
A principled approach to developing new languages for
live coding

Samuel Aaron
University of Cambridge

Computer Laboratory
Cambridge

sam.aaron@acm.org

Alan F. Blackwell
University of Cambridge

Computer Laboratory
Cambridge

alan.blackwell@cl.cam.ac.uk

Richard Hoadley
Anglia Ruskin University
Digital Performance Labs

Cambridge
richard.hoadley@anglia.ac.uk

Tim Regan
Microsoft Research

Cambridge
timregan@microsoft.com

ABSTRACT
This paper introduces Improcess, a novel cross-disciplinary
collaborative project focussed on the design and develop-
ment of tools to structure the communication between per-
former and musical process. We describe a 3-tiered archi-
tecture centering around the notion of a Common Music
Runtime, a shared platform on top of which inter-operating
client interfaces may be combined to form new musical in-
struments. This approach allows hardware devices such as
the monome to act as an extended hardware interface with
the same power to initiate and control musical processes
as a bespoke programming language. Finally, we reflect on
the structure of the collaborative project itself, which of-
fers an opportunity to discuss general research strategy for
conducting highly sophisticated technical research within a
performing arts environment such as the development of a
personal regime of preparation for performance.

Keywords
Improvisation, live coding, controllers, monome, collabora-
tion, concurrency, abstractions

1. INTRODUCTION
The Improcess project aims to create new tools for perform-
ing improvised electronic music in a live setting. The key
goal of these tools is to structure the communication be-
tween the performer and a suite of concurrently executing
musical processes. This fits within the broad genre known
as live coding, where the performer writes and manipulates
a computer program to generate sound. The Improcess
project has started with a specific focus on a particular
technical architecture and research strategy. The techni-
cal starting point has been to explore the potential for live
coding performance combining domain specific music pro-
gramming languages together with general purpose musical
interface devices, such as the monome. Figure 1 shows a
recent performance by the first author (shown on the left),
in which a monome is used on stage together with a laptop
running live coded software which is made visible to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’11, 30 May–1 June 2011, Oslo, Norway.
Copyright remains with the author(s).

audience via a large projection of the laptop’s screen.

Figure 1: The (λ− tones) performing live at the Eu-
ropean Ruby on Rails conference in Amsterdam,
2010

The research strategy of Improcess has emphasised the
creation of a cross-disciplinary team of collaborators rather
than the more typical historical development of live coding
systems, in which an individual developer works within an
interdisciplinary context. We have also attempted to struc-
ture the project with a specific emphasis on the develop-
ment of a reflective performance practice. The remainder
of the paper discusses each of these aspects in turn: first
our approach to experiments with the monome and with
domain-specific languages (DSLs). Next, we address the ar-
chitecture, the implementation, and the integration of these
components into a personal regime of preparation for perfor-
mance. We also reflect on the structure of the collaborative
project itself, which offers an opportunity to discuss gen-
eral research strategy for conducting highly sophisticated
technical research within a performing arts environment.

2. THE END-USER APPROACH TO DOMAIN
SPECIFIC LANGUAGES

In contrast to previous research in live coding, we start from
a technical motivation related to the design and implemen-
tation of DSLs, languages specialised for creating particu-
lar kinds of application [15], and the design of languages for
‘end-user programmers’, people having no formal training in

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

381

programming [18]. The languages that have been developed
for live coding in the past could all be classed as DSLs, al-
though this terminology is not necessarily used. Some have
also been designed according to principles that are well-
known in end-user programming (EUP) - for example, the
visual syntax of Max/MSP. However, many live-coders to
date have been experienced programmers, rather than mu-
sicians who acquired coding skills as a way to advance their
musical practice.

In the Improcess project, we believe that there is an ad-
vantage to be obtained by drawing on broader research ad-
dressing DSLs and EUP from contexts outside of music. We
have noted in the past that live coding can be an interest-
ing object of study for researchers in EUP [10]. However in
this project we draw lessons in the other direction. In par-
ticular, we consider the ‘cognitive ergonomics’ of language
design, and of programming environments. This leads us
to consider the tools in the programming environment, al-
ternative types of syntax (including options for ‘visual’ di-
agrammatic syntax as well as textual syntax), and also the
underlying computational model. As an example of the di-
versity of tools, syntax and computational models that are
considered in EUP research, the spreadsheet is often anal-
ysed as a DSL for the accounting domain. The tools are
those for inspecting, navigating and modifying the visual
grid. The syntax is the combination of the diagrammatic
grid with formulae that refer to that grid, and the computa-
tion model is a form of declarative constraint propagation.

