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ABSTRACT
The number of artists who express themselves through mu-
sic in an unconventional way is constantly growing. This
trend strongly depends on the high diffusion of laptops,
which proved to be powerful and flexible musical devices.
However laptops still lack in flexible interface, specifically
designed for music creation in live and studio performances.
To resolve this issue many controllers have been developed,
taking into account not only the performer’s needs and
habits during music creation, but also the audience desire to
visually understand how performer’s gestures are linked to
the way music is made. According to the common need of
adaptable visual interface to manipulate music, in this pa-
per we present a custom tridimensional controller, based on
Open Sound Control protocol and completely designed to
work inside Virtual Reality: simple geometrical shapes can
be created to directly control loop triggering and parameter
modification, just using free hand interaction.

Keywords
Glove device, Music controller, Virtual Reality, OSC, con-
trol mapping

1. INTRODUCTION
In the last decade digital music has become one of the

most important means of artistic expression, sometimes in
an unconventional way. Many contemporary artists do not
make use of keyboards or other common instruments, what
they strictly need to create music, in studio or at home,
is just a laptop and, in some cases, they even perform live
using no other devices. However surfing on the web it is
very common to come across digital music communities,
where people ask suggestions and share projects and ex-
pertise about musical devices: web sites like CDM1 and
MONOME2 host different kind of people (e.g. musicians,
programmers, hardware skilled people) that work together
to better exploit and even build musical instruments and in-
novative controllers. Indeed most of the popularity of these
web sites comes from the newly created devices, showed in

1http://createdigitalmusic.com/
2http://monome.org/
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action during stunning live performances or studio record-
ings.

What is the reason for all this effort in creating digi-
tal music and devices? As discussed by Jordà [6] the lap-
top+mouse+MAX trinomial is characterized by a very high
Macro diversity and represents one of the more generic and
versatile instruments; furthermore the intrinsic customiz-
able nature of this instrument permits to have fine control
of any structural variation, determining high Middle and
Micro diversity too. These are wonderful features for a mu-
sical instrument, and this partly explains the world interest
in laptop music; but in a previous work by Jordà [5] big
relevance was given to the instrument efficiency and to the
control input complexity: in music software precision and
range are really cutting-edge features, but the set of ges-
tures that permit us to control them is very scarce, and
based on general purpose interfaces, not designed for mu-
sic creation (e.g. mouse and laptop keyboard), and also
unable to show to the audience the mechanisms by which
the music was created [15]. Consequently, an ever grow-
ing number of musicians feel the necessity to create digital
music in a very direct and personal way, controlling hard-
ware and software resources with custom highly efficient
interfaces; this trend is witnessed but the rich variety of
custom controllers that is possible to connect to our laptops
[4][11][14][1]. Some of these brand new controllers proved to
be particularly well designed and ground-breaking, propos-
ing some fresh methodologies to interpret digital music cre-
ation; today their usage is not limited to a small number
of ”digital fanatics”, but it is wide spread into the whole
underground music scene, and beyond: recently worldwide
artist like Nine Inch Nails and Daft Punk performed using
Monome and Lemur3 controllers, two of the more aston-
ishing devices coming from the new wave of digital music
movement.

According to the common need of unconventional ways to
express ourselves through music, in this paper we present
a custom tridimensional controller, based on Open Sound
Control (OSC) protocol and completely designed to work
inside Virtual Reality (VR): the surrounding virtual ambi-
ent can be modified through free hand interaction, affecting
music parameters according to the chosen mappings; ob-
jects can be moved and triggered according to the posture
of the hand. With this project we want to compound the
concept of 3D music controller with the concept of 3D vi-
sual generator, proposing a new kind of performances where
audio and visuals are perceived as a unique and solid piece
of art, both for musicians and for the audience.

3http://www.jazzmutant.com/
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2. RELATED WORKS
The VR controller we developed permits to create some

simple geometric shapes and to define arbitrary motion and
trigger metaphors. In literature a metaphor is an associa-
tion among human gesture, graphic appearance and sound
variation. We could consider mappings (the links between
the various streams of controller output and the input pa-
rameters of synthesis engines [7]), as the part of each meta-
phor that is directly related with sound. Metaphors are a
key concept when dealing with instruments and controllers,
as many researches can demonstrate.

