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ABSTRACT
A contemporary PC user, typically expects a sound card
to be a piece of hardware, that: can be manipulated by
’audio’ software (most typically exemplified by ’media play-
ers’); and allows interfacing of the PC to audio reproduc-
tion and/or recording equipment. As such, a ’sound card’
can be considered to be a system, that encompasses design
decisions on both hardware and software levels - that also
demand a certain understanding of the architecture of the
target PC operating system.
This project outlines how an Arduino Duemillanove

board (containing a USB interface chip, manufactured by
Future Technology Devices International Ltd [FTDI]
company) can be demonstrated to behave as a full-duplex,
mono, 8-bit 44.1 kHz soundcard, through an implemen-
tation of: a PC audio driver for ALSA (Advanced Linux
Sound Architecture); a matching program for the Arduino’s
ATmega microcontroller - and nothing more than head-
phones (and a couple of capacitors). The main contribution
of this paper is to bring a holistic aspect to the discussion
on the topic of implementation of soundcards - also by re-
ferring to open-source driver, microcontroller code and test
methods; and outline a complete implementation of an open
- yet functional - soundcard system.
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1. INTRODUCTION
A sound card, being a product originally conceived in in-
dustry, can be said to have had a development path, where
user demands interacted with industry competition, in or-
der to produce the next generation of soundcard devices.
As such, the soundcard has evolved to a product, that most
of today’s consumer PC users have very specific demands
from: they expect to control the soundcard using their fa-
vorite ’media player’ or ’recorder’ audio software from the
PC; while the soundcard interfaces with audio equipment
like speakers or amplifiers. For professional users, the char-
acter of ’audio software’ and ’audio equipment’ may encom-
pass far more specialized and complex systems – however,
the expectations of the users in respect to basic interaction
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with this part of the system is still the same: high-level, PC
software control of the audio reproduced or captured on the
hardware.
A development of a soundcard thus requires, to some ex-

tent, an interdisciplinary approach - requiring knowledge of
both electronics and software engineering, along with oper-
ating system architecture. But, even with a more intimate
understanding of this architecture, a potential designer of
a new soundcard may still experience a ’chicken-and-egg’
problem: understanding drivers requires understanding of
their target hardware - and vice versa. As such, considering
this product’s origins in industry, it is no wonder that liter-
ature discussing implementations of complete ’soundcards’
is rare - both hardware and software designs would have to
be disclosed, for the discussion to be relevant.

An open soundcard. Businesses are, understandably, not
likely to disclose hardware designs and driver code publicly;
this may explain the difficulty in tracking down prior open
devices. It is here that the Arduino [2] platform comes
into play. Marketed and sold as an open-source product,
it is essentially a board which represents a connection be-
tween a USB interface chip, and a microcontroller. As the
schematics are available, an Arduino board can, in prin-
ciple, be assembled by hand - however, a factory produc-
tion has both a low, popular price; and brings in a level
of expected performance, which allows for easier elimina-
tion of problems of electrical nature during development.
Thus, on one hand, an Arduino board represents known
hardware - one we could write an ALSA driver for; both
in principle, and - as this project demonstrates - in real-
ity. On the other hand, the Arduino is typically marketed
as supporting communication speeds of up to 115200 bps
(an impression also stated in [4]) - which result with data
rates, insufficient to demonstrate streaming audio close to
the contemporary CD-quality standard (stereo, 16-bit, 44.1
kHz). Yet, the major individual components: FTDI USB
interface chip, and ATmega microcontroller - are both indi-
vidually marketed to support up to 2 Mbps: a data rate that
can certainly sustain a CD-quality signal. Thus, in spite of
being known hardware, the Arduino may have ’officially
unsupported’ modes of operation, that would allow it to
perform as a soundcard - modes that, however, still need
to be quantified in the same sense, as if we were starting to
design a board from scratch (with this particular microcon-
troller, and USB interface chip).

