
Tangible Performance Management of Grid-based Laptop
Orchestras

Stephen David Beck
Louisiana State University
Baton Rouge, Louisiana

sdbeck@lsu.edu

Chris Branton
Louisiana State University
Baton Rouge, Louisiana

branton@lsu.edu

Sharath Maddineni
Louisiana State University
Baton Rouge, Louisiana
smaddineni@cct.lsu.edu

ABSTRACT
Laptop Orchestras (LOs) have recently become a very pop-
ular mode of musical expression. They engage groups of
performers to use ordinary laptop computers as instruments
and sound sources in the performance of specially created
music software. Perhaps the biggest challenge for LOs is
the distribution, management and control of software across
heterogeneous collections of networked computers. Soft-
ware must be stored and distributed from a central reposi-
tory, but launched on individual laptops immediately before
performance. The GRENDL project leverages proven grid
computing frameworks and approaches the Laptop Orches-
tra as a distributed computing platform for interactive com-
puter music. This allows us to readily distribute software
to each laptop in the orchestra depending on the laptop’s
internal configuration, its role in the composition, and the
player assigned to that computer. Using the SAGA frame-
work, GRENDL is able to distribute software and manage
system and application environments for each composition.
Our latest version includes tangible control of the GRENDL
environment for a more natural and familiar user experi-
ence.

Keywords
laptop orchestra, tangible interaction, grid computing

1. INTRODUCTION
Laptop orchestras[8] (LOs) use an orchestral metaphor to
provide an engaging and challenging environment to exper-
iment with human-computer interaction, network and ma-
chine latency, and sound/signal processing. LO performers
use ordinary laptop computers as instruments and sound
sources for performing specially created compositions[7]. With
the recent successes of the Princeton and Stanford laptop
orchestras, LOs have now been established at many univer-
sities in the US, the UK, and as private ensembles around
the world[11, 13].

LO composer-performers develop software to interpret
human actions through computer interfaces that in turn
control virtual instruments and processes that ultimately
render music. Compositions can be improvised or scored, of
determined or indeterminate length, with or without acous-
tic musicians. Laptops communicate across WiFi networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’11, 30 May–1 June 2011 Oslo, Norway
Copyright remains with the author(s).

to synchronize time, distribute control messages, and man-
age other performance information.

Distribution, management and control of the necessary
software across a heterogeneous collection of networked de-
vices is a tremendous challenge for LOs. Each LO com-
position describes a potentially unique combination of core
software, middleware and user-interface software that must
be initialized, launched and performed. Configuration can
range from the very simple (e.g., a single program on each
machine, responding to keyboard events), to the very com-
plex (Wii-motes, iPads, custom UI and laptops, driven by
a networked time-sync). Laptops may all behave the same,
or play specialized roles. The complexity of each piece and
skill of each performer can affect the amount of time needed
to prepare a piece for performance. And the “performance
complexity” can scale exponentially with the number of lap-
tops in the ensemble. Software may be stored in a central
repository and distributed before a concert begins, but in-
dividual laptops must be configured and initialized imme-
diately before the performance of each piece. Princeton’s
laptop orchestra identified software configuration as one of
their most significant problems[9].

Our group has developed and field-tested the GRid EN-
abled Deployment for Laptop orchestras (GRENDL) sys-
tem to help address the challenge of managing LO software
distribution and configuration, while providing an experi-
ence for ensemble members that closely mimics that of a
conventional orchestra. GRENDL is an integrated system
that deploys, manages, and controls software and hardware
technologies needed for the performance of music for laptop
orchestras. For a given LO composition, GRENDL links
digital artifacts (e.g., scores, software, electronic devices)
with middleware applications (e.g., ChucK[12], Max[5], Su-
perCollider[4]) specific to the devices and operating systems
available for performances.

