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ABSTRACT
Pressure, motion, and gesture are important parameters in
musical instrument playing. Pressure sensing allows to in-
terpret complex hidden forces, which appear during playing
a musical instrument. The combination of our new sensor
setup with pattern recognition techniques like the lately de-
veloped ordered means models allows fast and precise recog-
nition of highly skilled playing techniques. This includes left
and right hand analysis as well as a combination of both. In
this paper we show bow position recognition for string in-
struments by means of support vector regression machines
on the right hand finger pressure, as well as bowing recog-
nition and inaccurate playing detection with ordered means
models. We also introduce a new left hand and chin pressure
sensing method for coordination and position change anal-
ysis. Our methods in combination with our audio, video,
and gesture recording software can be used for teaching
and exercising. Especially studies of complex movements
and finger force distribution changes can benefit from such
an approach. Practical applications include the recognition
of inaccuracy, cramping, or malposition, and, last but not
least, the development of augmented instruments and new
playing techniques.
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1. INTRODUCTION
Over the past years many audio and gesture parameters

have already been investigated with sensor data, audio and
video analysis in the fields of exercising, teaching, and per-
forming of musical instruments.

In numerous recent papers and articles of e.g. Rasami-
manana et al. [14], Maestre [11], and in his thesis about
bowing gestures [10] interesting approaches about gesture
recognition and especially bowing gestures have been de-
veloped and realized. The mainly used measuring meth-
ods in case of pressure are one or more foil strains placed
in the middle of the bow, introduced by Young [16]. The
other pressure measure method is described by Demoucron
et al. [4] where the overall pressure of the bow hair is mea-
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Figure 1: Picture of the bow mounted pressure sen-
sors, after ca. 3000 played bowing samples.

sured near the frog. This method reduces the length of the
bow hair and can damage the varnish of the violin. Beside
the first finger pressure measurement of the commercially
available K-Bow from Keith A. McMillen, which is a com-
plete bow and does not allow to use the existing bow of
the violinist, the developments of IRCAM, also partly used
by the before mentioned authors are state of the art. This
means radio frequency transmission, gyroscopes, accelera-
tion, and other sensors, integrated into smallest PCBs fixed
on the frog beginning with the work of Bevilaqua et al. [1].
These are just the most recent developments – the “history
of violin sensing” goes back for many more years and ap-
proaches. All video or VICON based systems, e.g. the one
described by Ng [12] were not mentioned here and would ex-
tend the list. The systems allow sensor-based motion and
gesture tracking in 3D, overall bow pressure and many more
parameters.

With the method described here, a further development
of Grosshauser’s approach [7] is made, where every finger is
measured and we can draw conclusions to cramping, faults,
bow position, and different types of bow strokes, just to
name a few. In general, the fixation of the sensors is easy.
Furthermore, our sensor concept enables wrist mounting,
which some violinists prefer.

The sensing technologies we use in this study extend the
approved practices, e.g. by measuring the pressure of every
finger. In addition, we apply advanced machine learning
techniques to the sensor data, namely support vector regres-
sion machines (SVRs) and ordered means models (OMMs).
As a basic technology we use a high sensitive pressure sen-
sor. Since new and easy-to-build pressure sensors, such as
the paper FSRs introduced by Koehly et al. [9], are very
flexible and cheap. It is possible to independently mea-
sure the pressure of each finger of the right and left hands.
For further analysis of the pressure data, we implement a
recording and visualization program. We accomplish ex-
periments to explore bow position recognition as well as
classification of bowing types. This includes different tempi
and inaccurate bowings with too much or less pressure, or a
wrong bow angle. Furthermore, we give prospects of prac-

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

271



tical use cases for teaching and exercising. Last but not
least, we discuss new playing techniques, which are enabled
by these unobtrusive, easy-to-use sensor setup.

2. SENSOR SETUP AND MEASUREMENTS
The used sensing method was introduced at NIME08 by

Grosshauser [7]. First results of pressure and position mea-
surements were shown as well as applications for teaching
and first composition examples.

In this study, we apply several improvements, including
a left hand sensor, a goniometer and the application of ad-
vanced data mining methods.

