

Automatic Rhythmic Performance in Max/MSP:

the kin.rhythmicator

George Sioros

University of Porto (Faculty of Engineering)
and INESC - Porto

Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal
gsioros@gmail.com

Carlos Guedes
University of Porto (Faculty of Engineering)

and INESC – Porto
Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal

cguedes@fe.up.pt

ABSTRACT
We introduce a novel algorithm for automatically generating

rhythms in real time in a certain meter. The generated rhythms

are "generic" in the sense that they are characteristic of each

time signature without belonging to a specific musical style.

The algorithm is based on a stochastic model in which various

aspects and qualities of the generated rhythm can be controlled

intuitively and in real time. Such qualities are the density of the

generated events per bar, the amount of variation in generation,

the amount of syncopation, the metrical strength, and of course

the meter itself. The kin.rhythmicator software application was

developed to implement this algorithm. During a performance

with the kin.rhythmicator the user can control all aspects of the

performance through descriptive and intuitive graphic controls.

Keywords

automatic music generation, generative, stochastic, metric

indispensability, syncopation, Max/MSP, Max4Live

1. INTRODUCTION
In this paper, we propose an approach for real-time rhythm

generation based on a stochastic model. This approach

contrasts with recent ones involving evolutionary methods such

as genetic algorithms [1][2], cultural algorithms [3] or

connectionist approaches [4]. In our approach, the algorithm

produces a rather static output with slight variations due to the

stochastic nature of the algorithm that is characteristic of a

certain meter and metrical subdivision level defined by the

user. However, the output does not belong to a specific musical

style. It is up to the user to modify and control the output of the

algorithm during a performance by altering descriptive musical

parameters that produce perceivable changes in the output such

as the density of events per bar, the amount of syncopation, the

degree of metrical strength, the amount of variation in

generation, and of course the meter itself. In this sense, the

algorithm behaves like a musical companion that responds

musically to requests made by the user in musical terms.

 kin.rhythmicator is built around two Max/MSP [5] externals

(kin.weights and kin.sequencer) that implement the algorithm.

It exists as a Max/MSP bpatcher and as a Max4Live [6] device.

2. THE ALGORITHM
The algorithm has two distinct phases. First, the meter entered

by the user is subdivided into the number of pulses of a

specified metrical subdivision level. Each pulse is assigned a

weight value according to its importance in the meter so that a

pattern characteristic of the meter emerges. In the second phase,

the weight values are used to generate a stochastic performance.

 These values are processed and mapped to probabilities of

triggering events and their amplitudes in order to enforce or

weaken the metrical feel, syncopate according to the specified

meter and control the variations in the generated rhythm. The

user controls these values indirectly through graphic controls.

This gives a very intuitive control over these parameters and

over the real-time rhythm generation. In the upcoming sections

we describe in detail the steps taken to achieve these results.

2.1 Calculating the Weights
The calculation of the weights of the pulses is articulated in two

phases: sorting the pulses by metric indispensability according

to Clarence Barlow's metric indispensability formula [7] and

calculating the weights based on the stratification levels.

 These weights can be thought of as a measure of how much

each pulse contributes to the character of the meter. A direct

mapping of the weights to probabilities of triggering events

gives rise to simple rhythmic patterns expected for the given

meter. Variation in the performed rhythms is an innate quality

of the algorithm arising from the use of probabilities in the

performance.

2.1.1 Sorting by Metric Indispensability
The user inputs meter information in the form of a time

signature and a metrical subdivision level which defines the

number of pulses the measure is divided into – e.g. a 3/4 meter

at the 16th note metrical subdivision level has 12 pulses. Based

on this information the meter is stratified by decomposing the

number of pulses into prime factors (see Figure 1). Each prime

factor describes how each stratification level is subdivided. The

stratification level at index 0 is always a whole bar (prime

factor 1). Different permutations of the prime factors describe

different metrical hierarchies distinguishing this way between

simple and compound meters like 3/4 and 6/8 – although they

contain the same number of subdivisions at the sixteenth-note

level (12) the first is decomposed as 1x3x2x2, while the second

as 1x2x3x2.

 Barlow´s indispensability [7] takes the prime factors of each

stratification level and sorts the pulses in the meter according to

how much each pulse contributes to the character of the meter,

from the most indispensable to the least important.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

NIME’11, 30 May–1 June 2011, Oslo, Norway.

Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

88

Figure 1. Stratification of a 3/4 meter to the 16th metrical

level. At the bottom, the ranking according to Barlow's

metric indispensability formula is shown.

