
Tahakum: A Multi-Purpose Audio Control Framework

Zachary Seldess
King Abdullah University of Science and Technology

Visualization Lab
Thuwal, Saudi Arabia

zachary.seldess@kaust.edu.sa

Toshiro Yamada

University of California, San Diego
California Institute for Telecommunications and

Information Technology
La Jolla, CA, USA

toyamada@ucsd.edu

ABSTRACT
We present “Tahakum”, an open source, extensible collection
of software tools designed to enhance workflow on multi-
channel audio systems within complex multi-functional
research and development environments. Tahakum aims to
provide critical functionality required across a broad spectrum
of audio systems usage scenarios, while at the same time
remaining sufficiently open as to easily support modifications
and extensions via 3rd party hardware and software. Features
provided in the framework include software for custom
mixing/routing and audio system preset automation, software
for network message routing/redirection and protocol
conversion, and software for dynamic audio asset
management and control.

Keywords
Audio Control Systems, Audio for VR, Max/MSP, Spatial
Audio

1. INTRODUCTION
Audio Systems within interdisciplinary and multi-media
research facilities are often expected to fulfill a large variety
of end-user and developer functions, ranging from simpler
tasks such as live event sound reinforcement and fixed media
playback, to more complex activities such as experimental
real-time acoustics simulations, and new musical interface
design. Successfully managing audio systems in multi-
functional environments relies not only on quality hardware
and software implementations, but also on the existence of an
overarching audio control framework. Such a framework
must tackle the unique challenge of achieving a balance
between stability and end-user friendliness, and flexibility and
low-level access and control, ensuring successful typical daily
operations, while at the same time providing a fast
development pipeline.
 Audio interfaces break or get replaced with better
alternatives, input and output channel counts and loudspeaker
configurations change over time, as do notions of ideal
software and hardware solutions for all manner of lab audio
functions and research projects. A successful audio control
framework, in addition to facilitating smooth workflow
during stable periods of operation, must also attempt to make
system changes as seamless as possible during times of

growth and transition.
 Ideally, within a research facility, mid and high-level
control of an audio system must be readily available to staff
for day-to-day activities such as project demonstrations, video
conferencing, and fixed-media A/V playback. At the same
time, audio systems developers and technicians need to be
able to experiment, modify, and implement low-level
hardware and software configurations with relative ease and
fluency. In this paper we present “Tahakum1”, a set of open
source, extensible software tools, designed to enhance
operations and development workflow in dynamic multi-
media, multi-purpose spaces.
 Organization: The paper is organized as follows: In section
2 we provide an overview of the audio control and
development framework, including details on our general
framework design philosophy. Sections 3, 4, and 5 provide
more detailed functionality and design information for
AudioSwitcher Server, Control Proxy, and Asset Manager,
respectively. In Section 6, we provide concluding thoughts on
the framework’s current state, and discuss planned and
potential future improvements to the system.

2. FRAMEWORK OVERVIEW
Tahakum, created using Max/MSP, is designed to allow audio
developers and technicians to easily adapt customized control
systems to a given room, and to minimize the downtime in
hardware and software changes within a system, while
providing a baseline control framework that is easily
extensible and customizable to users’ equipment, preferences,
and needs. Much previous work has addressed specific
workflow issues within multi-functional media environments,
such as spatial audio post-production (e.g. [2], [3]), real-time
spatial sound rendering and composition (e.g. [4], [6], [7],
[9]), and interactive room acoustics simulation (e.g. [1], [5]).
Other notable work, such as [8], provides a more
comprehensive framework geared specifically towards the
task of sound spatialization. And there are myriad
sophisticated commercial audio show control tools available,
such as Meyer Sound Laboratories’ CueStation2 and Figure
53’s QLab 3 . Our intention in designing the Tahakum
framework has been to provide, using Max/MSP, the software
tools to enhance core operational and development workflows
within complex multi-media spaces, while making a point of
not hindering users’ preferences towards enhancements and
extensions to the system via 3rd party hardware and software,
network and MIDI i/o control. Our framework provides this
functionality using three software tools whose primary
features breakdown as follows:

