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ABSTRACT
In this paper we present a method for studying relationships
between features of sound and features of movement. The
method has been tested by carrying out an experiment with
people moving an object in space along with short sounds.
3D position data of the object was recorded and several
features were calculated from each of the recordings. These
features were provided as input to a classifier which was able
to classify the recorded actions satisfactorily, particularly
when taking into account that the only link between the
actions performed by the different subjects was the sound
they heard while making the action.

1. INTRODUCTION
What are the underlying links between movement and sound?
We believe that the way we perceive sounds and their sound-
producing actions are related, and that this relationship
may be explored by observing human movement to sound.
Auditory sensations are often perceived as mental images of
what caused the sound. This idea of a gestural-sonic object
is built upon motor theory in linguistics and neuroscience
[8]. This belief has motivated an experiment to explore
how sound and body movement are related: Is it possi-
ble to discover cross-individual relationships between how
we perceive features of sound and features of movement by
studying how people choose to move to sounds? The term
cross-individual here denotes relationships that are found
in the majority of the subjects in this experiment. Further,
we use movement to denote continuous motion, and action
to denote a segment of motion data.

Several papers have focused on training a machine learn-
ing system to recognize a specific action. This paper, how-
ever, presents a technique for discovering correlations be-
tween sound features and movement features. We investi-
gate the use of a machine learning system to classify the
actions that subjects link to certain sounds, here denoted
as sound-tracings [9]. The features used for classification
are evaluated, and the results of presenting various subsets
of those features to the classifier are explored. This makes
it possible to discover how a classification of sound-tracings
based on certain action features is able to distinguish be-
tween sounds with certain characteristics. At the same time
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the classifier may be unable to distinguish between sounds
with other characteristics. For instance, one of our hypothe-
ses has been that features related to velocity would distin-
guish well between sounds with different loudness envelopes.
Another hypothesis is that the features related to vertical
displacement would distinguish between sounds with dif-
ferent pitch envelopes. An analysis of the classifier’s per-
formance can provide information on natural relationships
between sounds and actions. This is valuable information
in our research on new musical instruments.

Section 2 gives a brief overview of related research, includ-
ing some notes on previous use of machine learning to clas-
sify music-related movement. Section 3 gives an overview
of the method used. Section 4 presents the classification of
the data, including feature extraction from the movement
data and some results on reducing the number of inputs to
the classifier. Finally, in section 5 we discuss the method
used in the light of the results presented in section 4, and
provide some conclusions and plans for future work on this
material.

2. RELATED WORK
Machine learning and pattern recognition of motion data
have been applied in musical contexts in various ways. Early
works on applying neural networks to recognize actions to
be mapped to sound synthesis parameters were presented
in the early 1990s [5, 10]. In the last decade, various other
machine learning implementations of mapping motion cap-
ture data to sound synthesis have been presented. This
includes toolkits for machine learning in PureData [3] and
Max/MSP [1], and a tool for on-the-fly learning where the
system is able to learn new mappings, for instance during
a musical performance [6].

Although mapping applications seem to have been the
most used implementation of machine learning on motion
data in musical contexts, some analytical applications ex-
ist as well. In EyesWeb, Camurri et al. have implemented
recognition of expressivity in what they call ‘musical ges-
tures’ [2]. Machine learning has also been applied to in-
strumental actions, like extraction of bowing features and
classification of different bow strokes in violin performance
[12, 13].

A significant amount of work has been done on informa-
tion retrieval of motion capture data within research fields
related to computer animation [11]. Much of the work in
this field has been on classification of different actions in a
motion database (e.g. distinguishing a kicking action from
a jumping action). For this sort of classification Müller and
Röder have introduced motion templates [11]. This method
is based on spatio-temporal relationships between various
parts of the body. They present a sophisticated method for
recognizing specific actions, a method which is independent
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from numerical differences in the raw data.
The research presented in this paper distinguishes itself

from the previously mentioned ones in that it aims to rec-
ognize certain unknown features of the actions rather than
the actions themselves. The approach is analytical, with
a goal of discovering cross-individual relationships between
features of sound and features of movement.

A similar experiment to the one presented in this paper
was carried out in 2006, where subjects were presented with
short sounds and instructed to sketch sound-tracings on a
Wacom tablet [9]. This data was initially studied qualita-
tively, and has recently also been processed quantitatively
in an unpublished manuscript which inspired this paper [7].