2. LO PERFORMANCE WORKFLOW
A primary aim of GRENDL development is to support a
workflow that is familiar to musicians. To maintain the or-
chestral metaphor, the system recognizes two distinct classes
of ensemble computers. A single master machine, which is
usually but not necessarily associated with the conductor,
is responsible for loading and distributing the compositions,
beginning and ending each piece, and managing the order
of play. Any number of performer machines can join the en-
semble, and play a specific role (i.e., instrument and part)
in a specific piece.

The functionality provided by GRENDL can be seen as
roughly analogous to the music librarian of a conventional
orchestra, retrieving the parts for each musician and dis-
tributing them to the proper workstations. Some additional
complexity is introduced in the LO case, since each laptop
can (and likely will) serve as a different instrument for each

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

207

Master	

LO	
 Member	

One-time
initialization

Each
composition

Join
ensemble

Load
GRENDL
configuration

Fetch
composition

Distribute
artifacts

SAGA and OSC

Acknowledge
transfer

Execute
scripts

(a) GRENDL transfer process

Stop
Master	

LO	
 Member	

Execute pre-
launch script

Execute pre-
launch script

SAGA and OSC

Load
composition

Execute post-
launch script

Play	

Clean
Up

(b) GRENDL launch process

Figure 1: GRENDL supports a natural workflow between conductor (master computer) and orchestra mem-
bers. (a) Before the performance, GRENDL loads the program and initializes the list of ensemble members.
Digital artifacts are then transferred to each machine, ready for launch. (b) During the performance,
GRENDL launches scripts to initialize each performer workstation, launch and configure the necessary mid-
dleware, and load the necessary data files. When the piece concludes, GRENDL launches scripts to restore
each performer laptop to its default configuration.

composition. GRENDL distributes the appropriate music
to LO musicians for a concert before the performance be-
gins. GRENDL can also provide the conductor with the
correct scores for each piece on the program, and give the
conductor the ability to start and stop each piece in turn.

The entire program is transferred before the performance
to minimize the delay between pieces, though the GRENDL
architecture can support transfers at any time that a piece is
not being played. The conductor can initiate a transfer com-
mand directly to the GRENDL engine using the command-
line interface, or utilize the recently developed GRENDL
Conductor application to manage the performance.

During the concert, the conductor instructs GRENDL
to launch the software for each piece. GRENDL executes
pre-launch scripts on the master computer to communicate
roles, synchronize the ensemble, or perform other custom
initializations, sends a “start” command to all computers
in the orchestra, and runs post-launch scripts (if needed)
on the master. Ensemble members use the GRENDL Per-
former interface to signal the conductor when their machine
is properly configured and ready to play.

Once each laptop is configured and the proper software
is launched, the piece is played. At the conclusion of each
piece, the conductor triggers GRENDL’s“quit”mode, which
executes cleanup scripts on the machines.

The number of different scripts, configurations, hostnames,
and other technical details that are needed to configure a LO
can create a heavy cognitive burden on performers. “Car-
touche” tangible user interface tokens[10] provide a simple
and convenient way to encapsulate digital content and op-
erations. GRENDL is designed to use cartouches to link
client computers with specific performers and roles (e.g.,
percussion, voice). Cartouches may also be used to trigger
software actions on the client computers, initiate messages
to the GRENDL Conductor, or be linked to performance
graphics for the musicians to use as a score.

3. GRENDL ARCHITECTURE
GRENDL has been created specifically to address the chal-
lenge of distributing and configuring software for LO perfor-
mances. This is accomplished by viewing a LO as a compu-
tational grid [1]. One master machine, normally the conduc-
tor, assigns “jobs” to each of the remote performer nodes.
In the case of GRENDL, the “transfer” jobs consist of using
one of a variety of network protocols to distribute scripts,
patches, program files, and other digital artifacts needed

to play a composition. The “launch” jobs instruct the per-
former laptops to execute a series of scripts that configure
the machine to play a specific composition. “Quit” jobs ex-
ecute another script that stops any running software and
cleans up any changes that were made to the environment.