1 Tahakum, or !"#$, means “control” in Arabic.
2 www.meyersound.com/pdf/products/lcs_series/CSv4_20070919.pdf
3 http://figure53.com/qlab/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’11, 30 May–1 June 2011, Oslo, Norway.
Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

161

• AudioSwitcher Server combines audio mixing, routing,
and delays, network and MIDI i/o, and a graphical user
interface, within a preset-based automation system, for
storage and recall of complex audio system state changes
and event sequences. Additionally, client control
software enables multi-user simultaneous access to the
server.

• Asset Manager provides dynamic loading, unloading and

control over Max patches, easy network integration
using Open Sound Control (OSC), and an abstraction
layer that facilitates changes to a project’s panning
algorithms and software-to-hardware channel mappings.

• Control Proxy blends network message

routing/redirection, network protocol conversion
between incoming and outgoing messages, and a console
interface for manually sending network messages to
user-defined destinations.

Other Software / Hardware

Control Proxy

AudioSwitcher ServerAsset Manager

AudioSwitcher Client

network communication

audio signal

Figure 1: Typical Tahakum framework data and signal-flow

Each of the above applications is customized using plaintext
configuration files with a simple syntax. By using a
configuration file to control all aspects of the software’s
initialization and customization, the software can be updated,
remotely or locally, while it is up and running. This has
proven to be a significant workflow enhancement in
managing our own audio systems, as well as providing an
easy way to hand off new system updates to collaborators for
review and discussion. Additionally, since customization is
achieved via text files rather than manual Max re-patching,
the software’s core functionality remains the same whether
running as a standalone application, with Max/MSP Runtime,
or with an authorized full Max/MSP install.
 All applications provide network i/o using standard
protocols (including OSC) for two-way communication
between each tool in the framework, as well as between
various other 3rd party hardware and software products.
Command syntax between applications is documented and
consistent, making it possible for developers to extend the
framework functionality with their own custom-designed
software or hardware.

3. AUDIOSWITCHER SERVER
In this section, we give an overview of AudioSwitcher
Server’s functionality and briefly discuss some of the
software’s key controls and features.

Figure 2: AudioSwitcher Server software

3.1 Overview
Let us assume we have a multi-purpose room with the
following equipment:

• 1 Blu-Ray player (with 5.1 audio output)
• 4 wireless microphones
• 1 video conferencing unit (with 2 channels i/o)
• 1 computer for custom audio (with 8 channels i/o)
• 1 computer for graphics work (with 2 channels)
• 1 hardware audio mixer with 8 channels of i/o.
• 8 loudspeakers, 1 subwoofer

Ideally, all devices in the room need to be able to send audio
out to any number of the nine available speakers.
Additionally, some devices, such as the video conferencing
unit and the custom audio computer, need to receive audio
from various sources as well. In many situations, it is often
desirable to pass all audio through one central hub, allowing
easy control over the entire system without having to
physically patch cable. Assuming you have a computer with
enough digital and/or analog audio inputs and outputs,
AudioSwitcher Server is designed to facilitate control of
idiosyncratic configurations such as the one listed above. The
software is built with scalability in mind and will therefore
function in a variety of scenarios, ranging from very simple to
complex i/o configurations.

