the audience. They may obviously be
equipped with stereoscopic glasses, but one can imagine various
stage setups. Musicians and the audience may both face the same
screen, though musicians may occlude parts of the screen. 3D
avatars may also be used to display musicians while they inter-
act in front of another screen. Future work will investigate these
different issues.

6. REFERENCES
[1] F. Berthaut, M. Hachet, and M. Desainte-Catherine. Piivert:

Percussion-based interaction for immersive virtual
environments. In Proceedings of the IEEE Symposium on
3D User Interfaces, 2010.

[2] D. Birnbaum, R. Fiebrink, J. Malloch, and M. M.
Wanderley. Towards a dimension space for musical devices.
In Proceedings of the 2005 International Conference on
New Interfaces for Musical Expression (NIME05),
Vancouver, BC, Canada, pages 192–195, 2005.

[3] C. Jacquemin, R. Ajaj, R. Cahen, Y. Ollivier, and
D. Schwarz. Plumage: Design d’une interface 3d pour le
parcours d’échantillons sonores granularisés. In Proceedings
of the Conférence Francophone sur l’Interaction
Homme-Machine(IHM’07), 2007.

[4] T. Mäki-Patola, J. Laitinen, A. Kanerva, and T. Takala.
Experiments with virtual reality instruments. In Proceedings
of the 2005 International Conference on New Interfaces for
Musical Expression (NIME05), Vancouver, BC, Canada,
2005.

[5] R. Marczak. Etude d’une représentation hiérarchique liant
micro et macro-structures musicales. Master’s thesis,
University of Bordeaux, 2007.

[6] A. G. Mulder. Design of virtual three-dimensional
instruments for sound control. PhD thesis, Simon Fraser
University, Canada, 1998.

[7] J. Olive and S. Pickles. Fijuu: http://www.fijuu.com/.
[8] R. Polfreman. Frameworks 3d: composition in the third

dimension. pages 226–229, Pittsburgh, USA, Carnegie
Mellon University, 2009.

[9] I. Poupyrev, S. Weghorst, M. Billinghurst, and T. Ichikawa.
Egocentric object manipulation in virtual environments:
Empirical evaluation of interaction techniques. 1998.

[10] X. Rodet, F. Gosselin, P. Mobuchon, J.-P. Lambert,
R. Cahen, T. Gaudy, and F. Guedy. Study of haptic and
visual interaction for sound and music control in the phase
project. In Proceedings of the 2005 International
Conference on New Interfaces for Musical Expression
(NIME05), Vancouver, BC, Canada, 2005.

[11] G. Weinberg, R. Aimi, and K. Jennings. The beatbug
network: a rhythmic system for interdependent group
collaboration. In NIME ’02: Proceedings of the 2002
conference on New interfaces for musical expression, pages
1–6, Singapore, 2002. National University of Singapore.

[12] M. Wozniewski, Z. Settel, and J. Cooperstock. A spatial
interface for audio and music production. In Proceedings of
the International Conference on Digital Audio Effects
(DAFx), 2006, 2006.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

197