Each sensor is connected via cable directly with a wrist
mounted PCB board equipped with AD-converters, an At-
mega 328 IC and a small Bluetooth module, or in a different
configuration with a small module on the frog of the bow,
similar to [1], with the same technical features as mentioned
before. The modular setup allows a flexible number of sen-
sors to be fixed on the bow or violin, depending on the
needs of the student, teacher, or performer. The connec-
tor box can also be worn on a belt. Data transmission is
possible either to a computer via Bluetooth or directly to
synthesizers or other modules via OSC or MIDI. The data
are recorded with a self developed data, audio and video
recording, analysing and playback software written mainly
in Java.

2.1 Measurement and Recording
Like mentioned before, we fixed FSR sensor foils to the

frog of the bow at the contact point between the fingers and
the bow (Fig. 1). One is mounted at the contact point of
the thumb, forefinger and little finger, another one at the
ring finger and middle finger, combined.

The relations of the pressure of each finger and especially
the changes of it during one bow stroke and partly the
bow position with the goniometer is measured and recorded.
The collected data then are transmitted to the PC and vi-
sualized and recorded in real-time with our software (data
plot see Fig. 2). Playback in slow motion is possible, allow-
ing precise visual analysis.

Pressure Sensors
The dimension of the basic sensors we use are now between
2x2x0.3mm and 5x5x0.3mm, but any dimension is possi-
ble. Beginners need larger sensor dimensions, since the local
variation of their fingers during playing is larger. It weights
only few gram and does not affect the motion of the musi-
cians. The heaviest part of the sensors is indeed the thin
copper wire between the sensor and the ADC/IC/Bluetooth
board.

Goniometers
For our first experiment we used a goniometer. This is an
instrument which measures an axis and range of motion,
or the angle or rotation of an object precisely about the
attached axis between two connected arms or small sticks.

Our self made goniometers are equipped with a poten-
tiometer and used for joint angle measurement. This is a
very precise and cheap sensor, easy to fix and install. It
can be mounted directly on the body or into the clothing,
depending on how precise the measurement has to be. In
our case, the goniometers are fixed to the body and used
to learn the correlation between bow position and pressure
data and between ellbow and wrist angles in left hand mea-
surements (see sec. 2.1.3).
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Figure 2: Plot of pressure of fore- and little fin-
ger and bow position, Martele up- and down-bow
strokes.

2.1.1 Calibration
Although for all our experiments only the relationship

of the pressure between the fingers is considered, we did a
calibration to get an idea of the absolute pressure values in
Newton. The pressures directly below the fingers get quite
high, compared to the total force on the top of the bow,
e.g. during a forte stroke, 1 N at the tip means up to 12 N
on the forefinger on the frog.

We calibrated the sensors with two PCE-LSM2000 weigh-
ing machines, directly connected to the computer over RS232.
We placed the weighing machines under the top and the frog
of the bow and pushed each sensor several times. We esti-
mated the absolute weight values by recording the values of
the weighing machines and the pressure values of the sen-
sors simultaneously and computing the linear correlation of
both. We did a first run with defined weights on each sen-
sor, a second one with constant weight change from zero
to 2 kg in a CNC machine, and a last one with constantly
changing finger pushes. In all three cases we achieved sim-
ilarly correlated results.

2.1.2 Right Hand Sensing
We recorded different up- and down bowings and defined

inaccurate and so-called ”wrong bowings” in the traditional
way of violin playing and teaching. The bowing types are
Martele, Detache and Spiccato in different tempi.

The inaccurate examples were (i) wrong angle with more
or less than 90◦between bow and the strings, and (ii) too
much or less pressure in combination with too long or short
pressure. Depending to different playing techniques, wrong
pressure distribution and inaccurate pressure changes be-
fore and during the stroke were recorded. Each case was
conducted at least 200 times. In Fig. 2 a typical measure-
ment of a Martele stroke is shown. The lower square-edged
line is the bow position, the upper graphs depict the pres-
sure of the fore- and little finger. The figure shows the
preparation, execution, and wrap-up phases of four strokes.
The distinction of up- and down-bow is evident. Also, the
pressure change of the fore to the small finger and the dif-
ferent distribution between up- and down-bows can be seen.