Summary of Functionality:

• Custom hardware-to-software i/o channel mappings
• Preset-based automation system
• Configuration files for server setup and preset definitions
• Mute/solo/delay controls on input/bus/output channels
• Input-to-bus and bus-to-output sub-mixing
• Group fader assignments on input/bus/output channels
• Control of multiple servers via client control software
• User-defined network and MIDI i/o "bindings" of server

controls
• Custom network message creation, storage, and delivery to

remote destinations

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

162

3.2 Signal Control, Signal Flow

Input Masters

Bus Matrix

Bus Masters

Output Matrix

Output Masters

Virtual Groups

Cue Library

Subcue Library

Signal Control

Data Control

 System Output

AudioSwitcher Client

Figure 3: AudioSwitcher Server control and signal flow

3.2.1 Input/Bus/Output Masters, System Levels
Signal flow in AudioSwitcher Server resembles that of most
DAW software tools, with input channels assigned to various
bus channels, which are then sent on to output channels. Each
input, bus, and output channel contains a post-fader signal-
level meter, as well as controllable areas for its label, trim and
fader levels, mute, solo, and delay states (Figure 4).
Additionally, master control over all output channel level and
mute states is provided in the System Output window. Level
adjustments made to the system output are applied to all
outputs at the pre-fader stage. All of the above controls can be
manually adjusted or automated using AudioSwitcher
Server’s preset system (discussed in Section 3.3).

Figure 4: Input/Bus/Output Masters, and System Output

3.2.2 Bus and Output Matrices
The core of AudioSwitcher’s signal flow centers around two
variable-sized mixing matrices (Figure 5). By implementing
mix matrices at two different stages in the signal flow, we
provide a flexible vehicle for dealing with the complex
mixing and routing scenarios encountered in multi-media
spaces, effectively removing, for instance, the need for most
output-to-input loopbacks (which the software also supports).

All mix points in the matrices can be manually adjusted, or
automated using the software’s preset system (see Section
3.3).

Figure 5: Bus Matrix and Output Matrix

3.3 Automation and Control
AudioSwitcher Server provides a control and automation
layer for manual or remote event triggering and state changes
over all facets of the software, such as Bus and Output Matrix
assignments, Input/Bus/Output Masters labels, levels, mutes,
solos, and delays, DAC on/off state, etc. Additionally, custom
network messages can be created, stored and sent to remote
destinations (triggering state changes in custom Max patches
running within Asset Manager, for example). Once software
and hardware configurations have been properly established,
and signal control logic has been largely defined, three
features within AudioSwitcher Server function as the primary
vehicles for high level audio systems control: Cue Library,
Subcue Library, and Virtual Groups.

3.3.1 Cue and Subcue Libraries, Virtual Groups
The Cue and Subcue Libraries provide display and control
over user-defined presets. Cues exist solely as a means to
store and recall one or more lower-level presets, called
"subcues." Triggering a cue causes all subcues referenced by
that cue to be sequentially recalled in a user-defined order
(Figure 6). Whereas cues essentially act as subcue
aggregators, subcues themselves apply automated control
over virtually all aspects of AudioSwitcher Server's
functionality; they do the actual work. Both cues and subcues
can be manually triggered, or automated via calls from their
control counterparts (i.e. cues referencing subcues, subcues
referencing cues).
 Virtual Groups provide high-level control over user-defined
groups of input, bus, and output channels (Figure 6). In the
Virtual Groups window, a user can manually set each group’s
label, trim, level, mute, and solo states, which in turn effect
the corresponding states of all input/bus/output channels
linked to that group. All virtual group controls can be
manually adjusted, or automated via cues and subcues.
 Establishing effective high-level control over complex
audio systems is not unlike trying to hit a moving target, and
as such it is important for a control system to support real-
time user modification. Therefore, as mentioned earlier, cues,
subcues, and virtual groups are all defined via text files that
can be modified and reloaded while the server is running.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

163

Figure 6: Cue Library, Subcue Library, and Virtual Groups

3.4 Network and MIDI i/o
In order to provide users the ability to customize the way in
which they interface with AudioSwitcher Server, most of the
software’s control features can be configured to communicate
with 3rd party hardware and software over network and MIDI
protocols. Via the software’s primary configuration file, a
wide range of control points (such as virtual group faders,
output master mutes, cues, subcues, etc.) can be “bound” to
one or more user-defined network/MIDI senders and/or
receivers, thus allowing a user to easily set up one and two-
way real-time connections with external software and
hardware, exposing as few or as many server control points as
is appropriate for the situation. Using this functionality it is
possible, for example, to create a simple control interface on
the iPhone that remotely triggers cues and adjusts output
levels, or to use faders on a MIDI controller to both display
and control all virtual group fader and mute states. The
methods by which network and MIDI “bindings” are
established in the configuration file are documented for all
relevant controls in the software, and should therefore provide
a vehicle for the majority of custom user extensions to the
control system.

