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ABSTRACT
Several methods exist for manipulating spectral models ei-
ther by applying transformations via higher level features
or by providing in-depth offline editing capabilities. In con-
trast, our system aims for direct, full, intuitive, real-time
control without exposing any spectral model features to the
user. The system extends upon previous machine learning
work in gesture-synthesis mapping by applying it to spec-
tral models; these are a unique and interesting use case in
that they are capable of reproducing real world recordings,
due to their relatively high data rate and complex, inter-
twined and synergetic structure. To achieve a direct and
intuitive control of a spectral model, a method to extract
an individualized mapping between Wacom Pen parameters
and Spectral Model Synthesis frames is described and imple-
mented as a standalone application. The method works by
capturing tablet parameters as the user pantomimes to syn-
thesized spectral model. A transformation from Wacom Pen
parameters to gestures is obtained by extracting features
from the pen and then transforming those features using
Principal Component Analysis. Then a linear model maps
between gestures and higher level features of the spectral
model frames while a k-nearest neighbor algorithm maps
between gestures and normalized spectral model frames.
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1. INTRODUCTION
Spectral Model Synthesis (SMS) is a flexible platform ca-
pable of generating rich and vivid sounds [11] [9]. It repre-
sents a sound’s periodic and noisy components as a series
of frames, each frame consisting of a set of sinusoidal fre-
quencies and amplitudes plus a spectral envelope for noise.
Deriving a compact spectral model from recorded audio cap-
tures a veridicality difficult to create using other forms of
synthesis. SMS retains the gestalt of the audio while al-
lowing stretching, pitch shifting and other modifications.
Despite this flexibility, SMS is difficult to manipulate intu-
itively in real-time beyond macro control such as volume,
pitch, and duration. The number of synthesis parameters
in a single SMS frame can be well over 100; choosing how to
tie a low-dimensional control device to these is non-trivial.
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Recently, machine learning and statistical analysis tech-
niques have been applied to mapping inputs to synthesizer
controls [2]. We apply these ideas to SMS and propose a
new model to map input gestures to SMS control. We tai-
lor each mapping in a user-directed way by having the user
listen as a spectral model is resynthesized and pantomime,
in real-time, the gestures that “should” correspond to the
sound. Essentially, the user imagines that she is directly
controlling the sound with a Wacom Tablet [12]. The sys-
tem captures these pantomimed input gestures for use as a
training set to determine a mapping between the tablet and
SMS parameters via machine learning techniques.

The first learning step analyzes the captured input ges-
tures with principal component analysis (PCA) to create a
lower dimensional “gesture” space. Linear regression then
maps between the (principal components of the) gestures
and higher level spectral model frame features, while k-
nearest neighbors maps between the gestures and normal-
ized spectral model frames. After the system learns a com-
plete mapping it can synthesize new sounds in response to
real-time Wacom gestures. Since the mapping originated
from the user’s pantomimes to the original spectral model,
the control is intuitive. Repeating the example gestures
results in approximating the original SMS frames, while de-
viating from the original pantomimes results in new spec-
tral model frames that did not exist in the original spectral
model but make intuitive perceptual sense to the user.

2. RELATED WORKS
There have been several approaches to controlling SMS. One
approach focuses on providing software tools to allow users
to edit spectral models in an offline manner [5]. A second
approach reduces the number of inputs needed to control
synthesis by extracting higher level sonic descriptors de-
rived from the spectral model [8], using general purpose
dimension reduction techniques [6], or defining generic a
priori mappings [13]. Instead, our approach allows users
to map their personal gestures to aspects of the spectral
model rather than simply mapping the model characteris-
tics to a parameter value. Like the second approach, it
attempts to control the synthesis in a higher-level and more
abstract space, but in contrast it provides a personalizable
and potentially more flexible platform because each user can
reconfigure the control mapping for each spectral model.

