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ABSTRACT 
We introduce a novel algorithm for automatically generating 

rhythms in real time in a certain meter. The generated rhythms 

are "generic" in the sense that they are characteristic of each 

time signature without belonging to a specific musical style. 

The algorithm is based on a stochastic model in which various 

aspects and qualities of the generated rhythm can be controlled 

intuitively and in real time. Such qualities are the density of the 

generated events per bar, the amount of variation in generation, 

the amount of syncopation, the metrical strength, and of course 

the meter itself. The kin.rhythmicator software application was 

developed to implement this algorithm. During a performance 

with the kin.rhythmicator the user can control all aspects of the 

performance through descriptive and intuitive graphic controls. 

 

Keywords 

automatic music generation, generative, stochastic, metric 

indispensability, syncopation, Max/MSP, Max4Live  

1. INTRODUCTION 
In this paper, we propose an approach for real-time rhythm 

generation based on a stochastic model. This approach 

contrasts with recent ones involving evolutionary methods such 

as genetic algorithms [1][2], cultural algorithms [3] or 

connectionist approaches [4]. In our approach, the algorithm 

produces a rather static output with slight variations due to the 

stochastic nature of the algorithm that is characteristic of a 

certain meter and metrical subdivision level defined by the 

user. However, the output does not belong to a specific musical 

style. It is up to the user to modify and control the output of the 

algorithm during a performance by altering descriptive musical 

parameters that produce perceivable changes in the output such 

as the density of events per bar, the amount of syncopation, the 

degree of metrical strength, the amount of variation in 

generation, and of course the meter itself. In this sense, the 

algorithm behaves like a musical companion that responds 

musically to requests made by the user in musical terms. 

 kin.rhythmicator is built around two Max/MSP [5] externals 

(kin.weights and kin.sequencer) that implement the algorithm. 

It exists as a Max/MSP bpatcher and as a Max4Live [6] device. 

 

2. THE ALGORITHM 
The algorithm has two distinct phases. First, the meter entered 

by the user is subdivided into the number of pulses of a 

specified metrical subdivision level. Each pulse is assigned a 

weight value according to its importance in the meter so that a 

pattern characteristic of the meter emerges. In the second phase, 

the weight values are used to generate a stochastic performance.  

 These values are processed and mapped to probabilities of 

triggering events and their amplitudes in order to enforce or 

weaken the metrical feel, syncopate according to the specified 

meter and control the variations in the generated rhythm. The 

user controls these values indirectly through graphic controls. 

This gives a very intuitive control over these parameters and 

over the real-time rhythm generation. In the upcoming sections 

we describe in detail the steps taken to achieve these results. 

2.1 Calculating the Weights 
The calculation of the weights of the pulses is articulated in two 

phases: sorting the pulses by metric indispensability according 

to Clarence Barlow's metric indispensability formula [7] and 

calculating the weights based on the stratification levels. 

  These weights can be thought of as a measure of how much 

each pulse contributes to the character of the meter. A direct 

mapping of the weights to probabilities of triggering events 

gives rise to simple rhythmic patterns expected for the given 

meter. Variation in the performed rhythms is an innate quality 

of the algorithm arising from the use of probabilities in the 

performance.  

2.1.1 Sorting by Metric Indispensability 
The user inputs meter information in the form of a time 

signature and a metrical subdivision level which defines the 

number of pulses the measure is divided into – e.g. a 3/4 meter 

at the 16th note metrical subdivision level has 12 pulses. Based 

on this information the meter is stratified by decomposing the 

number of pulses into prime factors (see Figure 1). Each prime 

factor describes how each stratification level is subdivided. The 

stratification level at index 0 is always a whole bar (prime 

factor 1). Different permutations of the prime factors describe 

different metrical hierarchies distinguishing this way between 

simple and compound meters like 3/4 and 6/8 – although they 

contain the same number of subdivisions at the sixteenth-note 

level (12) the first is decomposed as 1x3x2x2, while the second 

as 1x2x3x2. 

 Barlow´s indispensability [7] takes the prime factors of each 

stratification level and sorts the pulses in the meter according to 

how much each pulse contributes to the character of the meter, 

from the most indispensable to the least important. 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, to republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

NIME’11, 30 May–1 June 2011, Oslo, Norway. 

Copyright remains with the author(s). 

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

88



  

 

 

 

 
Figure 1. Stratification of a 3/4 meter to the 16th metrical 

level. At the bottom, the ranking according to Barlow's 

metric indispensability formula is shown. 