Our first sensor setup was a goniometer on the right arm
in addition to the pressure sensors to get the bow posi-
tion. The clear correlations between the pressure and the
goniometer data allowed us to reduce the setup and derive
the bow position information without the goniometer (see
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Figure 3: Picture of the violin mounted pressure
sensors.

Fig. 5 and sec. 3.1).
Some considerations for the experiments and the classifi-

cations are the following:

1. Distribution of the pressure: Each type of bow-
ings and playing techniques demands a different dis-
tribution of pressure between the fingers. E.g. Carl
Flesch [5] emphases in his violin methodology a higher
rotation of the hand, which results in more pressure
between forefinger and thumb. Other violin schools,
like the one of Ulf Klausenitzer, which is based on the
ideas of Henrik Szering and Leonid Kogan, prefer a
more flat hand. This leads to a more equal distribu-
tion of the pressure between all fingers. The different
playing techniques are usually hard to explain and to
train, and here our visualization and classification of
the pressure data supports teaching and every-day ex-
ercising.

2. Inaccurate execution recognition: The used clas-
sification methods allow recognition of inaccurate play-
ing. After training the system with good and defined
inaccurate examples, certain faults like wrong angle,
too much or too less pressure is recognized (see Sec. 4).

2.1.3 Left Hand Sensing
Beside left hand finger position sensing, which we are not

interested in our left/right hand synchronisation and left
hand pressures itself, left hand sensing for string instru-
ments is underrepresented compared to right hand research.
A recent article from Kinoshita et al. [8] shows one possi-
bility to measure the left hand finger pressure at different
volumes, tempi, and bowings on one single position on the
fingerboard. In our case we can play a whole tune naturally
and record the left and right hand parameters simultane-
ously. This means, finger pressure compared to bowings,
speed, volume, and with different types of vibrato and dou-
ble stops.

In this study, pressure sensors are fixed on the chin rest
and on the neck of the violin, where thumb and the side of
the first finger are in contact (see Fig. 4).

The executed task is to perform several scales with posi-
tion shifts. The recording of position shifts shows the coor-
dinated reduction of the finger pressure, here of the thumb
and of one of the fingers 1-4, the increase of the chin pressure
during the shifting phase and the increase of the pressure
of the new position (see Fig. 4). These data allow a pre-
cise analysis, especially the timing between finger and chin
rest, which is one of the most complex movements to learn
and execute for beginners and to optimize for advanced
students. Several teaching scenarios were recorded in the
master violin class of Prof. Klausenitzer at the University
of Nuernberg with live sensor based motion capturing and
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Figure 4: Transition between first and third posi-
tion.

analysis. Advanced setups consists of additional chin rest
pressure and left and right elbow, wrist, and shoulder mea-
surements.

3. EXPERIMENTS
For the purpose of evaluation of the proposed system, we

chose an experimental setup for investigation of the follow-
ing questions:

1. Is it possible to predict the bow position by the means
of the data from the pressure sensors?

2. Can the data from the pressure sensors be used to
classify bowings and if so, to what accuracy?

3. Is it possible to detect inaccurate bowing executions
by the data form the pressure sensors?

To address the first issue, we evaluated the recorded data
with a standard framework for regression analysis, the so-
called support vector regression machines. For analysis of
the second and third question, we implemented an evalua-
tion scheme for classification that is based on ordered means
models.

We used data recorded from one subject who is a profes-
sional violinist. The subject participated in several record-
ing sessions that took place during one week in our labo-
ratory. The recording setup was simple: the sensors were
attached to the subject’s bow as described in section 2. The
data were recorded by a standard laptop computer con-
nected to the sensor board via Bluetooth. The required
playing techniques were presented to the subject by oral in-
struction and, additionally, in musical notation. The recog-
nition works independent of playing speed and without fixed
tempo metronome pre-settings.

3.1 Bow Position Prediction
To obtain first insights about the recorded data, we per-

formed an experiment in which we investigated whether the
bow position can be predicted by only using the data from
the pressure sensors. More formal, we estimated a function
f(ot) = bt that maps the 4-dimensional pressure sensor vec-
tor ot on a scalar bt, corresponding to the bow position as
given by the goniometer at time t.