Application example. An open soundcard may bring ac-
tual benefits to electronic instrument designers, beyond the
opportunity for technical study: consider a system where a
vibrating surface (cymbal) is captured using a sensor and
Arduino into PD software, where it is used to modulate a
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digital audio signal in realtime. Usual approach would be to
read the Arduino as a serial port at 115200 bps; this limits
the analog bandwidth (≈ 5kHz) and forces the user to code
a conversion to PD’s audio signal domain; with AudioAr-
duino the sensor data could be received directly as a 44.1
kHz audio signal in PD - full audio analog bandwidth, no
need for signal conversions.

2. PREVIOUS WORK
Previous attempts to discuss open soundcard implementa-
tions couldn’t provide a basis for the development here: the
Linux kernel contains many open soundcard drivers, but
written for commercial (typically undisclosed) hardware.
The now defunct german magazine Elrad may have had a
series on implementation of a PCI card in 1997, but the re-
maining reference1 doesn’t contain any useful information.
The Arduino has previously been used for audio: in [9] as a
standalone player; [12] as a standalone DSP - but not specif-
ically as a PC-interfaced soundcard. Thus, this project’s
basis is mostly in own previous work: [4] demonstrates
legacy hardware controlled by PC software; and identifies
data throughput control as the main problem in that naïve
approach. Modern operating systems address this issue by
providing a driver architecture; where, in programming a
driver, the programmer gains a more fine-grained temporal
control. In the context of the open GNU/Linux operat-
ing system(s), acquaintance with its current low-level audio
library - ALSA - is thus necessary for implementation of
soundcard drivers. This project has produced the tutorial
driver minivosc [7] as an introductory overview of ALSA
architecture - also used as a starting point of the work in
this paper.

3. DEGREES OF FREEDOM
It would be interesting to qualify to what extent can Au-
dioArduino - a system of Arduino Duemillanove, micro-
controller code, and matching ALSA soundcard driver -
be considered to be an ’open’ ’soundcard system’. To be-
gin with, hardware production necessarily involves mineral
extraction and processing, manufacturing, and distribution
- stages that require considerable economic infrastructure;
and therefore, there will always be a ’hard’ price attributed
to it. On the other hand software, in essence, represents the
instructions - information - for what we can do with this
hardware. With the increasing affordability causing mass
penetration of computing technology, fewer ’hard’ invest-
ments need to be made to start with software development;
and in principle, the pursuit of software development could
thereafter involve only investment of the time of the devel-
oper. While developer time also carries inherent cost with
it, there are circumstances where sharing the outcome - the
source code - becomes preferable, for academic, business or
altruistic reasons; especially since, with the expansion of
the Internet, the physical cost of sharing information can
be considered negligible.
Thus, it is in context of software that the term(s) ’free’

or ’open’ will be applied in this project (as in FLOSS2). To
begin with, the driver is developed on Ubuntu - a FLOSS
GNU/Linux operating system; with the main correspond-
ing tool for development, gcc, being likewise open. The au-
dio framework for Linux, ALSA, follows the same license
- and the main high-level, user audio programs used, Au-
dacity and arecord, are likewise open. The Arduino as a
platform is known to be open, by making the schematic
files available, as well as offering an integrated develop-
1http://www.xs4all.nl/~fjkraan/digaud/elrad/pcirec.html
2free/libre/open source software

ment environment (IDE) for Linux, which is also open [2].
The microcontrollers used in the platform are typically AT-
mega’s, part of the Atmel AVR family, which (given the
tolerance of Atmel to open source, see Atmel Application
note AVR911, also [14]) has long had an open toolchain for
programming, avr-gcc.
At this point, let’s note that Arduino in 2010 released