3. METHOD

3.1 Setup
In our experiment we used a 7 camera Optitrack infrared
motion capture system for gathering position data of reflec-
tive markers on a rod. A sampling rate of 100 Hz was used,
and data was sent in real-time to Max/MSP for recording.

3.2 Observation Experiment
Fifteen subjects, with musical experience ranging from no
performance experience to professional musicians, were re-
cruited. These were 4 females and 11 males, selected among
university students and staff. The subjects were presented
with ten sounds and asked to move a rod in space along
with each sound, as if they themselves were creating the
sound. The rod was roughly 120 cm long with a diameter
of 4 cm (Figure 1). Before recording the movement data,
the subjects listened to the sound twice (or more if they
requested it), to allow them to make up their mind on what
they thought would be a natural connection between the
sound and the movement. A metronome was used so that
the subjects could know at what time the sound started.
The motion capture recording started 500 ms before the
sound, and was stopped at the end of the sound file. Thus,
all the motion capture recordings related to a single sound
were of equal length which made it easier to compare the
results from different subjects. We made three recordings of
each action from each subject. Some of the recordings were
discarded, due to the subject moving the rod out of the cap-
ture volume, which caused gaps in the data. Hence, there
are between 42 and 45 data recordings of actions performed
to each sound.

Figure 1: The figure shows a subject holding the rod
with reflective markers in one end. Motion capture
cameras are surrounding the subject.

The recorded data was the 3D position at the end of the
rod, in addition to video. The subjects also filled out a
small questionnaire where they were asked whether they
considered themselves to be novices, intermediates or music
experts, and whether they found anything in the experiment
to be particularly difficult.

3.3 Sounds
The sounds used in the experiment all had one or more dis-
tinct features (e.g. rising pitch or varying sound intensity),
which we believed would make the users move differently
to the different sounds. A brief overview of the sounds
is presented in Table 1, and the sounds are available on-
line.1 Some of the sounds were quite similar to each other,
e.g. with only subtle differences in the timing of loudness
peaks. As we shall see, actions performed to these similar
sounds were often mistaken for each other by the classifier.
Sounds 1 and 2 are similar, where the loudness and the cen-
ter frequency of a bandpass filter sweeps up and down three
times. The difference between the sounds is the timing of
the peaks, which gives a slightly different listening experi-
ence. Sounds 9 and 10 are also quite similar to each other,
with the same rhythmic pattern. The difference between
the two is that Sound 9 has a steady envelope, while Sound
10 has impulsive attacks with a decaying loudness envelope
after each attack.

Table 1: Simple description of the sounds used in
the experiment
Sound Pitch Spectral Centroid Loudness Onsets

1 Noise 3 sweeps 3 sweeps 3
2 Noise 3 sweeps 3 sweeps 3
3 Falling Rising Steady 1
4 Rising Falling Steady 1
5 Noise Rising Steady 1
6 Noise Rising / Complex Steady 1
7 Noise Rising,thenfalling Steady 1
8 Rising Complex Steady 1
9 Noise Steady Rhythm:

Static (on/off)
5

10 Noise Complex Like 9, with
decaying slopes

5

3.4 Software
For classification we used RapidMiner,2 a user-friendly tool-
box for data mining, classification and machine learning. A
brief test of the various classification algorithms in Rapid-
Miner indicated that Support Vector Machines (SVM) would
provide the highest classification accuracies, so this was cho-
sen for the experiments. RapidMiner uses the LIBSVM3 li-
brary for SVMs. The python-script grid.py is provided with
LIBSVM and was used for finding the best parameters for
the algorithm. This script performs a simple grid search to
determine the best parameters.

When training and validating the system, cross-validation
was used due to the limited number of data examples. This
means that two complementary subsets are randomly gener-
ated from the full data set. One subset of the data examples
is used for training the classifier, and the other is used as a
validation set to measure the performance of the classifier
[4]. This process was repeated ten times with different sub-
sets. Finally, the performance results ere averaged across
all performance evaluations. Matlab was used for prepro-
cessing and feature extraction.

4. ANALYSIS
The analysis process consists of two main parts: the fea-
ture extraction and the classification. In our opinion, the
former is the most interesting in the context of this pa-
per, where the goal is to evaluate a method for comparing
movement features to sound features. The features selected
are features that we believed would distinguish between the
sounds.