The task of estimating a continuous function f(�) is known
as (non-linear) regression analysis, and there is a large body
of techniques for modeling such a function f(�) with a set
of observations. We adopted a regression technique that is
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identifier run number of examples

correct executions:

MCS martele slow 206
MCF martele fast 198
DCS detache slow 196
DCF detache fast 156
SCS spiccato slow 207
SCF spiccato fast 192

inaccurate executions:

MIA>90 martele angle >90 170
MIA<90 martele angle <90 203
MIP+ martele pressure+ 133
MIP− martele pressure− 206
DIA>90 detache angle >90 214
DIA<90 detache angle <90 206

Table 1: This table shows the number examples.

based on the widely-used support vector machines (SVM) [2],
the so-called support vector regression machines (SVR). In
general, SVM are are known to be robust and reliable and,
therefore they provide an ideal ad-hoc method for rapid
evaluation of unknown data. There are various free imple-
mentations of SVMs and SVRs available on the internet.
In this study, we use LIBSVM [3]. An introduction to SVR
and algorithmic details can be found in Smola et al. [15].

We applied the following procedure to the data set: (i) We
normalized all features to the interval [−1, 1], (ii) we par-
titioned the data into training and test data sets of almost
equal sizes, (iii) we used the training data set to validate the
hyperparameters of the SVR by the means of 5-fold cross
validation, (iv) we tested the resulting non-linear regression
function with the dedicated test data set.

3.2 Bowing Classifications
In order to prepare the captured data for classification,

we used the sensor data from the goniometer for stroke de-
tection. Therefore, we parted the continuous data stream
from the goniometer into fragments, each ranging from a lo-
cal maximum to the nearest subsequent local minimum and
vice versa. From this fragments, we only used the data of
the pressure sensors for the classification experiments. Note
that we did not distinguish between up-bows and down-
bows in this scenario. Table 1 gives an brief overview of the
data collected in this process.

For classification we used OMMs [6], a new approach
to machine learning of time-series and sequences. OMMs
can be described as rigorously reduced versions of the well-
known and widely-used hidden Markov models (HMMs) [13].
While achieving similar generalization properties, OMMs
provide a high level of robustness in terms of fragmented or
insufficient data and, additionally, need less computational
power.

Similar to HMMs, an OMM Ω can be characterized as a
generative state-space model that emits a sequence of ob-
servation vectors O = o1, . . . ,oT , ot ∈ R

d out of K hidden
states. In contrast to HMMs, OMMs establish some restric-
tions: (i) OMMs are defined without any transition proba-
bilities. Instead, each valid path q = q1, . . . , qT through the
model, i.e. each valid combination of states, is equally likely.
(ii) The emissions of each state are modeled as probabil-
ity distributions bk(ot) and assumed to be Gaussian with
bk(ot) = N (ot; µk

, σ). The standard deviation σ is iden-
tically in all states and used as a global hyperparameter.
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Figure 5: This figure shows the actual and predicted
bow positions depending on the pressure measure-
ments. Note that the bow position is normalized to
the interval [−1, 1].

(iii) The model topology of OMMs is a left-to-right topol-
ogy where only self transitions and transitions to subsequent
states are allowed. Applying these restrictions, the only pa-
rameters left are the location parameters of the emission
densities µ

k
. Therefore, an OMM is completely defined by

a linear array of reference vectors Ω = [µ
1
. . . µ

K
].

To learn the model parameters µ
k

from a set of N exam-
ple sequences O = {O1, . . . , ON}, the log-likelihood

L =
N

X

i=1

ln p(Oi|Ω) (1)

is maximized with respect to the mean vectors µ
k
.

Since this optimization problem has to be solved itera-
tively, the training process of such OMMs first computes
the responsibilities

r
i

kt =
p(Oi, qt = k|Ω)

p(Oi|Ω)
(E-step) (2)

by the means of dynamic programming and then re-estimates
the model parameters µ

k
with

µ
k

=

P

N

i=1

P

T

t=1
ri

kt · o
i

t

P

N

i=1

P

T

t=1
ri

kt

(M-step). (3)

This procedure is repeated until convergence.
To use OMMs for classification in a maximum likelihood

framework, one model Ωi is trained for each class i. An un-
known sequence O then is assigned to the class k = arg maxi

p(O|Ωi), whose model yields the highest posterior probabil-
ity. A more detailed introduction to OMMs and algorithmic
details can be found in Großekathöfer et al. [6].