2.1.2 Calculating the Weight Based on the

Stratification Level
We assign to each pulse a weight based on the stratification

level it belongs to and its indispensability ranking. Each level i

has its own distinct range of weights Wi (see Figure 2):

 ii
i RRW ,minmax, 1 (1)

where R is a parameter related to the density of events of the

resulted performance and ranges between 0 and 1. Equation (1)

implies that the calculation of the ranges begins with the

highest stratification level for i = 1 and continues until it

reaches the metrical level defined by the user.

 The pulse with the highest ranking value in each stratification

level, i.e. the most indispensable, is assigned the maximum

weight corresponding to the stratification level. The rest of the

pulses in the stratification level are assigned smaller weights in

the same range following a linear distribution. According to

equation (1), for R = 1 all pulses have a weight equal to 1,

while for R = 0 only the 1st stratification level survives.

Figure 2. Weights calculated for a ¾ meter stratified to the

16th note level. The ranking of the pulses according to

Barlow’s formula is indicated below the assigned weights.

2.2 Stochastic Performance
Once the weights of all the pulses are calculated, a performance

is generated by cycling through the pulses comprising the

metrical cycle and deciding if an event will be triggered in each

position or not. During performance, several aspects pertaining

its style can be specified, such as the amount of syncopation,

the density of events, the metrical strength, the amount of

variation, and the events’ articulation (staccato or legato).

2.2.1 Triggering Events
The probability of triggering an event on a certain time position

is derived by the corresponding weight according to a simple

exponential relation:

M

Wnp (2)

where Wℓ is the weight assigned previously to pulse ℓ, n is a

normalization factor, and M is a user defined parameter related

to the metrical feel and ranging between 0 and 1. The above

equation functions as a “probability compressor”, where for

values of M close to 0, the differences in the probabilities are

smoothed out, while for values close to 1, the original

probabilities arise (see Figure 3).

 The amplitudes of the triggered events are calculated

independently from the probabilities. They are directly

proportional to the pulse weights at the strongest metrical feel.

2.2.2 Generating Syncopation
Syncopation is introduced in the generated rhythm by

“anticipating” pulses in stronger metrical positions. Events are

triggered according to the probability assigned to the

immediately following next pulse. At the same time, the

amplitudes are also anticipated, so that the amplitude of a

syncopated pulse sounds louder, thus creating a dynamic

accent. The user controls the probability PS of anticipating a

pulse which gives control over the amount of syncopation in

the resulted rhythm.

 Restrictions are imposed in order for the generated result to

be more musical. A mechanism forces syncopation to stop

when too many consecutive pulses are anticipated; otherwise

for values of PS close to 1 the resulted rhythm would be just an

offset version of the non-syncopated one. An “off-beat”

syncopation effect is achieved by resolving consecutive

anticipated pulses to the next stressed pulse. Moreover, when

only a couple of pulses are anticipated, an event triggered on

the following stressed pulse would weaken the feeling of

syncopation. In this case the stressed pulse is muted and will

not trigger an event, independently from the corresponding

probability.

2.2.3 Controlling Density
The density of events D refers to how many events are triggered

per cycle. On average this is equal to the sum of the

probabilities in all pulses:

pulses all

pD (3)

 The density of events and the metrical feel are by nature

interrelated. This can be easily seen in extreme cases such as

when the density is zero. Zero density means that no events are

triggered which is, by definition, a non-metrical state. This

degenerate rhythm could belong to any meter and tempo.

Similarly, the metrical feel is weakened when events are

triggered on every pulse, in other words when the density is

maximum, and thus the meter can only be inferred from the

amplitudes of the triggered events.

 The density of events can be controlled by the parameter R in

equation (1). Although the value of R cannot be used as a

measure of the actual density of events it serves as an effective

way of controlling it without affecting the metrical feel. The

probabilities are distributed to the pulses taking into account

the stratification level they belong to, preserving the hierarchy

and structure of the meter even for low values of R, keeping

this way a strong metrical feel when the density is low. On the

other hand, the amplitudes of the triggered events are not

affected by the changes in the parameter R. This way, when the

density reaches its maximum (R = 1) the character of the meter

is made evident by the amplitudes of the triggered events.

2.2.4 Controlling Metrical Strength
The strength of the metrical feel depends, on the one hand, on

the probabilities assigned to the pulses and, on the other hand,

Figure 3. Probabilities are exponentially scaled.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

89

on the amplitudes of the generated events. A sense of meter is

established when the events are triggered in important pulses

(the most indispensable ones). The way the weights are

calculated ensures that the more important a pulse is, the more

often an event will be triggered in that position and this event

will have an higher amplitude accordingly. The more the

indispensability relation is preserved among the pulses, the

stronger the metrical feel is. When all pulses have similar

probabilities of triggering events and the amplitudes of the

triggered events are random, not organized and do not establish

a pattern, the resulted rhythm sounds random, not belonging to

a specific meter.