1http://folk.uio.no/krisny/nime2010/
2http://rapid-i.com/
3http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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4.1 Feature Extraction
When extracting the movement features, it is important to
note that two actions that seem similar to the human eye
do not need to be similar numerically. This implies that
the features should be based on relative, rather than ab-
solute data. In our setup, we have a recording of only a
single point in space, and thus we cannot calculate spatial
relations as suggested by Müller et al.[11], but we can look
at temporal relations. Hence, we have chosen to base the
features presented here on time-series based on the deriva-
tive of the position data. Since we have no reference data
on the position of the subject (only the rod), we cannot tell
whether horizontal movement is forwards or sideways. Thus
horizontal movement along either of the two horizontal axes
should be considered as equivalent. However, the vertical
component of the movement can be distinguished from any
horizontal movement, since gravity is a natural reference.

The 3D position data was used to calculate the following
features from the recorded data:

• VelocityMean and VelocityStD are the mean and stan-
dard deviation of the vector length of the first deriva-
tives of the 3D position data.

• AccelerationMean is the mean value of the vector length
of the second derivative of the 3D position data.

• TurnMean and TurnStD are the mean value and the
standard deviation of change in direction between the
samples, i.e. the angle between the vector from sample
n to n+1, and the vector from n+1 to n+2.

• PreMove is the cumulative distance before the sound
starts. This is a period of 50 samples in all recordings.

• vVelocityMean is the mean value of the derivatives
of the vertical axis. As opposed to VelocityMean, this
feature can have both positive (upwards) and negative
(downwards) values.

• vEnergy is an exponentially scaled version of vVeloc-
ityMean, meaning that fast movement counts more
than slow movement. For example, fast movement
downwards followed by slow movement upwards would
generate a negative value, even if the total distance
traveled upwards and downwards is the same.

Finally, each recording was divided into four equally sized
segments, e.g. to be able to see how the first part of the
action differed from the last part. The variables segmentVel-
Mean — the mean velocity of each segment, and segment-
Shake — a measure based on autocorrelation to discover
shaking, were calculated.

In the next section we will present the classification re-
sults, and investigate if classifications based on different
subsets of features will reveal relationships between sound
features and action features.

4.2 Results
When all the movement features were fed to the classifier, a
classification accuracy of 78.6% ± 7.3% was obtained. This
should be interpreted as the precision of recognizing the
sound that inspired a certain action, based on features ex-
tracted from the movement data. Sound 7 was the one with
the best accuracy, where the algorithm classified the 95.2%
of the actions correctly, as shown in Table 2. The classifier
misinterpreted some of the actions made to similar sounds,
but still the lowest individual classification accuracy was as
high as 68.9%. The table columns show the true actions,
and the rows show the predictions of the classifier. The di-
agonal from top left to lower right indicates the correctly

classified instances (marked in grey). We define class recall
(CR) and class precision (CP) of class i as:

CRi =
||Ri ∩Ai||
||Ri||

∗ 100% CPi =
||Ri ∩Ai||
||Ai||

∗ 100%

||Ai|| denotes the number of instances classified as i, and
||Ri|| denotes the total numbers of instances in class i. Then
CP is the probability that a certain prediction made by
the classifier is correct, and CR is the probability that the
classifier will provide the correct result, given a certain class.

When reducing the features fed to the classifier to only
include the two features related to vertical displacement,
i.e. vVelocityMean and vEnergy, the total classification ac-
curacy was reduced to 36%. However, the sounds with a
distinct rising or falling pitch had significantly less change
in classification accuracy than other sounds. For Sounds 3
and 4, we obtained a class recall of 79.1% and 51.2%, re-
spectively. In addition to this we obtained a class recall of

Table 2: Classification accuracies for the individual
sounds, when using all sound features. CP and CR
denote class precision and class recall in percent,
respectively. t1–t10 are the true classes, p1–p10
are the predictions made by the classifier.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 CP

p1 34 6 1 1 1 0 0 0 0 4 72.3

p2 9 36 0 0 0 1 0 2 0 0 75.0

p3 0 0 36 2 0 2 0 0 0 0 90.0

p4 0 0 2 32 1 0 1 3 0 0 82.1

p5 0 0 1 2 31 6 1 2 1 0 70.5

p6 1 0 3 0 6 32 0 1 2 0 71.1

p7 0 0 0 0 1 0 40 3 0 0 90.9

p8 1 0 0 6 3 1 0 34 0 0 75.6

p9 0 1 0 0 2 2 0 0 36 6 76.6

p10 0 0 0 0 0 0 0 0 6 34 85.0
CR 75.6 83.7 83.7 74.4 68.9 72.7 95.2 75.6 80.0 77.3