2.1.2 Calculating the Weight Based on the 

Stratification Level 
We assign to each pulse a weight based on the stratification 

level it belongs to and its indispensability ranking. Each level i 

has its own distinct range of weights Wi (see Figure 2): 

   ii
i RRW ,minmax, 1    (1) 

where R is a parameter related to the density of events of the 

resulted performance and ranges between 0 and 1. Equation (1) 

implies that the calculation of the ranges begins with the 

highest stratification level for i = 1 and continues until it 

reaches the metrical level defined by the user. 

 The pulse with the highest ranking value in each stratification 

level, i.e. the most indispensable, is assigned the maximum 

weight corresponding to the stratification level. The rest of the 

pulses in the stratification level are assigned smaller weights in 

the same range following a linear distribution.  According to 

equation (1), for R = 1 all pulses have a weight equal to 1, 

while for R = 0 only the 1st stratification level survives.  

 
Figure 2. Weights calculated for a ¾ meter stratified to the 

16th note level. The ranking of the pulses according to 

Barlow’s formula is indicated below the assigned weights. 

2.2 Stochastic Performance 
Once the weights of all the pulses are calculated, a performance 

is generated by cycling through the pulses comprising the 

metrical cycle and deciding if an event will be triggered in each 

position or not. During performance, several aspects pertaining 

its style can be specified, such as the amount of syncopation, 

the density of events, the metrical strength, the amount of 

variation, and the events’ articulation (staccato or legato).  

2.2.1 Triggering Events  
The probability of triggering an event on a certain time position 

is derived by the corresponding weight according to a simple 

exponential relation: 

 
M

Wnp      (2) 

where Wℓ is the weight assigned previously to pulse ℓ, n is a 

normalization factor, and M is a user defined parameter related 

to the metrical feel and ranging between 0 and 1. The above 

equation functions as a “probability compressor”, where for 

values of M close to 0, the differences in the probabilities are 

smoothed out, while for values close to 1, the original 

probabilities arise (see Figure 3). 

 The amplitudes of the triggered events are calculated 

independently from the probabilities. They are directly 

proportional to the pulse weights at the strongest metrical feel.   

2.2.2 Generating Syncopation 
Syncopation is introduced in the generated rhythm by 

“anticipating” pulses in stronger metrical positions. Events are 

triggered according to the probability assigned to the 

immediately following next pulse. At the same time, the 

amplitudes are also anticipated, so that the amplitude of a 

syncopated pulse sounds louder, thus creating a dynamic 

accent. The user controls the probability PS of anticipating a 

pulse which gives control over the amount of syncopation in 

the resulted rhythm. 

 Restrictions are imposed in order for the generated result to 

be more musical. A mechanism forces syncopation to stop 

when too many consecutive pulses are anticipated; otherwise 

for values of PS close to 1 the resulted rhythm would be just an 

offset version of the non-syncopated one. An “off-beat” 

syncopation effect is achieved by resolving consecutive 

anticipated pulses to the next stressed pulse. Moreover, when 

only a couple of pulses are anticipated, an event triggered on 

the following stressed pulse would weaken the feeling of 

syncopation. In this case the stressed pulse is muted and will 

not trigger an event, independently from the corresponding 

probability. 

2.2.3 Controlling Density 
The density of events D refers to how many events are triggered 

per cycle.  On average this is equal to the sum of the 

probabilities in all pulses: 





pulses all

pD    (3) 

 The density of events and the metrical feel are by nature 

interrelated. This can be easily seen in extreme cases such as 

when the density is zero. Zero density means that no events are 

triggered which is, by definition, a non-metrical state. This 

degenerate rhythm could belong to any meter and tempo. 

Similarly, the metrical feel is weakened when events are 

triggered on every pulse, in other words when the density is 

maximum, and thus the meter can only be inferred from the 

amplitudes of the triggered events.  

 The density of events can be controlled by the parameter R in 

equation (1). Although the value of R cannot be used as a 

measure of the actual density of events it serves as an effective 

way of controlling it without affecting the metrical feel. The 

probabilities are distributed to the pulses taking into account 

the stratification level they belong to, preserving the hierarchy 

and structure of the meter even for low values of R, keeping 

this way a strong  metrical feel when the density is low. On the 

other hand, the amplitudes of the triggered events are not 

affected by the changes in the parameter R. This way, when the 

density reaches its maximum (R = 1) the character of the meter 

is made evident by the amplitudes of the triggered events.  