In Maki-Patola et al. [8] four gesture controlled virtual
instruments were developed starting from four physical mu-
sic instruments. Authors decided for four fixed metaphors
that granted a realistic play, using two wired data gloves.
The heaviest difference from real playing was the lack of
tactile feedback. More unconventional ways of interaction
were presented by Rodet et al. [12], Campbell et al. [2] and
Neaf and al. [9], where, according to the context, it was
possible to define various metaphors, which lead to different
implementations, more or less close to reality. Particularly,
in Neaf et al. [9] the authors introduce the possibility to
change volume and position of sound sources just pinching
virtual objects.

An interesting project is presented by Voto et al. [13],
where users can explore and manipulate visual elements,
generating different musical outputs, constructing and de-
constructing some reproduction of Kandinsky’s paintings;
exploiting the intrinsic synaesthetic art of the painter, colors
and shapes are associated to specific instruments, chords,
and rhythms. This work shares many features with our VR
interface, but what a controller has to assure is the possibil-
ity to completely map control inputs onto sound parameter
variations, according to the current performer’s needs. In
Petersen at al. [10] a hands-free gesture-based control in-
terface is presented, describing in particular a set of virtual
controllers that users can create, compound and map to
control the music output. These controllers are 2D rep-
resentations of common interfaces (i.e. trigger pads and
faders).

3. EQUIPMENT
We designed our controller on a 4x2m2 powerwall, pro-

jected by two Christie Mirage S+ 4000 projectors, syn-
chronized with StereoGraphics CrystalEyes active shutter
glasses. We use a Sun workstation (dual core AMD Opteron,
processors 2218, 2.60 GHz, 2.50 GB RAM) with Windows
XP Professional, Nvidia Quadro FX 4600 video card and
M-Audio Profire 2626 audio interface.

We use VRMedia XVR4 as main software, to handle
graphics, scene behavior and input/output data sending.
Devices and software exchange data with the main appli-
cation through XVR internal modules written in C++ and
Python.

XVR natively supports tracking systems: we use the In-
tersense IS-900 inertial-ultrasonic motion tracking system
to track user’s head position inside the Virtual Environ-
ment (VE). In order to perform dislocated multi-point mo-
tion capture we set up an Optitrack FLEX:100 system com-
posed by 12 infrared cameras: doing so it is possible to track
hands and fingers using small light-weighted passive mark-
ers.

Our aim was to create a controller characterized by an in-
terface that could completely involve the user and her/his
senses, grounding on the high resolution and flexibility of
OSC. Unfortunately the most used music software, like Logic

4http://vrmedia.it/Xvr.htm

Pro5, MainStage6 and Reason7, do not still support this
powerful protocol; hence we decided to exploit LiveAPI re-
lease, an un-official package but delivered by Ableton8 it-
self. In this way, using Ableton Live 8 and LiveOSC, which
works as an OSC server for Live, it is possible to operate
a full bi-directional OSC data exchange between Live and
our application (Figure 1).

Figure 1: XVR and Ableton Live communication
schema: on both sides serialized data are formatted
by external modules.

4. USER INTERFACE

4.1 Hand Tracking
What is primary conveyed by the user interface we cre-

ated is the possibility to quickly switch among four differ-
ent commands: translation, triggering, un-triggering and
de-selection of a 3D object. We decided to activate each
command according to the posture of the hand that is in-
teracting with the object. This means that each command
it is not activated counting the number of fingers that are
currently touching the object, but detecting instead which
is the current posture as soon as interaction begins. This so-
lution, compared to a simple finger counting algorithm, as-
sures a more accurate interaction, permitting users to con-
centrate less on how many fingers are exactly on the object
surface, and more on the desired music output.

4.2 System Set Up
The stereophotogrammetric motion tracking system we

use is able to retrieve position of detected markers (point
cloud) and position and orientation of customizable rigid
bodies, composed by at least three markers.

It is very difficult to track the position of a specific marker
inside a point cloud since markers are indexed according
to the order of detection: this means that at each frame
we may have a different id for the same marker. To over-
come this issue we combined the use of rigid bodies and free
markers, and we exploited some physical limitations of fin-
ger movements to obtain additional data on hand posture.