Fiebrink et al. utilize various machine learning and sig-
nal processing algorithms to map between input controllers
and synthesis controls [2], demonstrating this approach by
applying it to score following, physical modeling synthesis,
and video manipulation utilizing a“play-along”data gather-
ing method. Our approach differs in both the synthesizer’s
structure and the aspirations of the control mapping. Par-
ticularly, SMS provides a more low-level representation of
sound than musical scores or physical models. The data rate
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Figure 1: Overview of Mapping Generation Steps

and emergent nature of the information in SMS culminate
in rich, detailed and life-like sounds while making intuitive
control of the model exponentially more difficult. As well as
SMS structurally differing from the previously investigated
synthesis models, the source and derivation of the model
is also conceptually different. Fiebrink et al. utilize scores
and/or random permutations of synthesis settings to pro-
vide examples for users to pantomime to. Here, the model
is derived from a recording, and since spectral models are
so flexible, special care must be taken to retain the gestalt
of the sound while still offering new spaces for exploration.
The spectral model synthesizer in itself is cannot retain the
essence of the recording. Instead it is the duty of the the
machine learning algorithms to retain certain qualities of
the model, while relaxing others in order to provide direct,
intuitive control while still being capable of creating unfore-
seen sounds. To do so we utilize expert knowledge of SMS,
pervious work upon motion gesture analysis [1] and machine
learning for synthesis control [2], and provide an environ-
ment where users can experiment to create new mappings
[7].

3. SYSTEM OVERVIEW
Our method uses several steps to learn a mapping from
tablet input to SMS control (figure 1). First the user gener-
ates examples by pantomiming“control”gestures as a prede-
termined model plays; the system time-stamps and records
the resulting tablet parameters into a pantomime file. Then
the machine learning engine derives a two-level mapping:
from pen parameters to gestures, and from these gestures
to SMS frames. One can then use this mapping in real-time
to control SMS using the tablet. A standalone OSX ap-
plication guides the user through the entire process, from
pantomiming, to building a mapping, to playing.

3.1 Pantomimes
Our software lets the user load a spectral model, preview it,
pantomime to it, and see the Wacom Pen’s parameters. An
example of a pen’s parameters in comparison to a spectral
model’s frequencies can be seen in figure 2. The software
provides three mechanisms to aid the user. The first is vi-
sual feedback of the recent history of all pen parameters
shown as a trail of slowly fading dots upon a white canvas:
X and Y position determine dot’s position, pen-tip pres-
sure and Z position (pen’s height above tablet) determine
hue, and the X and Y tilt parameters control the size and
shape of the dot. Second, the user can learn the nuances
of a chosen spectral model via practice runs listening and
pantomiming without recording the results. Third, to help
accurately synchronize the pantomime timing to the sound,
a stop-light metaphor counts down (via large red, then yel-
low, then green circles each displayed for one second) to the
beginning of audio playback after the user clicks the record
button. This also gives the user time to prepare (e.g., pick-
ing up the Wacom pen after clicking the record button).

Figure 2: Sinusoidal Tracks of Spectral Model (top)
and Wacom Pen Parameters (bottom)

3.2 Gesture Language Extraction and Trans-
formation

Given the opportunity to pantomime to SMS resynthesis,
each user will assuredly perform different gestures to the
same audio. Likewise, the same user will usually perform
widely differing gestures when pantomiming to different SMS
models [3]. These gestures should reflect the way a user
would intuitively control the sound if they were produc-
ing it. In order to create individualized and intuitive con-
trol of SMS parameters, features likely to express musical
intention are extracted from the captured Wacom Tablet
parameters. We assume that features containing relatively
high energy amongst the set of captured input device pa-
rameters encapsulate a high expressive potential, according
to the principle of a “correspondence between the “size” of
a control gesture and the acoustic result” [10]. To this end,
we define our gesture language as several linear combina-
tions of features with high expressive potential and derive a
transformation between features and the gesture language
using Principal Component Analysis (PCA). This transfor-
mation emphasizes features with high expressive potential
and deemphasizes those with lower expressive potential, as
well as reducing the dimensionality of the input to the learn-
ing algorithms in later stages of this mapping algorithm.