The GRENDL software architecture includes components
to manage connections to performer latops, retrieve and dis-
tribute the compositions, configure middleware and (when
necessary) make system-level configuration changes, launch
each composition, and restore the laptop meta-instruments
to their default configurations after the piece has been per-
formed. A conceptual overview is shown in Figure 2.

At the heart of the system is the GRENDL engine, a
command line program written in C++ that is responsi-
ble for distributing and managing the jobs of each com-
puter. The engine manages the transfer, launch, and quit
jobs according to parameters specified in a set of configu-
ration files associated with each piece in the program. The

Figure 2: GRENDL includes components to re-
trieve compositions from online archives and dis-
tribute them to LO members. Other components
load and configure middleware applications and
compositions according to GRENDL data descrip-
tion language specifications.

current implementation of GRENDL uses the Simple API
for Grid Applications (SAGA)[2] to manage the LO grid.
SAGA is a grid computing framework that helps manage
distributed applications in complex environments. SAGA
connects application software written in C, C++ or Python
with grid-based middleware services for distributed comput-
ing, providing a robust and platform neutral environment
for complex computation. While SAGA was developed for
high performance scientific applications using large grids of

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

208

hundreds or thousands of computers, it has adapted readily
to the laptop orchestra environment. GRENDL leverages
the SAGA framework for the distribution, initialization and
launch control of LO software, treating the LO as a unique
application of grid computing for live music performance.

An implementation of SAGA forms the file management
and remote execution core of GRENDL, including support
for configuring laptops, distributing compositions and sup-
porting software, and launching the environment for each
piece in the program. Since SAGA’s synchronization is
event-driven rather than time-based, it provides an ideal
infrastructure for the asychronous and variable latency ac-
tivities typical of performance preparation. These same fea-
tures limit SAGA’s utility during the performance, though
SAGA still provides an important mechanism for file trans-
fer and middleware configuration between compositions.

The most recent version of GRENDL uses Open Sound
Control (OSC)[14], a protocol for communication among
computers, sound synthesizers, and other multimedia de-
vices, for more immediate and lightweight network commu-
nications. OSC is a simple, powerful protocol that provides
everything needed for interactive control of sound and other
media processing while remaining flexible and easy to imple-
ment. OSC libraries exist for most major programming lan-
guages, including C/C++, Java, Max[15] , and ChucK[12].
OSC interfaces have also been developed for a large number
of interaction devices and visualization systems, as well as
the majority of electronic instruments.

GRENDL uses OSC as the primary mechanism for inter-
machine communication during performances. This includes
communication between the Conductor and Player applica-
tions, as well as distributing events generated by the tan-
gible controls. OSC-based applications developed for the
iPhone/iPad platform allow the conductor to set parameters
for the ensemble and exchange information with perform-
ers. Max-based GUI’s make use of OSC for communication
between performers, and several ChucK pieces utilize OSC
for synchronization and timing.

4. GRENDL CONDUCTOR
Conductor provides overall performance management for
GRENDL. Conductor communicates workflow events to the
members of the ensemble and manages the transitions from
one piece to the next. It is the Conductor component that
makes the calls to the GRENDL engine that will in turn
deliver the jobs to the performers’ laptops.

On startup, Conductor loads the program for the upcom-
ing performance. Each item in the program represents a
piece in the performance, including the location of the com-
position’s digital artifacts. This location may be a folder
accessible to the master computer, or the URL of an online
repository.

Along with the program, Conductor loads a description
of the ensemble, including account names and network ad-
dresses for all members. Before transferring the composi-
tions to the laptops, Conductor listens for new members to
join, and allows other members to be removed. Once the
ensemble is complete, Conductor instructs the GRENDL
engine to transfer each composition in the program to each
orchestra member. After transferring all of the files, Con-
ductor transitions to performance mode. By default, com-
positions are played in the order in which they are listed
in the program, though this order can be changed through
the user interface. For each piece, Conductor instructs the
GRENDL engine to assign the appropriate “launch” job to
each member of the ensemble. Once the ensemble is ready,
Conductor enters “playing” mode. Until the signal is given

to stop playing, Conductor will not send any other signals
or process any remote requests. This minimizes the possi-
bility that GRENDL will interfere with the performance of
the piece.