1 2 3 4 5 6 7 8 9 100%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 100%

20%

40%

60%

80%

100%

All Features

Only Vertical Features

class recall class precision

Figure 2: The figure shows the class precision and
class recall for each of the classes (see text for expla-
nation). A class consists of sound-tracings related
to the same sound. High scores on both bars indi-
cate that the estimation of this class is satisfactory.
In the top chart, all features have been used as in-
put to the classifier, in the lower chart, only the
vertical displacement features were used.
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71.1% for Sound 9, however the class precision of this sound
was as low as 25.8%, indicating that the SVM classifier has
made the class too broad for this to be regarded truly signif-
icant. The lower plot in Figure 2 shows that the class recall
and class precision for all the sounds with changing pitch
(3, 4 and 8) have relatively high scores on both accuracy
and precision.

5. DISCUSSION
Our goal in this paper is to evaluate the use of a classifier
to discover correlations between sound features and move-
ment features. We have evaluated the method by using the
data related to Sound 3, where we discovered a relationship
between pitch and vertical movement. The fundamental
frequency of this sound decreases from 300 Hz to 200 Hz.
Figure 3 shows the vertical components of the actions per-
formed to this sound by the subjects. The heavy lines de-
note the mean value and standard deviation of the verti-
cal positions. Some of the actions do not follow the pitch
downwards. This may be because the subject chose to fol-
low the upwards moving spectral centroid. Also, quite a
few of the actions make a small trip upwards before moving
downwards. Still, there is a clear tendency of downwards
movement in most of the performances, so we believe it is
safe to conclude that there is a relationship between pitch
and vertical position in our dataset. This finding makes it
interesting to study the relationship between vertical po-
sition and pitch in a larger scale. Would we find similar
results in a group that is large enough for statistical sig-
nificance? Further on, we might ask if this action-sound
relationship depends on things like cultural background or
musical training.

We have also found similar, although not equally strong,
indications of other correlations between sound and move-
ment features. One such correlation is the shake feature.
With only this as input, the classifier was able to distinguish
well between Sounds 9 and 10. These were two rhythmic
segments where the only difference was that Sound 10 had
decaying slopes after each attack and Sound 9 had sim-
ply sound on or sound off with no adjustments in between.
This could indicate that for one of the sounds, the subjects
performed actions with impulsive attacks, resulting in a re-
bound effect which has been picked up in the shake feature.

Another relationship is the features turnMean and turn-
StD which seem to distinguish between the number of on-
sets in the sound. Sounds 1 and 2 had three onsets, and
were quite well distinguished from the rest, but often con-
fused with each other. The same was the case for Sounds
3, 4, 5, 6, 7 and 8 which had a single onset and Sounds 9
and 10 which had five onsets. A plausible explanation for
this is that the subjects tended to repeat the same action
for each onset of the sound, implying a somewhat circular
movement for each onset. This circular motion is picked up
in TurnMean and TurnStD.

The relationship between pitch and vertical displacement
described in this section may seem obvious. But we believe
the method is the most interesting. By using a classifier, we
get an idea of where to look for cross-individual correlations
between sound features and movement features.

6. CONCLUSIONS AND FUTURE WORK
The paper has presented a method for studying how per-
ception of sound and movement is related. We believe that
machine learning techniques may provide good indications
of cross-individual correlations between sound features and
movement features. Our experiments have shown that it
is possible to study these relationships by feeding move-
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Figure 3: Plot of vertical position of the perfor-
mances to Sound 3. The heavy lines denote mean
value and standard deviation.

ment data to a classifier and carefully selecting the features
used for classification. The paper has mainly focused on
evaluating the method itself rather than the results, since
a larger selection of subjects would be necessary to draw
strong conclusions on the existence of action-sound rela-
tionships. Future research plans include experiments with
a larger selection of subjects, and to expand the setup to
full-body motion capture. In our research, we hope to learn
more about how features of movement can be used to de-
velop new intuitive movement-based instruments.
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