3.2.1 Feature Extraction
To extend our mapping algorithm’s ability to encapsulate
gestures, we estimate the instantaneous velocity (first deriva-
tive) and acceleration (the second derivative) of the tablet
parameters using a five-point stencil. This preprocessing
step is primarily to capture non-linear motion information.
We define the set of six parameters (x, y, and z position,
pressure, x-tilt, y-tilt) from the Wacom Pen as follows:

p(n) = [wx(n), wy(n), wz(n), wp(n), wθ(n), wφ(n)]. (1)

Each output frame is the concatenation of the original pen
parameters with the first and second derivatives:

f(n) = [wx(n), w′x(n), w′′x(n), ..., wφ(n), w′φ(n), w′′φ(n)]T

(2)
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Figure 3: Mapping From a Wacom Tablet to Spec-
tral Model Frames

3.2.2 Gesture Language
We aim to determine a gesture language that distinguishes
and accentuates the features that show high potential ex-
pressivity for a particular user, as well as a means to trans-
form the tablet features into the gesture language in a real-
time fashion. Principal Component Analysis (PCA) pro-
vides a suitable means to determine a transformation to a
gesture language of M continuous values (where 0 < M ≤
18). If we associate energy with expressivity, PCA results
in a transformation where the first column of the transfor-
mation captures the most expressivity, the second column
contains the second most expressivity, the third column the
third most expressivity, and so on. Additionally, we em-
phasize/deemphasize the output of the transformation by
weighting each of the M columns by their respective eigen-
values. In addition to accentuating Wacom Pen features
used for expression, the gesture transformation also reduces
the dimensionality of inputs to the next mapping stage,
making them more robust against the various pitfalls as-
sociated with the curse of dimensionality [4]. Equation 4
describes the transformation matrix between Wacom Pen
features and gestures where λi is the eigenvalue and pi is
the corresponding eigenvector derived from PCA analysis
of F. The transformation from Wacom Pen parameters to
gestures g(n) is shown by equations 1, 2 and 5.

F = [f(0), f(1), ..., f(N − 1)]T (3)

G = [λ0p0, λ1p1, ...λM−1pM−1]T (4)

g(n) = Gf(n) (5)

3.3 Gestures to Spectral Model Frames
It would be challenging to find a one-size-fits-all mapping
from gestures to spectral model frames. Spectral model
frames posses a composite structure, made of components
that have disparate meanings and values. To overcome this
challenge we employ the two-pronged approach outlined in
figure 3. One mapping path maps gestures to higher level
spectral frame features via linear regression. The other path
utilizes a K-Nearest Neighbor (KNN) algorithm where the

gesture values describe the coordinates of normalized spec-
tral model frames in a Euclidean space. After the linear re-
gression and KNN models are trained, a new spectral model
frame is generated by advancing a gesture through both
mapping paths and then combining their output to con-
struct a new spectral model frame. Retaining the normal-
ized frames preserves the complex structure of the spectral
model, which in turn contains many of the minute details
that differentiate SMS from other forms of synthesis. Con-
currently, linearly mapping higher level features allows new
sonic spaces to be explored.

3.3.1 Linear Mapping of Higher Level Features
Linearly mapping higher level features expands the capa-
bility of the overall mapping algorithm by encapsulating
complex features of the spectral model and providing un-
bounded control of them. Higher level features can capture
aspects of the spectral model that happen on a time-scale
too small to recreate accurately by drawing, or in a way that
maps complexly to gestures. Consider mapping a spectral
model’s vibrato. The pitch fluctuations happen on a time
scale too small to reproduce when pantomiming. By instead
mapping a gesture to the depth of a vibrato, the user simply
needs to pantomime something that implies more vibrato,
not match the fluctuations in pitch directly. Linear map-
ping also allows the system to generalize parameters beyond
the range presented in the original spectral model. For ex-
ample, if we only used a KNN approach to map pitch, the
user would be confined to the pitches existent in the origi-
nal spectral model. By deriving a linear mapping, the user
can go beyond and between the original pitches because the
linear map utilizes an unbounded continuous function to
convert gestures to pitch.

To create a linear mapping of a higher level feature, first
the feature is extracted from the spectral model frames.
The function used to extract the feature must normalize
the spectral model frame with respect to the feature as well
as be invertible so that the spectral model frame could be
recreated at a later stage. These higher level features are
then mapped linearly by performing linear regression upon
the pairs of gestures and their corresponding feature value.