The initial Conductor user interface was developed in
Processing [6] to explore the capabilities needed to man-
age LO performance using GRENDL. It is expected that
most or all of the interaction capability in Conductor will
eventually be realized with a tangible user interface.

5. GRENDL PERFORMER
Complementing the GRENDL Conductor component is the
Performer application, which is deployed on each orchestra
member’s laptop. Like Conductor, Performer was devel-
oped in Processing.

Performer provides an endpoint for communication be-
tween ensemble members and the Conductor. This allows
ensemble members to register their laptops with the Con-
ductor, thereby adding the machines to the laptop grid.
Performer informs members of state changes in the perfor-
mance, such as transfer and launch of specific pieces, and it
allows orchestra members to signal the Conductor of specific
events, such as when they are ready to play.

In addition to an OSC server, Performer monitors serial
communications to detect events from the RFID cartouche
readers. These events are translated into OSC messages and
transmitted to the Conductor, except when a piece is being
played. As with Conductor, Performer does not send events
while a piece is being performed, and will only respond to
the “quit” job sent from the Conductor.

6. TANGIBLE CONTROL OF GRENDL
The number of separate operations that must be performed
to prepare to play a piece in a LO can be daunting. Con-
figuring audio channels, loading middleware and data files,
connecting and configuring external tools (e.g. Wiimote),
and synchronizing multiple machines takes time, all while
an audience watches. GRENDL helps address this prob-
lem, but at the cost of another layer of configuration, and
another set of commands to be remembered.

Tangible user interfaces provide an effective answer to
this new challenge. Specifically, cartouche tangibles[10] pro-
vide convenient tokens to represent concepts or actions.
Cartouches can provide legible and actionable representa-
tions of compositions, performers, instruments, and pro-
grams that are usable by both human performers and elec-
tronic components of the LO. Cartouches provide a natural
way for performers to interact with GRENDL, as well as
a convenient and tangible representation of the elements of
electronic music.

Cartouches have been tested with GRENDL in two con-
texts. First, a component has been developed that uses
the Trackmate computer-vision based fiducial tracking sys-
tem[3] to help configure the ensemble. When fully inte-
grated, this will enable rapid and reliable reconfiguration of
the orchestra for different pieces. The Trackmate system
(Figure 3b) tracks the presence, position, and rotation of
each cartouche, making a number of parameters available
for future use.

LO members can be equipped with RFID tagged car-
touches that are linked to the performer’s identity within
the group, machine information, or their specific role in a
composition. In addition to concepts or entities, cartouches
may represent actions or states, such as “ready to play.”

7. CONCLUSIONS

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

209

Figure 3: (a) Cartouche tangibles may represent a single concept, event, or role, or an entire set of values;
(b) Trackmate is one of several computer vision systems that can provide a convenient way for LO members
to interact with cartouches; (c) Cartouches are designed to be legible to humans as well as computers.

Our initial tests with the command-line version of GRENDL
have demonstrated that it can be used successfully in a con-
cert environment. It was initially piloted during a perfor-
mance of the Laptop Orchestra of Louisiana (the LOLs) on
April 14, 2010. Here, GRENDL was used to manage two
LO compositions, and worked without incident. Over the
following year, GRENDL was further tested on a regional
tour by the LOLs, and managed an entire concert on April 4,
2011. We found that writing configuration settings was not
nearly as straight forward as we wanted. Once tested and
configured correctly, GRENDL worked flawlessly, and facil-
itated a very successful concert without any delays during
the performance. We anticipate that the tangible version of
GRENDL, which we will use in the coming concert season,
will alleviate many of these issues.