the Arduino UNO board, which is taken to be the ’refer-
ence version’ for the platform. The reason for this is that
the USB interface chip used on the UNO is ATmega8U2,
and the USB interface functionality is provided by the open-
source LUFA (Lightweight USB Framework for AVR) firm-
ware. In contrast, earlier versions of USB Arduinos, like
the Duemillanove, feature a FTDI FT232RL USB inter-
face chip. FTDI offers two drivers, VCP (Virtual COM
Port, offering a standard serial port emulation) and D2XX
(direct access) [18, ’Drivers’]. Both of these are provided
free of charge - however, source code is not available. Also,
VCP may offer data transfer rates up to 300 kilobyte/sec-
ond, while D2XX up to 1 Megabyte/second ([18, ’Product-
s/ICs/FT245R’]). Nonetheless, there exists a third-party
open-source driver for FTDI in the Linux kernel, which
corresponds to VCP, named ftdi-sio [11] - in fact, ftdi-sio
forms the basis of the AudioArduino driver. With this,
the following parts of the AudioArduino system can be
considered open: microcontroller code, and tools to imple-
ment/debug it; audio driver, and tools to implement/de-
bug it; operating system, hosting the development tools,
the driver and high-level software; and high-level audio soft-
ware, needed to demonstrate actual functionality – i.e., the
bulk of the software domain. The driver was developed on
Ubuntu 10.04 (Lucid), utilizing the 2.6.32 version of the
Linux kernel; the code has been released as open source,
and it can be found by referring to the home page [3].

4. CONCEPT OF AudioArduino
Given that the ATmega328 features both ADC, and DAC
(in form of PWM), converters - using the Arduino as a
soundcard hardware is a feasible idea, as long as one trusts
that the data transfer between the PC and the ATmega328
can occur without errors at audio rates. Developing a USB
driver for such data transfer would, essentially, require a
good working knowledge of the USB bus and its specifica-
tions. However, that is a daunting task for any developer -
the USB 2.0 Specification [19] alone is 650 pages long; with
actual implementation, in a form of a driver for a given OS,
requiring additional effort. Therefore, the starting point of
this project is to abstract the USB transport to the greatest
extent possible, and avoid dealing with particular details of
the USB protocol. This is possible because of the particular
architecture of the Arduino board, rendered on Fig. 1.

Arduino

ATMega328FT232R

Serial
(TTL RS232)

PC

U
S

B USBS
erial

[ftdi-sio]

Figure 1: Simplified context of an Arduino, con-
nected to a PC.

As Fig. 1 shows, the ftdi-sio driver makes the FT232
device appear as a ’serial port’ in the PC OS, that the
user can write arbitrary data to. The driver will format
this data as necessary for USB transport, and send it on
wire; the FT232 will then accept this data and convert it
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to TTL-level (0-5V) RS-232 signal (and the same happens
for the reverse direction, when reading). Given that RS-232
is conceptually much easier to understand (e.g., [5]); we can
’black box’ (abstract) the unknown (USB) part in the data
transfer - and focus on the known (RS-232) part.
In order to specify what sampling rates, in terms of dig-

ital audio, would this hardware support - the most impor-
tant factor to consider is the data transfer rate, that can
be achieved between the ATmega328 and the FT232 over
the serial link. As far as this serial link goes, the AT-
mega328 states maximum rate of 2.5 Mbps [16, pg.199];
while the FT232 states up to 3 Mbaud [17, pg.16]. As
the ftdi-sio driver supports 2 Mbps3 by default, this is
the ’theoretical’ speed that should be possible to achieve
all the way through to the ATmega328. A speed of 2
Mbaud translates to 200000 Bps3, which would be enough
to carry 200000/44100 = 4.5 mono/8-bit/44.1 kHz chan-
nels; or two mono/16-bit/44.1 kHz channels; or one CD
quality stereo/16-bit/44.1 kHz channel. However, one still
needs to determine what actual data transfer rates can be
achieved, and under which conditions (such as different soft-
ware). Beyond this, it is the response times of the AT-
mega328 (including DAC and ADC elements), that would
limit the use as full-duplex device. The final issue is the
analog I/O interface, discussed further in this paper.