4. ASSET MANAGER
In this section, we present the overall functionalities and the
new workflow introduced by Asset Manager’s framework.

Figure 7: Asset Manager software with projects

4.1 Overview
Asset Manager is built to deal with multiple audio projects in
an environment where projects need to be loaded on demand.
We use Asset Manager extensively with virtual reality
environments and other graphics engines, where each project

requires a custom Max patch. Since each system has its own
optimal spatialization setup, maintaining multiple versions of
the same project implemented on different systems can
quickly become cumbersome and time-exhaustive. Asset
Manager addresses these difficulties by providing a
framework that abstracts panning and signal flow, and helps
optimize production workflow for complex sound systems.

Summary of Functionality:

• Configuration files for i/o setup, project definitions, signal

paths and panning methods
• Versatile spatialization and i/o abstraction layers
• Network message specification in Open Sound Control

protocol to control behavior of Asset Manager and
projects

• Mixing control for each project and master outputs
• Recording and playback of network messages
• Built-in objects for spatialization signal processing, such

as distance simulation, air absorption, Doppler effect,
and source direction simulation

!
4.2 Signal Flow
4.2.1 Project to System Outputs
All audio signals from projects go through Asset Manager's
system outputs layer, which serves as a final gain control
stage before reaching the audio interface. Asset Manager
provides a collection of Max patch abstractions that allow
projects to utilize the software’s signal paths. Furthermore,
project volumes can be mixed independently from one
another.

Figure 8: Project signal flow diagram

4.2.2 Project Signal Paths
Within a project, there are three paths a signal can take before
reaching the system output. These paths bring logic
separation and system abstraction that can be uniquely
configured for different systems (Figure 8).
 The main project outputs are accessed via the `project.out~`
object. Signals passed to project outputs are routed directly to
the main output without additional signal processing. In the
project configuration file, channel IDs are mapped to
hardware output channels. By using an indirect channel ID
mapping (from project layer to hardware), the signal chain
becomes independent from a specific audio system, and
projects can be shared amongst different systems without
having to modify the Max patch. This philosophy of

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

164

abstraction is used throughout Asset Manager's signal flow
design. Main project outputs can be used to route static audio
sources, such as voice-overs, which are commonly routed to a
single loudspeaker (e.g. to the center channel in a 5.1
surround sound setup).
 Panner outputs are used to spatialize the sound – or "pan"
the sound – using the `project.panner~` object. The panning
method implemented in a project can be anything from stereo,
5.1 surround sound, Ambisonics, HRTF binaural, to custom
implementations; the object is abstract and has no
implementation on its own. The implementation is defined in
the project configuration file where other project settings are
also configured. Additionally, an optional transform function
can be added after the panner signal path. A transform
function is a black box that includes any operation that
processes the signal from inputs to outputs. For example, it
can be a simple matrix that routes five input channels and six
output channels, where the sixth channel has the sum of all
inputs that is routed to the subwoofer.
 Auxiliary outputs, accessed with the `project.aux.out~`
object, are used when the main project outputs and panner
outputs do not fulfill a particular need. `project.aux.out~` is
used similar to `project.out~` but also includes an optional
transformation found in `project.panner~`. For example,
auxiliary outputs are useful when a project contains pre-
panned sources, e.g. 5.1 surround sound tracks, which require
a transform function to match source outputs to system
outputs. If the target system is headphones, a transform may
be a 5.1 surround sound to HRTF binaural encoder.
 These three signal paths are simple, yet powerful enough to
support a variety of output requirements. Using these abstract
objects, projects can be ported to work in Asset Manager’s
framework and take advantage of its workflow.