3.3.2 KNN Mapping of Spectral Model Frames
After extracting higher level features from the spectral model
frames, the normalized spectral model frames are placed in
a Euclidean space where the values of the gesture are uti-
lized as the frame’s coordinates.

A KNN algorithm is used to map between gestures and
these altered spectral model frames. KNN algorithms work
on the assumption that data can be arranged into a metric
space, and that a new, unclassified piece of data can best be
described by inspecting the K nearest classified data within
a training set [4]. This property is extremely attractive in
that it allows us to use our gesture vectors as direct pre-
dictors of the output spectral model frame, ignoring the
complex relationship between the gesture vector and the
particular format of the SMS frame.

3.3.3 Spectral Model Frame Reconstruction
After an input gesture has been mapped through the higher
level feature linear models and the normalized spectral model
frame KNN model, a new spectral model frame is con-
structed by combining the two. Beginning with the base
spectral model frame at the output of the KNN, the higher
level features are applied to the frame using the inverse of
the function used to extract the higher level feature. This
frame is then fed to the synthesizer for audio playback.
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Figure 4: Original and Mapped Fundamental Fre-
quency

4. RESULTS/ANALYSIS
The system as a whole successfully allows intuitive control
over a spectral model. It could deduce a mapping at a very
satisfactory speed, quick enough for fast experimentation.
For a spectral model covering 4 seconds of time, and a pan-
tomime file containing 428 frames it took approximately 2.5
seconds to derive a mapping using a single Intel Core i5 on
a Macbook. While the speed of the system does not pose an
issue, certain aspects of the mapping algorithm do. First,
the user has the option to pantomime several times to the
same spectral model and combine all of their pantomime
files into a single training run. It was noted that a sin-
gle pantomime generally produces satisfactory results, but
additional pantomime files smoothed out the control over
the spectral model, and made it feel more predictable. We
hypothesize that this is simply a matter of providing more
training data, resulting in more robust calculations in both
the PCA and linear regression stages. Additional investiga-
tion is needed to shed more light on the appropriate amount
of training data needed to derive a control mapping. Also,
while many aspects of the original spectral model (loud-
ness, frequency envelope) could be recreated by reproduc-
ing the original pantomimes, the resynthesized sound lacked
the same authenticity in the original spectral model. Fig-
ure 4 shows both the spectral model’s original fundamen-
tal frequency, and the fundamental frequency determined
by mapping the pantomime file through the mapping al-
gorithm. While the general trends of the original funda-
mental are grossly estimated, many of the finer temporal
variations are completely smoothed out. One possible ex-
planation could be that the Wacom Pen’s sample rate is
too slow (∼50Hz) and control too gross. This makes it
incapable of controlling micro-variations of spectral model
parameters that change more often than the Wacom Pen is
sampled. Second, the linear regression between gestures and
the fundamental frequency may be too simple of a model to
translate from gestures to the fundamental. Additional in-
vestigation is needed to understand exactly which features
of the spectral model are retained after the mapping, and
which are lost.

5. CONCLUSION AND FUTURE WORK
We have introduced a novel method to extract an intu-
itive and individualized mapping from a users’s performance
to control of Spectral Model Synthesis based on capturing
tablet parameters as the user pantomimes to synthesized
spectral model. A robust machine learning system incorpo-
rating time derivative estimation, PCA, KNN, and linear re-
gression produces acceptable results: when the performance
gestures imitate the pantomimed training gestures the out-
put sound recognizably approximates the input sound, while

related gestures intuitively produce interesting extrapolated
sounds.

Several areas of improvement could increase the overall
quality of the system. First, a better methodology for pair-
ing Wacom Pen parameters to spectral model frames could
improve the overall mapping by reducing the inherent er-
rors of a pantomime. By segmenting both the Wacom Pen
parameters and spectral model into sub-note sections (e.g.
attack, decay, sustain), we could come to a tightly bound
pairing between gestures and sub-note events. Second, ad-
ditional mapping techniques could be investigated such as
artificial neural networks, and logit regression. While these
models may require more training and time to create, they
have the capability to capture complex inter-feature rela-
tionships not captured by the linear regression functions of
the current design.
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