According to the collected data, we established various
classification tasks with different class sets:

(A) ”bowings slow”: Martele vs. Detache vs. Spiccato
with slow stroke frequency (≈ 1Hz),

(B) ”bowings fast”: Martele vs. Detache vs. Spiccato
with fast stroke frequency (≈ 2Hz),

(C) ”detache angle”: correct Detache strokes vs. incor-
rect Detache strokes with an angle lower then 90◦vs. in-
correct Detache strokes with an angle above 90◦,
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(D) ”martele angle”: correct Martele strokes vs. incor-
rect Martele strokes with an angle lower then 90◦vs. in-
correct Martele strokes with an angle above 90◦,

(E) ”martele pressure”: correct Martele strokes vs. in-
correct Martele strokes with to much pressure vs. Mar-
tele strokes with not enough pressure.

The class sets (A) and (B) concern the general separability
of bowings, whereas class sets (C), (D), and (E) are related
to the question of detecting inaccurate bowing executions.

We applied an uniform procedure to all class sets: Firstly,
we randomly partitioned all available data into equally sized
training and test sets. The resulting training and test sets
then were normalized to zero-mean and unit variance ac-
cording to the training examples. Afterwards, we estimated
appropriate hyperparameters for each method by means of
5-fold cross validation on the training data. In this process,
we chose equal values for the number of OMM states K

and the global standard deviation σ in all experiments with
K ∈ {2, 4, . . . , 20} and σ ∈ {2.0, 1.6, 1.28, 1.02, 0.81, 0.65,

0.52, 0.41, 0.33, 0.26}. Subsequently, we took the best hy-
perparameters found to train OMM classifiers with the com-
plete training data set. To obtain the test set error rate, we
applied the resulting classifiers to the dedicated test sets.
This procedure was repeated 100 times for each class set to
enable simple statistics on the achieved error rates.

4. RESULTS AND DISSCUSION
The results of the bow position prediction reveals a mean

square error MSE = 0.021 for the dedicated test data. Tak-
ing the normalization into account, this implies a deviation
of ≈ 10% between the estimated and the actual bow posi-
tion. Figure 5 shows in detail the deviation for each test
data point. As a consequence, this findings indicates that
the goniometer sensor may be non-relevant in the described
setting: It is possible to derive the bow position from the
pressure sensors and, therefore, remove the goniometer from
the setup.

The results of the bowings classification experiments are
summarized in Table 2 and Figure 6. As a main result,
OMMs are able to correctly classify examples from all class
sets with high accuracy. For the 100 runs of class sets (A)
and (B), which are related to bowing detections, we found
a mean error rate of ≈ 2% and ≈ 3%, respectively, with a
standard deviation of ≈ 1% in both cases. OMMs provide
very stable recognition rates, and there seems to be almost
no dependency on the execution speed.

Additionally, OMMs detect incorrect bowing execution
with reasonable accuracy. For the class sets (C) and (D),
which are related to incorrect bowing angles, the classifiers
reached a mean error rate of ≈ 13% and ≈ 9% with a stan-
dard deviation of ≈ 9% and ≈ 2%, respectively. On the
other side, the classifiers achieve an error rate of ≈ 2% for
detection of incorrect bowing pressure in class set (E). This
indicates that identification of inaccurate bowings depends
on the type of the inaccuracy. However, even the highest
error rate of all 500 runs is below 20% (see Fig. 6) and
provides very good assumptions about if and what mistake
occurs.