4.3 Workflow for Complex Sound Server
Requirements
4.3.1 Abstraction of Panning Method
Much of the strength of Asset Manager comes from the
ability to isolate the implementation of the panning method
and rapidly adapt new panning methods in real-time. This
abstract layer has saved many hours reconfiguring new
panners, keeping multiple copies of different versions, and
trying out various methods that may or may not work in a
given system. By specifying the panner in a plaintext file,
version control and project sharing becomes much easier.
Moreover, once a well-behaved panner is chosen for a
system, new projects can easily take advantage of it without
altering the original Max patch. Reusing well-tested panners
can also reduce the likelihood of using them improperly, thus
diminishing time spent debugging.

4.3.2 Network Communication
Asset Manager uses Open Sound Control extensively for
network communications and can be used with various 3rd
party hardware and software. Via OSC (over TCP/IP or UDP
sockets), remote applications can control and automate core
functionalities, such as (un)load projects, change master and
project volumes, (un)mute projects, dis-/en-able signal
processing, and more. Asset Manager also includes rich tools
for working with OSC messages.

4.3.3 Record and Playback Network Messages
OSC messages can be recorded and played for each project,
keeping the exact timing as the messages arrive. Playback is
done on a loopback socket to simulate real network messages.
This is useful for archiving important events, generating

reference materials, and demonstrating and debugging
projects. The last point has been especially useful at our
laboratories, where we have various complex graphics display
systems that use Asset Manager for audio contents
management and synchronous audio playback. Asset
Manager runs on a dedicated audio server and communicates
with the visual systems remotely. Operating these systems
involves complex steps with many potential points of failure,
and debugging these problems can be a tedious and time-
consuming process. Using the network record and playback
feature, we can test Asset Manager projects independent from
other components of the systems and determine the point of
failure faster.

5. CONTROL PROXY
Control Proxy is a simple software utility designed to
facilitate network communication between various software
and hardware components within an audio system. This
software fulfills three primary functions:
1. Acts as a hub for network traffic, redirecting incoming

messages from a given source to one or more IP and port
destinations.

2. Applies network protocol translation between incoming
and outgoing messages.

3. Provides a console interface for manually sending
messages to user-defined destinations using the
appropriate protocols.

Figure 9: Control Proxy GUI

Logistically, this software provides developers with a single
access point to a potential wide variety of destinations,
without requiring them to know about destination-specific
addresses, ports, and protocols. This allows audio staff to
supply colleagues with a fixed set of ports at a single IP
address that they can use when creating network links
between the various non-audio software/hardware and audio
systems. Text console network message windows serve as a
convenient way to test interconnectivity, and to simulate
commands coming from remote sources. Network protocol
conversion serves to speed up development workflow when,
for example, a software visualization tool sends messages
only via UDP but needs to communicate with audio hardware
that understands only TCP. All incoming to outgoing network
redirection and conversion, as well labeling of each console
window in the software’s GUI, is defined in a simple
plaintext configuration file similar in syntax to those used in
AudioSwitcher Server and Asset Manager (Figure 9).

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

165

6. CONCLUSIONS
In this paper we have presented an open collection of
software tools designed to enhance operations and
development workflow on multi-functional audio systems
within research facilities. The three software tools within our
framework supply what we believe to be a core group of
critical audio control capabilities – functionality required
across a broad spectrum of audio systems scenarios, that if
implemented well, have the potential for significantly
streamlining audio systems operations and development
pipelines. At the same time, the software remains sufficiently
open and capable of supporting a wide variety of custom
extensions.
 In refining our notions of essential functionality, we have
drawn upon our own experience operating on and developing
for complex audio systems within dynamic and multi-media
research environments. This functionality can be summarized
as follows:

• Mixing/routing and system preset automation
• Dynamic audio asset management and control
• Network message routing/redirection and protocol

conversion

Moving forward, we plan to improve upon a variety of
features within the software, placing particular emphasis on
ease of use. We will work towards a more complete
integration of each software tools’ configuration files into
their respective GUI front-ends, allowing for easier real-time
creation and editing without the need for script. We will also
explore the benefits of replacing our own simple
configuration file syntax with standardized file formats such
as JSON, YAML, or XML.