The set up of hand markers is very simple: users have
been attached on the hands (using velcro straps) two small

5http://www.apple.com/it/logicstudio/logicpro/
6http://www.apple.com/it/logicstudio/mainstage/
7http://www.propellerheads.se/products/reason/
8http://www.ableton.com/

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

298



rigid bodies, a three marker rigid body for the right hand,
and a four marker rigid body for the left hand. Doing so, it
is always possible to univocally retrieve position and orien-
tation of both hands. A small strip marker is attached on
the last phalanx of index, middle and ring fingers of both
hands. The absence of cables and heavy components per-
mits users to move hands and fingers in an unconstrained
and natural way [3].

In the VE an invisible box is positioned around each hand,
with its top face adjacent to the plane passing through the
back hand markers: this works as a convex hull for the fist
of the user, so that postures could be distinguished counting
the number of flexed fingers. Hand and finger dimensions
differ from person to person, and, even if velcro strap can
be easily adapted to each user, it is impossible to design a
standard box that is never too large or to narrow to exactly
contain the fist; to do so a calibration session is required.
To avoid this annoying solution, we analyzed how phalanxes
flex towards the palm in order to choose a heuristic to dis-
tinguish flexed fingers from stretched fingers, in the four
postures we want to detect.

When holding a fist the last phalanx of each finger is in
the middle of the palm, just below the knuckle line. This
happens regardless of the dimension of the hand. Even
when holding something smaller than the hand itself, fin-
gers can be still considered flexed: there is no contact with
the palm, but last phalanxes are again below the knuckle
line. According to these remarks we decided to label as
”stretched” each finger that is over the knuckle line or out
of the volume between the back of the hand and a plane
parallel to it, 8 cm far. We designed the hand hull boxes
to quickly perform this double check on finger status. The
dimension of the two boxes are 12cm x 8cm x 8cm; position-
ing the top most markers of the rigid bodies on the knuckle
line, each box covers the volume where fingers move during
bending. In this way, each time a finger is detected inside
a box, both stretch conditions are false.

4.3 Detection Algorithm
The algorithm we are presenting permits to recognize five

natural hand postures (Figure 2): single finger pointing,
that is the common pointing posture with closed fist and
the index finger stretched; two finger pointing, with index
and middle finger stretched; three finger pointing, with in-
dex, middle and ring finger stretched; open hand, with in-
dex, middle, ring and pinkie fingers stretched; fist (detected
but not used), with all fingers flexed. As thumbs are not
tracked, all postures do not depend on their positions. The
algorithm does not require any calibration session.

Since markers belonging to a rigid body are also included
into the point cloud, the first part of the algorithm aims
at distinguishing finger markers from back hand markers.
The process is composed by two simple and very direct
steps: in the first step the algorithm checks whether the
distance from the current marker to each back hand marker
is greater than a threshold (5 mm, minimum detection error
of the tracking tool). In the second step we exploit phys-
iological constraints on finger-hand distance to assign the
finger: since fingers cannot move farther than about 20 cm
from the respective hand, the two distances from the hand
barycentres are compared, in order to define the point as a
right or left hand finger. If the marker is too close or too
far from both hands, the finger is not assigned. This is a
drawback of the current algorithm, in fact until now it is
only possible to interact with the VE if one hand is at least
20 cm far from the other.

The second part of the algorithm effectively recognizes
the hand current posture, counting the number of fingers

Figure 2: Marker configuration for the four hand
postures. Thumb is not tracked, hence its position
has no influence on the detection.

that are inside the hand hull; hence for both hands all the
respective fingers are cycled. So far the algorithm does not
recognize which are the stretched fingers, but only their
number; this limitation produces some redundancy in pos-
ture recognition: for example the single finger pointing pos-
ture is detected if just any of the three fingers is stretched,
and the other two are flexed. Although we intend to resolve
this issue, it does not affect the usability of the interface,
because all of the redundant postures (e.g. the middle-
ring two finger pointing posture, the ring finger pointing
posture) reveal to be unnatural, even difficult to adopt by
most people. When detected, each of the four postures is
associated to a specific interaction command among trans-
lation (one finger), triggering (two fingers), un-triggering
(three fingers) and de-selection (four fingers, used to stop
interaction at all).