 In order to effectively control the strength of the metrical feel,

the probabilities and amplitudes of the triggered events need to

be adjusted simultaneously. The probabilities can be directly

manipulated through the exponent M in equation (2). The

normalization factor n ensures that the density of events D is

not affected by the changes in the exponent M. In order to

weaken the metrical feel as the value of M decreases, the

amplitudes also get randomized but in a way that the

distribution of amplitudes over time is kept constant.

 Figure 4 summarizes the main aspects of the performance and

their relation to the parameters of the algorithm.

Figure 4. A summary of the basic user controls and the

corresponding parameters in the algorithm.

2.2.5 Generating Variation
The generated rhythm varies and is non-repetitive due to its

stochastic nature. The amount and type of variation can be

controlled by restricting the mechanisms described above,

namely the triggering of events and their syncopation.

 At each pulse, two different decisions are made. First, it is

decided whether the pulse will anticipate the next one

according to the amount of syncopation set by the user. Second,

the triggering of an event is decided according to the

probability of the corresponding pulse or the following one

when anticipating. The variation in the resulted rhythm is

controlled by restricting the number of such decisions that are

allowed to change from one cycle to the next.

 Two modes of variation have been implemented: the stable

and the unstable. In the stable mode, the variation revolves

around an initial pattern which is randomly generated. In the

unstable mode, the rhythm departs from an initial pattern and

follows a random walk. It evolves constantly into new patterns.

An initial pattern is always generated at the beginning of the

performance but the user can re-generate a new random pattern

at any time, creating an abrupt change in the performance.

2.2.6 Events’ Articulation
The duration of the triggered events can be either fixed, in

staccato mode, or can extend until the triggering of a new

event, in legato mode. Syncopation is enhanced in legato mode

by favoring the release of held events on stressed pulses even

when no new event is triggered.

2.3 Controlling the Performance:

the complexity space
The metrical feel, the amount of variation and the amount of

syncopation form what we call a “space of complexity”. A

rhythm is considered to be simple, when the metrical feel is

strong, variation is kept to a minimum and there is no

syncopation. On the other hand, when the metrical feel is weak

or when syncopation is introduced into the rhythm or when the

rhythm is constantly changing, then the rhythm is perceived to

be more complex. Rhythmic complexity in this sense is

attributed to combinations of different aspects of the rhythm:

metrical strength, syncopation and variation.

Figure 5. Contour plot of the functions used in the

complexity plane to map position coordinates to the

parameters of the algorithm. At the left side a contour of the

expected complexity of the generated rhythms is shown.

 We grouped the parameters of the algorithm related to

complexity into a two-dimensional map (see Figure 5). As one

moves away from the center the resulted rhythm becomes more

complex. The dependence of each parameter on the position in

the complexity map was empirically set, taking into

consideration some basic restrictions derived from the nature of

these parameters and our experience with various settings of the

algorithm. Some of these restrictions are: i) when the metrical

feel is low, syncopation is meaningless, ii) variation in the

syncopation decisions apply only when the amount of

syncopation is above a certain value, iii) when the amount of

syncopation is significant the syncopation feeling is weakened

by too much variation in the triggering decisions.

3. APPLICATIONS

3.1 Max/MSP Externals
The algorithm was implemented as two Max/MSP externals.

Several other externals and abstractions have been developed in

order to facilitate the use and implementation of the algorithm

into Max/MSP applications. All externals and abstractions are

completely cross platform, Windows and Mac OS.

 The first phase of the algorithm, namely the generation of

weights, is performed by the kin.weights external. The

parameter R of equation (1), which controls the density of

events, is directly fed into the external as a floating-point

number in the range [0, 1].

 The second phase, the triggering of events based on the

parameters mentioned in the previous section is performed

mainly by the kin.sequencer external. The weights calculated

by kin.weights are fed into kin.sequencer which generates a

performance by cycling through each pulse comprising the

metrical cycle and deciding if an event will be triggered in that

position or not. The amount of syncopation, the metrical

strength, and the amount of variation can be controlled by

respective messages to the external.

 A java script suited for the jsui Max/MSP object was

developed to visualize and improve user interaction with the

complexity space described in 2.3.

3.2 The kin.rhythmicator bpatcher
The kin.rhythmicator Max/MSP bpatcher abstraction was built

around the above externals. It is intended to be used in

Max/MSP based applications and installations which

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

90

implement some kind of rhythmic interaction. Such

installations can take the form of virtual musical instruments,

compositional tools or interactive installations. It is easily

integrated into Max/MSP patches. It can be controlled by

various devices, from simple MIDI controllers to complex

game controllers and is ready to directly trigger sound on any

MIDI enabled synthesizer.