These experiences have proven GRENDL’s utility, con-
firming our belief that such a system addresses key impedi-
ments to the widespread adoption and long-term persistence
of the laptop orchestra genre. That said, these tests have
revealed additional parameters and actions that must be
considered when building transfer, launch and quit scripts,
especially in the realm of complex OS configuration.

Extending the GRENDL engine to integrate smoothly
with tangibles, and in novel runtime environments, will re-
quire extensions to SAGA. The trans-disciplinary nature
of GRENDL provides potential to shed new light on ex-
isting challenges in computational science. The LO set-
ting presents a unique perspective from which to investi-
gate topics such as time-sensitive and dynamic job schedul-
ing, latency-bound interaction, and effective user interfaces
for grid computing environments. Some of the first itera-
tion interaction technologies have been developed for dis-
tributed computational science applications, and some of
what is learned through GRENDL will likely be applicable
in that area.

8. ADDITIONAL AUTHORS
Additional Authors: Brygg Ullmer (Louisiana State Univer-
sity, email: ullmer@cct.lsu.edu) and Shantenu Jha (Lou-
isiana State University, email: sjha@cct.lsu.edu).

9. REFERENCES
[1] F. Berman, G. Fox, and A. Hey. Grid Computing:

making the global infrastructure a reality. John Wiley
& Sons Inc, 2003.

[2] T. Goodale, S. Jha, H. Kaiser, T. Kielmann,
P. Kleijer, A. Merzky, J. Shalf, and C. Smith. A
simple API for Grid applications (SAGA). In Grid
Forum Document GFD, volume 90, 2007.

[3] A. Kumpf. Trackmate: Large-scale accessibility of
tangible user interfaces. PhD thesis, Massachusetts
Institute of Technology, 2009.

[4] J. McCartney. Rethinking the computer music
language: Supercollider. Computer Music Journal,
26(4):61–68, 2002.

[5] M. Puckette. Max at seventeen. Computer Music
Journal, 26(4):31–43, 2002.

[6] C. Reas and B. Fry. Processing: a learning
environment for creating interactive Web graphics. In
ACM SIGGRAPH 2003 Web Graphics, page 1. ACM,
2003.

[7] S. Smallwood, P. Cook, D. Trueman, and G. Wang.
Composing for laptop orchestra. Computer Music
Journal, 32(1):9–25, 2008.

[8] D. Trueman. Why a laptop orchestra? Organised
Sound, 12(02):171–179, 2007.

[9] D. Trueman, P. Cook, S. Smallwood, and G. Wang.
Plork: Princeton laptop orchestra, year 1. In
Proceedings of the 2006 International Computer
Music Conference, pages 443–450. Citeseer, 2006.

[10] B. Ullmer, Z. Dever, R. Sankaran, C. Toole Jr,
C. Freeman, B. Cassady, C. Wiley, M. Diabi,
A. Wallace Jr, M. DeLatin, et al. Cartouche:
conventions for tangibles bridging diverse interactive
systems. In Proceedings of the fourth international
conference on Tangible, embedded, and embodied
interaction, pages 93–100. ACM, 2010.

[11] G. Wang, N. Bryan, J. Oh, and R. Hamilton.
Stanford Laptop Orchestra (SLOrk). Proceedings of
the International Computer Music Conference, pages
505–508, 2009.

[12] G. Wang, P. Cook, et al. ChucK: A concurrent,
on-the-fly audio programming language. In
Proceedings of International Computer Music
Conference, pages 219–226. Citeseer, 2003.

[13] G. Wang, D. Trueman, S. Smallwood, and P. Cook.
The laptop orchestra as classroom. Computer Music
Journal, 32(1):26–37, 2008.

[14] M. Wright and A. Freed. Open sound control: A new
protocol for communicating with sound synthesizers.
In Proceedings of the 1997 International Computer
Music Conference, pages 101–104, 1997.

[15] M. Wright, A. Freed, and A. Momeni. Opensound
control: State of the art 2003. In Proceedings of the
2003 conference on New Interfaces for Musical
Expression, page 160. National University of
Singapore, 2003.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

210