Building and running. Both the source code, and instruc-
tions for building and running, can be found in [3] (and
they are similar to those given in [7]). The source code
consists of a modified version of [11], ftdi_sio-audard.c;
the ALSA-specific part in snd_ftdi_audard.h; associ-
ated headers and a Makefile; and microcontroller code,
duplexAudard_an8m.pde. The .pde code can be built
and uploaded to the Arduino using the Arduino IDE.
With this in place, high-level audio software (likeAudac-

ity) will be able to address the Arduino, and play back and
capture audio data through it. Arduino’s analog input 0
(AIN0) is treated as a soundcard input; sensors (like po-
tentiometers) connected to this input can have their signal
captured at 44.1 kHz in audio software. Arduino’s digi-
tal pin 6 (D6) is soundcard output; on which, when audio
software plays back audio data, (analog) PWM output is
generated (audible).

5. QUANTIFYING THROUGHPUT RATE -
DUPLEX LOOPBACK

As mentioned, one of the biggest issues in estimating if the
Arduino board can behave as a soundcard, is in measuring
the actual data transfer rate that can be achieved. The ini-
tial question is what tools can be used for that: the ftdi-sio
driver will make a connected Arduino appear as a special
file in the Linux system (/dev/ttyUSB0), representing a
serial port. The serial port settings, such as speed, can
be changed by using the stty program. Thereafter writing
character data to the Arduino can be performed by writing
to the associated file, say, by using echo ’some text’ > /
dev/ttyUSB0 - and reading by, say, cat /dev/ttyUSB0.
However, finding the actual data rate in either direction

is not the only thing which is interesting; another inter-
esting point is to what extent can the Arduino board be
considered a full-duplex device; i.e., whether the device can

3Note that in 8-N-1 RS232 transfer, there are 8 data bits, 1 start
and 1 stop bit; so 8-bit data is carried by 10-bit packet. Usually,
’baud’ means ’signal transitions per second’ and refers to all 10
bits, while ’bps’ as ’bits per second’ should refer to the 8 data
bits only; but they can be often used interchangeably - ’Bps’ as
’bytes per second’ refers strictly to data payload (see also [15]).

both receive and send data simultaneously (which, in terms
of soundcards, is a standard expected behaviour). To assess
both points, we suggest the ATmega328 is programmed as
a ’digital loopback’: to listen for incoming serial data; and
send back the received byte through serial, as soon as it has
been received. Then for the PC side, we propose a simple
threaded program, writeread.c [15]: it accepts an input
file; initiates write and read operations on a serial port in
separate threads, so they can run concurrently; writes the
input file, and saves the received data in another; and times
these operations, so that the throughput rate can be deter-
mined.
What this experiment shows, is that the usual C com-

mands for reading and writing from a serial port (and by
extension, user programs like cat or echo) do not carry the
concept of a data rate - they simply try to transfer data as
fast as possible; and even for 2 Mbps communication, these
commands push data faster than the USB chip can handle,
which results with kernel warnings. Therefore, it is up to the
program author to implement some sort of buffering, that
would provide an effective throughput rate. Yet even with
this in place, limiting rate to 2 Mbps within writeread.c
would still cause throttling warnings; but, limiting it to
slightly below 2 Mbps allows for a error-less demonstration.
The reason for this is likely in the asynchronous nature of
the serial RS232 protocol: in not sharing a single clock; the
PC, the FT232 and the ATmega328 each have a slightly
different concept of what the basic time unit (clock tick)
duration would be - and thus a different concept of what ’2
Mbps’ is. By lowering the data rate from writeread.c, we
likely account for these differences, which allows for error-
free transmission; and from the PC, we can typically mea-
sure around 98% of 2 Mbps achieved for error-free duplex
transmission.
Moreover, during this digital loopback experiment, the

signals of the TX and RX connections (between the FT232
and the ATmega328) were measured with an Agilent 54621A4

oscilloscope; captured with the open-source agiload for
Linux; and analysed using a script produced by this project,
written in python (utilizing matplotlib) that features a
serial decoder, calledmwfview-ser.py [3]. These measure-
ments show that the time for the ATmega328 to receive a
byte and send it back - the minimal ’quantum’ of action,
relevant for a ’digital duplex’ - is around 6.940 µs (Fig. 2),
which is approx. 31% of the 22.6 µs analog sample period
(for 44.1 kHz rate); which specifies the latency bottleneck
expected from the Arduino in ’digital loopback’ mode.