2.2.4  Controlling Metrical Strength 
The strength of the metrical feel depends, on the one hand, on 

the probabilities assigned to the pulses and, on the other hand, 

Figure 3. Probabilities are exponentially scaled. 
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on the amplitudes of the generated events. A sense of meter is 

established when the events are triggered in important pulses 

(the most indispensable ones). The way the weights are 

calculated ensures that the more important a pulse is, the more 

often an event will be triggered in that position and this event 

will have an higher amplitude accordingly. The more the 

indispensability relation is preserved among the pulses, the 

stronger the metrical feel is. When all pulses have similar 

probabilities of triggering events and the amplitudes of the 

triggered events are random, not organized and do not establish 

a pattern, the resulted rhythm sounds random, not belonging to 

a specific meter.  

 In order to effectively control the strength of the metrical feel, 

the probabilities and amplitudes of the triggered events need to 

be adjusted simultaneously.  The probabilities can be directly 

manipulated through the exponent M in equation (2). The 

normalization factor n ensures that the density of events D is 

not affected by the changes in the exponent M. In order to 

weaken the metrical feel as the value of M decreases, the 

amplitudes also get randomized but in a way that the 

distribution of amplitudes over time is kept constant. 

 Figure 4 summarizes the main aspects of the performance and 

their relation to the parameters of the algorithm.  

 

 
Figure 4. A summary of the basic user controls and the 

corresponding parameters in the algorithm. 

2.2.5 Generating Variation 
The generated rhythm varies and is non-repetitive due to its 

stochastic nature. The amount and type of variation can be 

controlled by restricting the mechanisms described above, 

namely the triggering of events and their syncopation. 

 At each pulse, two different decisions are made. First, it is 

decided whether the pulse will anticipate the next one 

according to the amount of syncopation set by the user. Second, 

the triggering of an event is decided according to the 

probability of the corresponding pulse or the following one 

when anticipating. The variation in the resulted rhythm is 

controlled by restricting the number of such decisions that are 

allowed to change from one cycle to the next.   

 Two modes of variation have been implemented: the stable 

and the unstable. In the stable mode, the variation revolves 

around an initial pattern which is randomly generated. In the 

unstable mode, the rhythm departs from an initial pattern and 

follows a random walk. It evolves constantly into new patterns. 

An initial pattern is always generated at the beginning of the 

performance but the user can re-generate a new random pattern 

at any time, creating an abrupt change in the performance. 

2.2.6 Events’ Articulation 
The duration of the triggered events can be either fixed, in 

staccato mode, or can extend until the triggering of a new 

event, in legato mode. Syncopation is enhanced in legato mode 

by favoring the release of held events on stressed pulses even 

when no new event is triggered. 

2.3 Controlling the Performance:  

the complexity space 
The metrical feel, the amount of variation and the amount of 

syncopation form what we call a “space of complexity”. A 

rhythm is considered to be simple, when the metrical feel is 

strong, variation is kept to a minimum and there is no 

syncopation. On the other hand, when the metrical feel is weak 

or when syncopation is introduced into the rhythm or when the 

rhythm is constantly changing, then the rhythm is perceived to 

be more complex. Rhythmic complexity in this sense is 

attributed to combinations of different aspects of the rhythm: 

metrical strength, syncopation and variation. 

 
Figure 5. Contour plot of the functions used in the 

complexity plane to map position coordinates to the 

parameters of the algorithm. At the left side a contour of the 

expected complexity of the generated rhythms is shown. 

 We grouped the parameters of the algorithm related to 

complexity into a two-dimensional map (see Figure 5). As one 

moves away from the center the resulted rhythm becomes more 

complex. The dependence of each parameter on the position in 

the complexity map was empirically set, taking into 

consideration some basic restrictions derived from the nature of 

these parameters and our experience with various settings of the 

algorithm. Some of these restrictions are: i) when the metrical 

feel is low, syncopation is meaningless, ii) variation in the 

syncopation decisions apply only when the amount of 

syncopation is above a certain value, iii) when the amount of 

syncopation is significant the syncopation feeling is weakened 

by too much variation in the triggering decisions.  

3. APPLICATIONS 

3.1 Max/MSP Externals 
The algorithm was implemented as two Max/MSP externals. 

Several other externals and abstractions have been developed in 

order to facilitate the use and implementation of the algorithm 

into Max/MSP applications. All externals and abstractions are 

completely cross platform, Windows and Mac OS. 

 The first phase of the algorithm, namely the generation of 

weights, is performed by the kin.weights external. The 

parameter R of equation (1), which controls the density of 

events, is directly fed into the external as a floating-point 

number in the range [0, 1]. 