Several functionality enhancements are planned for
individual tools within the framework. In AudioSwitcher
Server, we will implement “effects chain” functionality at the
Input, Bus, and Output Masters stages, enabling users to
dynamically load and modify a variable amount of custom
Max patches or VST plug-ins at a particular stage in the
signal flow. This will prove useful when, for example, you
need to add a multi-tap delay or high-pass filter to a signal
before sending it out to the loudspeakers. In Asset Manager,
various spatial sound effects are in development, such as
geometric acoustic simulations and multichannel
reverberations. Furthermore, future releases will include a
database backend for saving and restoring software states and
accessing sound parameters and objects in real-time.

Finally, in an effort to improve documentation and discover
overlooked core functionality, we hope to broaden the
framework’s user-base by releasing the tools open source to
the community, and by continuing to work with research
partners on implementations within their facilities. All
software, as well as documentation, sample configuration
files, and projects can be found at
http://vis.kaust.edu.sa/tahakum.

7. ACKNOWLEDGMENTS
This project would not have been possible without the support
of Steve Cutchin, Thomas A. DeFanti and all our colleagues
at California Institute for Telecommunications and
Information Technology and the KAUST Visualization Lab.
Thanks to Paul Riker for his editorial assistance, and for
helpful feedback on the software in its current state. Finally,
we would like to thank Peter Otto of Calit2’s Sonic Arts R&D
group, for his essential insight and guidance throughout the
design and implementation of the Tahakum framework.

8. REFERENCES
[1] S. Ellison, P. Otto, Acoustics for reproducing sound at

the visualization labs at the King Abdullah University of
Science and Technology: A case study. 159th Meeting of
Acoustical Society of America: NOISE-CON 2010,
Baltimore, USA, 2010 April 19-23.

[2] J. Fischer, F. Gropengiesser, S. Brix, Cooperative
Spatial Audio Authoring: Systems Approach and
Analysis of Use Cases. 126th AES Convention, Munich,
Germany, 2009 May 7-10.

[3] F. Gropengiesser, K. Sattler, An Extended Co-operative
Transaction Model for XML, Work-shop for Ph.D.
Students in Information and Knowledge Management
(PIKM’08), Napa Valley, USA, 2008 October 26–30.

[4] N. Humon et al. Sound Traffic Control: An Interactive 3-
D Audio System for Live Musical Performance.
Proceedings of the 1998 Conference on Auditory
Displays, Glasgow, UK, 1998 November 1-4.

[5] F. Melchior, C. Sladeczek, A. Partzsch, S. Brix, Design
and Implementation of an Interactive Room Simulation
for Wave Field Synthesis. Proceedings of the AES 40th
International Conference, Tokyo, Japan, 2010 October 8-
10.

[6] D. Murphy and F. Rumsey, A Scalable Spatial Sound
Rendering System. 110th AES Convention, Amsterdam,
The Netherlands, 2001 May 12-15.

[7] T. Musil et al. The CUBEmixer a performance, mixing
and mastering tool. Proceedings of the 2008 Linux
Audio Conference, Cologne, Germany, 2008 Feb 28 -
March 2.

[8] N. Peters et al. A stratified approach for sound
spatialization. Proceedings of the 6th Sound and Music
Computing Conference, Porto, Portugal, 2009 July 23-
25.

[9] S. Wilson, J. Harrison. Rethinking the BEAST: Recent
developments in multichannel composition at
Birmingham ElectroAcoustic Sound Theatre. Organized
Sound (2010) vol. 15 (03) pp. 239-250.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

166