When working on finger tracking it is important to notice
that a flexed finger is hardly detected by infrared cameras,
even if the scene is caught from different points of view:
for example, each time we assume a pointing posture, our
thumb moves over the flexed fingers, hiding the phalanxes
where we use to set finger markers. We exploited this oc-
currence considering a non-detected finger as a flexed finger.
So, a hand is assumed to be in a fist posture if all of its de-
tected fingers are flexed, as well as if none of its fingers are
detected.

5. VIRTUAL CONTROLLER

5.1 Controlling Objects and Music
The system provides full control of an Ableton Live set.

When the application is launched the user is presented two
panels that move together with her/him, containing inter-
active menus for object and mapping creation (Figure 3).
Menus are structured in pages and voices. Menu voices can
be highlighted just moving a finger on their surfaces, and
selected using two fingers (i.e. two finger hand posture).

The object menu is showed on the left panel and can
be used with the left hand only; it permits to create and
delete interactive 3D shapes, and, when used together with
sound menu, to edit mappings. Selecting the ”Create ob-
ject” voice, it is possible to choose from the ”Create ob-
ject” page the shape to create, among ”Sphere”, ”Cube”
and ”Cylinder”. Shapes thus created appear in front of the
user and can be freely moved inside the VE. Objects can be
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Figure 3: Interactive panels. Menu voices can be
highlighted and selected moving one or two fingers
over text surfaces.

permanently deleted using the ”Delete object” voice in the
main object menu.

The sound menu, showed on the right panel, is a much
more powerful graphic user interface, structured in a com-
plex dynamic way. However its use results to be very di-
rect and simple. When the application is launched, all the
track information of the current Live set are retrieved by
the Python OSC module, and stored in a complex XVR
structure (see next sub-paragraph). The VR controller per-
mits to map the triggering of all the clips contained in Live
tracks, and all the parameters contained in track devices,
including general controls like volume, panning, mute and
solo. The amount of stored data strictly depends on the
complexity of the current Live set: some musicians work
with many loops but few devices, concentrating on loop
pattern combination; others, instead, prefer using a small
set of loops, exploiting the various sound morphing possi-
bilities provided by effects, synthesizers and other devices.
This last approach determines a huge set of data to be re-
trieved by the application, so we developed the sound menu
structure to permit a fast navigation and easily find the
desired clip/parameter to map, even when working with
hundreds of information.

The first ”Sound menu” page divides clip launching from
parameter mapping. In both cases the information set is
divided into sub-pages: in ”Clip launching” pages the list
of tracks containing clips is first presented, then, selecting
a track, it is possible to have access to all the contained
clips. ”Parameter mapping” pages contain the list of track
containing devices, the list of devices in each track, and
the list of all the parameters in each device. All tracks,
devices, parameters and clips are identified by the name
given by the user within the Live set: this feature, which
really speeds navigation up, is based on OSC and LiveAPI
callback functions. Once selected the desired clip or param-
eter, the object panel has to be used to complete mapping
procedure.

General mapping procedure is summarized in Figure 4.
Clip launching mapping is very simple: as described on the
object panel, the user has to select which object to con-
nect with the selected clip, just choosing it with two fin-
gers. When mapping is successfully concluded, each time
the object is touched with two fingers, the clip is triggered,
while three finger selection forces clip to stop. Loop and
quantization rules are the same as inside the current Live
set.

Parameter mapping deals with the variation of floating
point values between ranges, for this reason it is a more
composite process. The key concept of the VR controller is
to map the variation of a sound parameter onto the transla-
tion of an object between two coordinates (a maximum and
a minimum) along a chosen axis. In this way each object

can work as a tridimensional fader, free to move inside the
volume of an invisible box, defined by the ranges set by X,
Y, and Z axis mappings. When mapping for the first time a
parameter onto a specific object, the object panel asks the
user to select a reference point that works as barycentre for
the tri-axial translations. Using the single finger posture it
is possible to move the object to the desired position, defin-
ing a reference point that can be anyway edited in further
interactions. The next steps consist in selecting an axis and
a maximum or a minimum coordinate, as the two ranges
are mirrored. From now on the object position is converted
into a floating point value, in the range of the chosen device
parameter, and sent via OSC to Live.

The final result is a maximum of 50 virtual objects that
can be moved and triggered with both hands, each control-
ling up to 20 clips, and 20 parameters, divided onto the X,
Y and Z axes (sharing reference point and ranges). The per-
former is clearly immersed into an interactive world, built
according to her/his own preferences and needs during mu-
sic creation (Figure 5); her/his gestures can be easily linked
to the mechanisms by which the music is made, creating a
visible tridimensional interaction with sound. The system
is affected by an overall latency of approximately 10 ms,
caused by the infra-red tracking tool.