Figure 2: Oscilloscope capture of RX (top) and TX
(bottom) serial lines at the ATMega328, indicating
latency between received and sent byte.

Note that, the ATmega328’s UART produces a signal
4The Agilent 54621A claims 60 MHz bandwidth, which is
sufficient for capture of a 2 Mbps digital signal
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with considerably more jitter than the FT2325; and there
can be gaps in the otherwise sustained rate of serial trans-
mission between the two - but none of this seems to harm
error-free transmission at 2 Mbps. Finally, writeread.c
works both with the ’vanilla’ ftdi-sio driver, and the Au-
dioArduino driver. Also, the same Arduino code used
to demonstrate digital loobpack with writeread.c, can be
used with the AudioArduino driver - allowing for demon-
stration of a digital audio loopback: one can load a file in
Audacity; play it back through the AudioArduino card;
and by recording at the same time from the same card,
one should capture the very same audio being played back
(latency notwithstanding).

6. MICROCONTROLLER CODE
There are two distinct versions of microcontroller code for
the ATmega328 used in this project, both in a form of a
C language .pde file (the default format compilable in the
Arduino IDE). The first is the mentioned ’digital duplex’
code, which simply sends back any byte received through
serial, posted in [15]. The main issues here are: the setup
of the ATmega328’s UART to support 2 Mbps (which is
not supported in the default Arduino API); removing all
overhead due to API function calls, by using the function
source code directly; and disabling all irrelevant interrupts -
before the Arduino can start showing 98% of 2 Mbps with
writeread.c. Beyond this, the code can be implemented
either as a single loop, or with interrupts on incoming se-
rial data; with no significant difference in respect to perfor-
mance. This is the same microcontroller code used as basis
for development of the AudioArduino driver.
Once the AudioArduino driver was confirmed to be

working with the ’digital duplex’ code - a new, second ’ana-
log I/O’ version was written, which also employs the ADC
and PWM (as DAC) facilities of the ATmega328. This ver-
sion, as it is supposed to support audio playback and record-
ing, requires deeper involvement with the ATmega328 data-
sheet [16]. In essence, the problem is that ALSA will send
(mono) data at rate of 44100 Bps, which will appear as
chunks of bytes on the 200000 Bps serial Arduino line;
these bytes need to be stored as soon as possible by the
ATmega328 in memory (buffer). On the other hand, at
a rate of 44100 Hz, the ATmega328 should read one byte
from the buffer and write it to PWM (the DAC) - and at the
same time, read a byte from the ADC, and send it via se-
rial. As we would expect an 8-bit interface (where each byte
represents an analog sample) at the driver side, no further
digital sample processing needs to be done in either direc-
tion. This is solved by code that employs an interrupt on
incoming data, where the data is stored in a circular buffer
- and a (16-bit) timer interrupt to handle the analog I/O at
the 44100 Hz analog rate [3]. Note that this ’analog I/O’
version seems to only perform well when implemented with
incoming data handled on interrupt; trying to do the same
handling in a single loop reveals problems with determining
when an incoming byte is ready to be read from ATmega’s
UART [3].

7. DRIVER ARCHITECTURE
The AudioArduino driver is not only based on ftdi-sio
- ftdi_sio-audard.c is a renamed version of [11], with
several changes: first, it includes snd_ftdi_audard.h,
which here is not used in the standard sense of a C header,
but simply as a container for ALSA relevant code (which
5A crude measurement of jitter spans around 0.26 µs, which
is about 52% of the 0.5 µs period for a bit transition at 2
Mbps, see [15]

would, otherwise, have to be written into the already com-
plex [11]). Other changes include calling ALSA relevant
functions from the default ftdi-sio functions: audard_probe
from ftdi_sio_probe; audard_probe_fpriv from ftdi_sio
_port_probe; audard_remove from ftdi_sio_port_remove;

and audard _xfer_buf from ftdi_process_packet - which
connects the soundcard ALSA interface to USB events.
Otherwise, the main ALSA functionality is contained