5. APPLICATIONS
Pressure sensing has the advantage to measure the “prepa-

ration phase” before the bowing or stroke is executed, mean-
ing, the bow does not move, yet. This is a great help in ped-
agogical areas where it is hard to see pressure. Single finger
pressure visualizations can help to explain complex move-
ments and movement preparation phases for simple Detache

class sets classes error rate

mean std

(A) MCF, DCF, SCF 0.02 0.01
(B) MCS, DCS, SCS 0.03 0.01
(C) DCF, DIA>90, DIA<90 0.13 0.02
(D) MCF, MIA>90, MIA<90 0.09 0.02
(E) MCF, MIA+, MIA− 0.02 0.01

Table 2: Classification results for different class sets.
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Figure 6: Box plots of the error rates for each class
sets from 100 runs. The x-axis denotes the error
rate and the y-axis the class set.

strokes for beginners or Martele and Spicatto strokes for ad-
vanced students. From a technical point of view, the data
enable to recognize bowing types even before the movement
itself starts.

The data allow the prediction of parameters, such as bow
position, type of bow stroke and inaccuracy in the execu-
tion. Seeing the pressure and the distribution of the pres-
sure between the fingers allows further examination of how a
movement is prepared, executed, and post-processed. Even
minuscule balancing moves of the fingers during all of these
three phases can be analyzed. Especially during the prepa-
ration phase and the post-processing phase where nothing
can be hear, every finger can be examined exactly. This
“force-loupe” uncovers otherwise hidden pressure patterns
and supports the teacher and student in understanding and
learning of special bowing techniques like Martele, Spicatto,
and Detache, and prevent trembling and cramping.

5.1 Cramping, Jitter, and Nervousness
Cramping is detected by setting certain pressure levels

as threshold, whose excess trigger visual or auditory feed-
back. Even jittering is detected, which which the player
can smoothing by activating single fingers. Our experi-
ence is that the better the execution of a technical task
the smoother the pressure values. This applies to bowing
and left hand scenarios, especially at position shifts. Of-
ten single fingers start to cramp or tremble, which can lead
to uncontrolled vibrato, position shifts, or trembling of the
whole bow. Especially when there are slow bowing strokes,
“bow trembling” is a well-known problem, which sometimes
can be decreased by activating single fingers.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

275



5.2 Extended Scores
Left hand pressure sensing provides additional parame-

ter, which can be used for sound effects, a second voice, or
new switching methods for extended scores. For example
the position and the pressure of the thumb in the left hand
allows on the one hand thumb-steered real-time interaction
with electronic peripheries like computers and synthesizers,
on the other hand switching, manipulating and mixing of
sound effects, accompaniment and 3d-spatial sound posi-
tion.

5.3 Teaching, Playing, and Exercising
Visualizing the pressure distribution enables a better anal-

ysis and understanding of movements, since it allows to see
the course in addition to its audible effects. This means
e.g. you can hear an inaccurate left hand position change,
but not, where the hand coordination goes wrong to cause a
bad sound. Pressure changes of the fingers give a hint where
to investigate the cause-and-effect chain. Furthermore, the
good results of bowing type and accuracy recognition sup-
port the students in every-day exercising situations, espe-
cially if the accuracy decreases, caused by fatigue.

5.4 Efficient Playing
Many students play with too much force in the left hand,

which can be measured and visualized with our system. The
correct grasping force allows more efficiency and usually
higher playing speed combined with less tiredness. Appro-
priate feedback can help to reduce physical playing costs by
supporting the player to optimize the applied finger forces,
which is very important for professional players who have
to play for many hours.

6. CONCLUSIONS
The combination of single finger pressure measurements

and advanced data mining techniques show a promising way
of recognition of different bowing styles, left/right coordi-
nation, cramping detection, and many more possibilities as
information source for useful tools for every-day exercising
and teaching.

The full potential of this measuring method is only tapped
so far. Better visualization methods and a stand-alone em-
bedded solution will be the next steps. Since gesture is a
very important part in teaching and explaining the complex
movements, we have developed our system to allow pres-
sure data visualization, especially in complex preparation
and execution phases of a bowing or movement in general.

In combination with position recognition and accelera-
tion sensors, many important parameters can be detected.
Our pressure and force sensors also provide many more pos-
sibilities for new music compositions in combination with
extended scores and simplified real-time interaction within
electronic environments. In this ares the main goal will be
the integration of the pressure sensors in common musical
instrument playing modes and gestures.
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