Figure 4: Clip and parameter mapping flow chart.

5.2 OSC Data
To execute Python scripts inside XVR we used an exten-

sion module called PYXVR9. Although XVR supports UDP
communication, we decided not to format data, as requested
by OSC protocol, directly within XVR scripts, exploiting
instead Python as a glue language to manipulate messages
to and from LiveAPI. In this way we send raw data (un-
formatted XVR data types) to Python module using UDP
port 1246; Python module performs the four byte align-
ment necessary to communicate through OSC, and sends

9http://wiki.vrmedia.it/index.php?title=PYXVR
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Figure 5: An user controlling two spheres as virtual
3D faders with both hands.

the message to Live, using UDP port 9000. When LiveAPI
listeners return a controller change message from Live, data
are sent to Python module on UDP port 9001, translated
into XVR data types, and finally forwarded to XVR on port
1245.

The music menu of the VR controller includes much in-
formation about the current Live set, including the total
number of devices and the name and the ranges of each pa-
rameter. These data are retrieved using a chain of functions
that produce LiveAPI callbacks. All data sent by callbacks
are received and stored in XVR by a single target function.
A simple example is the string ”/live/tracks”, which forces
LiveAPI callback that sends the total number of tracks in
the current set. Each callback sends the requested data
appended to a unique tag string: this tag is useful to un-
derstand what data has just been received, especially when
many callbacks are pending.

All tracks are cycled at the application start up, in order
to retrieve information about clips, devices, parameters and
track status (i.e. volume, panning, mute, solo and arming).
All data are stored in matrixes, indexed according to the
number of the related track/clip/device/parameter. Doing
so, a parameter is univocally defined by three integers: the
number of the current track, the number of the current
device, and finally the number of its position among all
the other device parameters (Figure 6). The indexes of
each mapped clip/parameter are stored within the object
they have been mapped onto, so that, each time the object
is triggered or moved, the correct OSC messages could be
sent to Live interface.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented a virtual music controller,

which supports OSC communications to map status and
position of 3D objects on Live set parameters. The main
characteristic of this system is a complete freedom in cre-
ating and associating virtual objects, according to the per-
former’s preferences. The interactive VE thus created fully
surrounds the user, creating a visible tridimensional inter-
action with sound.

Right now many features of the VR controller have to be
enhanced, starting from mappings: although the mapping
procedure is very direct, there is not yet the possibility to
visualize all the clip/object and parameter/object connec-
tions, as showed in music software through MIDI browsers.
However MIDI browsers do not manage in creating a quick

Figure 6: Using LiveOSC it is possible to navi-
gate through the current Live set structure, directly
within the Virtual Environment.

reminder that links each parameter to the related controller.
This happens because using hardware interfaces the only
way to associate a physical knob or a fader to a software
parameter is exploiting the MIDI CC message that is being
currently used: there is not a direct visible connection be-
tween hardware and software, just a univocal numeric code.
This kind of reminders can hardly be useful during a perfor-
mance. Our system works instead with a set of completely
software controller surfaces, 3D shapes that can be modi-
fied with textures and textual cues to display all the current
associations: doing so all the information are always visible
to the performer.

The more postures can be detected the more complex and
expressive metaphors can be applied, in order to permit a
very customizable and artistic music creation/control envi-
ronment. For this reason, future developments also aims
at tracking both thumbs; doing so many other natural pos-
tures could be recognized, and grasping, pinching and ro-
tation could be used to manipulate meshes in a very direct
and natural way.

A battery of tests is necessary to perform some impor-
tant evaluations: we have already planned different sessions
where digital music artists will be able to play and control
their own music set (e.g. loops, effects) using our virtual
interface. The VR controller was not designed as an alter-
native to hardware control surfaces, but as an additional
device: subjects will be free to experiment cross-modality
control, blending virtual and real devices into a personal
live set. Analysis of numeric data is necessary to evaluate
some system characteristics (e.g. efficiency, usability); fur-
thermore questionnaires and artists’ suggestions are useful
to define which are the benefits and the shortcomings of
virtual manipulation of music.
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