in snd_ftdi_audard.h, whose development is based on
minivosc.c [7]. Thus, it contains the same type of ALSA
related structures, but the structure map (shown on Fig. 3)
is slightly more complex than in [7]: the main ’device struct’,
audard_device, contains an array holding references to both
the playback and the capture substream; the substreams are
encapsulated in snd_audard_pcm structures, that hold indi-
vidual buffer position counters. There are separate snd_pcm_hardware
and snd_pcm_ops variables - yet a single snd_card_audard_
pcm_timer_function - to handle the playback and capture

substreams.
In essence, theAudioArduino driver leaves, for the most

part, the functionality of ftdi-sio as is; with several addi-
tions. When ftdi_sio_probe runs (i.e., when the Arduino
is connected to PC via USB), the ALSA interface is addi-
tionally setup, enumerating the Arduino as a soundcard.
With this in place, on one hand, the driver keeps the serial
interface (such as the creation of the /dev/ttyUSB0) file. On
the other hand, the driver will also react on ’start’ or ’stop’
commands from high-level audio software as usual: e.g., on
’start’ _trigger will run, which will start the timer, and
thus the periodic calls to _timer_function. The _timer
_function, then, needs to handle the playback direction by
copying the respective part of its dma_area to USB - which
it does by calling ftdi_write. For the capture direction, in-
coming USB data triggers ftdi_process_packet, which ad-
ditionally calls audard_xfer_buf; here USB data is copied
to a dynamically sized ’intermediate’ buffer, audard_device
->IMRX – and _timer_function will thereafter copy the
data from the intermediate buffer to the capture substream’s
dma_area, the next time it runs.
TheAudioArduino driver additionally exposes CD qual-

ity, stereo/16-bit/44.1kHz capability - to allow for direct
playback interface with Audacity (and most media player
software). However, since the microcontroller code expects
a sequence of 8-bit values, we must convert the stereo 16-bit
stream to a mono 8-bit one - this opens a whole new set of
problems related to wrapping, which is illustrated on Fig. 4.
By declaring the driver capable of 16-bit stereo, we have
not changed the number of substreams (which would cor-
respond to connectors on the soundcard); however, Fig. 4
shows that we would have changed the data format car-
ried in the substream’s dma_area - the stream is now in-
terleaved: consecutive bytes carry a pattern of left chan-
nel’s 2 bytes, followed by right channel’s 2 bytes. Thus an
ALSA frame (size of analog sample in all channels) is now
4 bytes; and the problem becomes how to represent this
ALSA frame with a single byte. The approach in the Au-
dioArduino driver is to simply extract the most significant
byte of the left channel, according to the formula (C code):
(char) (left16bitsample >> 8 & 0b11111111) ^ 0b10000000
However, as Fig. 4 shows, a bigger problem is that the

wrapping boundaries (at the size of the chunk handled at
each _timer_function, and at the size of dma_area) can
now occur in the middle of a frame (and correspondingly,
middle of an 8-bit sample) - which is a situation that doesn’t
occur for 8-bit streams (where each single byte corresponds
to one analog sample). To address this, theAudioArduino
driver employs yet another intermediate buffer (audard_device
->tempbuf8b). With this in place, the driver will automat-
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Figure 3: Partial ’structure relationship map’ of the AudioArduino driver.
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Figure 4: Visualisation of driver’s playback buffer boundaries, and CD to mono/8-bit conversion.

ically convert a 16-bit stereo stream from Audacity to an
8-bit one, preserving the 44100 Bps rate, before it sends
it to USB - and thus, an audio ’digital loopback’ can be
demonstrated on this driver directly from Audacity.
Finally, note that ’DMA’ in ’dma_area’ stands for ’Di-

rect Memory Access’, which “allows devices, with the help
of the Northbridge, to store and receive data in RAM di-
rectly without the intervention of the CPU (and its inherent
performance cost) [8]”. Interestingly, in this case: while the
transfer of incoming USB data to PC memory (as part of
ftdi-sio); as well as the transfer of data from dma_area to
user memory of high-level audio software (as part of the
ALSA ’middle layer’); likely involves DMA – the transfer
of memory that is performed as part of AudioArduino’s
_timer_function definitely doesn’t; as we use the memcpy
command to transfer data (which does involve the CPU).