 The second phase, the triggering of events based on the 

parameters mentioned in the previous section is performed 

mainly by the kin.sequencer external. The weights calculated 

by kin.weights are fed into kin.sequencer which generates a 

performance by cycling through each pulse comprising the 

metrical cycle and deciding if an event will be triggered in that 

position or not. The amount of syncopation, the metrical 

strength, and the amount of variation can be controlled by 

respective messages to the external.  

 A java script suited for the jsui Max/MSP object was 

developed to visualize and improve user interaction with the 

complexity space described in 2.3. 

3.2 The kin.rhythmicator bpatcher  
The kin.rhythmicator Max/MSP bpatcher abstraction was built 

around the above externals. It is intended to be used in 

Max/MSP based applications and installations which 
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implement some kind of rhythmic interaction. Such 

installations can take the form of virtual musical instruments, 

compositional tools or interactive installations. It is easily 

integrated into Max/MSP patches. It can be controlled by 

various devices, from simple MIDI controllers to complex 

game controllers and is ready to directly trigger sound on any 

MIDI enabled synthesizer. 

 
Figure 6. The interface of the kin.rhythmicator application.  

 The abstraction implements all the features of the algorithm 

and has a compact user interface when loaded into a bpatcher 

object (see Figure 6). All parameters of the algorithm can be set 

during performance directly on the user interface, as messages, 

or through the pattr system for storing preset files in Max/MSP.  

 Single notes or chords can be fed to kin.rhythmicator in real 

time making it follow a melody or a chord progression which 

can be either pre-scheduled, performed in real time by a 

musician or generated by some generative or analysis 

algorithm. 

 Several instances of the abstraction can be loaded at the same 

time for generating several rhythmic layers. All instances can 

be synchronized by the Max global transport. Also, one can 

generate polyrhythms by synchronizing different instances of 

kin.rhythmicator with different time signatures to the global 

transport. 

3.3 The Max4Live MIDI Device 
We developed a Max4Live device that can be used as a 

compositional and/or performance tool to dynamically generate 

rhythms. All parameters can be controlled through MIDI, 

automated with envelopes and saved together with the Live Set. 

 The device is built as a MIDI FX device, which means it can 

be loaded into a Live's MIDI track. It can be used alongside 

VST or the Live’s instruments. More than one instance can be 

loaded in the same or different MIDI tracks. The interface is 

very similar to the Max/MSP bpatcher abstraction described 

above (see Figure 6).  

 The kin.rhythmicator max4Live device reads automatically 

the time signature and the play position of the Live transport 

and follows any time signature change in the song, so that there 

is no need to explicitly set the time signature on each 

kin.rhythmicator instance. All instances of the device are in 

sync with the rest of the Live Set. An offset parameter allows 

for a phase difference between each kin.rhythmicator and the 

global transport.  

 Two MIDI modes of operation have been implemented: thru 

and listening. In thru mode, the MIDI input is forwarded 

directly to the output without being changed. The generated 

rhythm is output as MIDI note on/off messages according to the 

MIDI note set on the kin.rhythmicator. In listening mode the 

rhythm generated follows the melody or chord progression at 

the input of the device. 

4. CONCLUSION AND FUTURE WORK 
The algorithm and applications introduced here present a novel 

approach to automatic rhythm generation. Departing from a 

preexisting metrical template containing the time signature and 

metrical weight distribution, and the subdivision level, a user 

can specify a performance controlling several musical 

parameters. Instead of specifying in detail the rhythmic parts 

and variations needed in a musical composition or 

performance, one can use kin.rhythmicator devices to control 

parts or the whole of the rhythmic section. These parts can be 

thought of as constrained improvisations that take the place of a 

detailed music score.   

 The real time and intuitive character of the controls and 

performance of the kin.rhythmicator helps in creating music 

more responsive to user actions. Controlling the metrical 

strength and density of events effectively has been made 

possible by taking into account the hierarchical structure of the 

meter in mapping the output of Barlow´s indispensability 

formula to the probabilities. A syncopation algorithm based on 

the anticipation of pulses that tends to keep a strong metrical 

feel is introduced. 

 Future development of the kin.rhythmicator algorithm and 

devices include the development of intelligent agents, which 

collaborate in generating a coherent output. 

 The kin.rhythmicator Max/MSP application and Max4Live 

device are available for download at our group website: 

http://smc.inescporto.pt/kinetic/ 
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