Figure 6. The interface of the kin.rhythmicator application.

 The abstraction implements all the features of the algorithm

and has a compact user interface when loaded into a bpatcher

object (see Figure 6). All parameters of the algorithm can be set

during performance directly on the user interface, as messages,

or through the pattr system for storing preset files in Max/MSP.

 Single notes or chords can be fed to kin.rhythmicator in real

time making it follow a melody or a chord progression which

can be either pre-scheduled, performed in real time by a

musician or generated by some generative or analysis

algorithm.

 Several instances of the abstraction can be loaded at the same

time for generating several rhythmic layers. All instances can

be synchronized by the Max global transport. Also, one can

generate polyrhythms by synchronizing different instances of

kin.rhythmicator with different time signatures to the global

transport.

3.3 The Max4Live MIDI Device
We developed a Max4Live device that can be used as a

compositional and/or performance tool to dynamically generate

rhythms. All parameters can be controlled through MIDI,

automated with envelopes and saved together with the Live Set.

 The device is built as a MIDI FX device, which means it can

be loaded into a Live's MIDI track. It can be used alongside

VST or the Live’s instruments. More than one instance can be

loaded in the same or different MIDI tracks. The interface is

very similar to the Max/MSP bpatcher abstraction described

above (see Figure 6).

 The kin.rhythmicator max4Live device reads automatically

the time signature and the play position of the Live transport

and follows any time signature change in the song, so that there

is no need to explicitly set the time signature on each

kin.rhythmicator instance. All instances of the device are in

sync with the rest of the Live Set. An offset parameter allows

for a phase difference between each kin.rhythmicator and the

global transport.

 Two MIDI modes of operation have been implemented: thru

and listening. In thru mode, the MIDI input is forwarded

directly to the output without being changed. The generated

rhythm is output as MIDI note on/off messages according to the

MIDI note set on the kin.rhythmicator. In listening mode the

rhythm generated follows the melody or chord progression at

the input of the device.

4. CONCLUSION AND FUTURE WORK
The algorithm and applications introduced here present a novel

approach to automatic rhythm generation. Departing from a

preexisting metrical template containing the time signature and

metrical weight distribution, and the subdivision level, a user

can specify a performance controlling several musical

parameters. Instead of specifying in detail the rhythmic parts

and variations needed in a musical composition or

performance, one can use kin.rhythmicator devices to control

parts or the whole of the rhythmic section. These parts can be

thought of as constrained improvisations that take the place of a

detailed music score.

 The real time and intuitive character of the controls and

performance of the kin.rhythmicator helps in creating music

more responsive to user actions. Controlling the metrical

strength and density of events effectively has been made

possible by taking into account the hierarchical structure of the

meter in mapping the output of Barlow´s indispensability

formula to the probabilities. A syncopation algorithm based on

the anticipation of pulses that tends to keep a strong metrical

feel is introduced.

 Future development of the kin.rhythmicator algorithm and

devices include the development of intelligent agents, which

collaborate in generating a coherent output.

 The kin.rhythmicator Max/MSP application and Max4Live

device are available for download at our group website:

http://smc.inescporto.pt/kinetic/

5. ACKNOWLEDGMENTS
This research was done as part of the project “Kinetic controller

driven adaptive music composition systems”, (ref.

UTAustin/CD/0052/2008), supported by the Portuguese

Foundation for Science and Technology for the UT Austin|

Portugal partnership in Digital Media.

6. REFERENCES
[1] Bernardes, G., Guedes, C., Pennycook, B. “Style

emulation of drum patterns by means of evolutionary

methods and statistical analysis.” Proceedings of the

Sound and Music Conference, Barcelona, Spain, 2010.

[2] Eigenfeldt, A. “The Evolution of Evolutionary Software

Intelligent Rhythm Generation in Kinetic Engine.”

Proceedings of EvoMusArt 09, the European Conference

on Evolutionary Computing, Tübingen, Germany, 2009

[3] Martins, A. and Miranda, E. “Breeding rhythms with

artificial life.” Proceedings of the Sound and Music

Conference, Berlin, Germany, 2008.

[4] Martins, A. and Miranda, E. “A connectionist architecture

for the evolution of rhythms.” Proceedings of

EvoWorkshops 2006 Lecture Notes in Computer Science,

Berlin: Springer-Verlag, Budapest, Hungary, 2006

[5] http://cycling74.com/

[6] http://www.ableton.com/maxforlive

[7] Barlow, C. “Two essays on theory”. Computer Music

Journal, 11, 44-60, 1987

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

91

http://cycling74.com/
http://www.ableton.com/maxforlive