8. ANALOG I/O
The ALSA driver can be developed in its entirety with
the ’digital duplex’ Arduino code; if thereafter the ’analog

I/O’ microcontroller code is ’burned’ on the Arduino - the
driver will, effectively, utilize analog input pin 0 as analog
input connector, and digital pin 6 as analog output connec-
tor. However, both the analog input range, and the output
PWM signal, span the voltage range from 0 to 5V - while a
typical off-the shelf soundcard typically contains ’line’ input
and output connectors, as well as ’mic in’ and ’speaker out’
connectors, which follow a different analog standard. These
topics are discussed in more detail in an associated paper,
[6].
The use of analog pins on the Arduino to read sensors is

standard practice, and plenty of examples can be found on
the web [2]; thus an arbitrary sensor signal can be captured
through high-level audio software at 8-bit, 44.1kHz qual-
ity (in the same spirit of [4]). Note that the analog input
voltage range, 0-5V, will be represented with the span of
8-bit values from 0 to 255 - which within Audacity may
be treated as floating point values -1 and 1, respectively.
The use of PWM to deliver an analog audio signal is based
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on the premise that the highest PWM frequency obtainable
from the Arduino, 62500 Hz [6], will be sufficient to repro-
duce a 44100 Hz digital (22.05 kHz analog) audio signal.
To a novice, used to analog voltage waveforms, this can be
problematic to assess - as the binary nature of PWM makes
it seem inherently ’distorted’ in the time domain. How-
ever, industry insiders are well aware of the practice of using
PWM for audio, e.g., in the mobile or automotive industry
[10], and often to drive speakers directly [1]. This project
demonstrates that as well: upon playback of audio from
high-level software, one can simply connect the output pin
6 to a channel on headphone jack, and connect the ground
of the headphone jack to Arduino’s ground - and audible
sound would be perceived from the headphones’ speaker
(but use of a capacitor will result with a louder, clearer
sound [3]). Note that there are inherent jitter problems in
reproducing HF tones with this technique, while mid-range
music can be reproduced with acceptable quality [3, 6].

9. CONCLUSIONS
As this paper outlines, development of a soundcard can be a
complex and involved issue. The particular approach used
here, avoids many electronic engineering issues by choosing
the Arduino Duemillanove as soundcard hardware; and
avoids deeper involvement with the USB protocol by the
specific use of the ftdi-sio driver as a basis. In doing that,
the overview of the ALSA architecture, started in [7], is fi-
nalized - as ALSA is discussed in its full intended scope: in
relation to a given soundcard hardware, and given interface
bus. This allows for focus on issues in soundcard imple-
mentation that are close to ’first principles’, and as such
could serve in educational context, as a basic introduction
to newcomers to the field - which is the main contribution
of this paper and source code.
Beyond (hopefully) furthering the discussion on DIY im-

plementations of PC interfaced digital audio hardware, this
project may have a practical impact as well - as there are
research projects in the computer audio community and re-
lated fields (such as haptics [13]), which use the Arduino
to capture sensor data; and as such, could benefit from
the audio-rate capture quality, and the possibility to lever-
age the real-time performance of applicable high-level audio
software, such as PureData.

10. FUTURE WORK
The currentAudioArduino code could, in principle, easily
be modified to demonstrate stereo 8-bit performance, or
even 16-bit mono (say, by using separate PWM for LSB
and MSB, and mixing them in the analog domain). A more
involved work would be to port the concept to the reference
Arduino UNO - as that will require work on the LUFA
firmware, which doesn’t currently support 2 Mbps[15]; on
the other hand, the LUFA could allow the Arduino to be
recognized as a ’USB audio’ class device, instead of a ’USB
serial’ one. Finally, as in [7], it would be interesting to see to
what degree could AudioArduino be ported to the major
proprietary PC operating systems.
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