The Cognitive Dimensions of Notations (CDs) is a use-
ful framework in which to consider the interaction of these
different factors [12]. When designing new DSLs and pro-
gramming environments, it is possible to optimise for dif-
ferent criteria - for example making languages that are very
easy to change (low viscosity) or occupy small amounts of
screen space (low diffuseness). All of these decisions involve
tradeoffs, however, that can reduce the usability of the sys-
tem in other respects. Duignan has in the past used CDs
productively to analyse studio technology such as Digital
Audio Workstations [14]. However, in addition to his con-
cerns, we are also interested in abstraction gradient - is it
possible for newcomers to start producing music without a
large prior investment of attention? Some elegant compu-
tational models preferred by computer scientists are highly
abstract, to an extent that discourages casual use. This is
another trade-off that we consider explicitly.

Finally, our group has in the past explored the complex
relationship between direct manipulation and programming
abstractions [8]. In a performance context, direct manipu-
lation allows an audience to perceive a direct relationship
between action and effect. Programming languages, in our
analysis, are essentially indirect - indeed, this is a funda-
mental tension of live coding. We hope that the monome
can be used, not only as a device to trigger events (direct
manipulation), but to modify the structure of musical pro-
cesses in a way that maintains, enhances or interrogates this
fundamental tension.

3. INTEGRATING CONCRETE INTERAC-
TION

Many live-coders use peripheral devices, for data capture
and control. However the software architectures tend to be
influenced by conventional synthesis concerns, rather than
being driven by the interaction devices, since live coding
interaction is largely carried out via the laptop keyboard.
We were interested in the opportunities that would arise by
taking a live coding approach to a specific music interac-
tion device, and using this as a fundamental element of the

performance system being developed. We therefore made
the decision to incorporate a concrete performance inter-
face into the technical architecture that we are developing.

We are currently focussing on the monome, an interaction
device consisting of 64 buttons arranged in an 8x8 grid on
top of a box (a monome is visible between the two laptops
in figure 1). Each button contains a concealed LED which
allows them to be individually illuminated. Button presses
are communicated via a serial link to the host computer,
where they may trigger events within executing processes.
The computer can illuminate the LEDs either individually,
by row or column, or all 64 buttons. The monome only
produces and responds to these simple data; there is no
hard-wired or audio functionality. The monome’s design is
open-source, making it an ideal platform for free modifica-
tion, rapid prototyping and experimentation [24]. Although
the monome is described by its makers simply as a general
purpose ‘adaptable, minimalist interface’, the list of pub-
lished applications demonstrates that it is mainly popular
as a music controller. The videos provided by the mak-
ers (for instance, [5]), most often adopt a control layout in
which horizontal button rows control ordering in time and
vertical columns either control pitch or trigger some selec-
tion from a variety of samples.

As a potential tool for the live coding performance con-
text, we believe that the monome is complementary to the
qwerty keyboard, offering a number of specific advantages.
Its visible physical presence makes the actions and effects
of interaction evident to the observer. Unlike conventional
text programming languages it offers an extremely simple
interface onto which musical patterns may be mapped as
shapes. The set of button triggers enable responsive and di-
rect communication with musical environment. Finally, the
embedded LEDs provide feedback allowing the software en-
vironment to communicate aspects of its current state back
to the performer and audience. This allows the monome
to support a range interactive styles from a simple set of
button triggers to a sophisticated low resolution GUI.

The majority of monome applications to date have been
constructed using the visual dataflow language Max/MSP
(56 out of the 68 applications listed on the monome commu-
nity site). Max/MSP provides an excellent entry point to
programming for musical end-users, but it lacks a number
of important software engineering capabilities, which limit
the ability of users to develop and maintain complex and so-
phisticated applications. For example, the visual format is
not compatible with the version control tools that are essen-
tial for collaborative development. There is no framework
to support the specification of unit tests needed for main-
tenance of robust systems. Finally, the only abstraction
mechanism is a form of modularity through the creation of
sub-patches. It is not possible to create abstractions capa-
ble of code-generation (i.e. ‘higher-order-patches’) which we
believe to be a key capability for exploring new live coding
practices. Our proposed architecture and implementation
strategy provides an alternative framework that directly ad-
dresses these issues.

4. ARCHITECTURE
The Improcess architecture extends the traditional separa-
tion of audio synthesis technology from programming lan-
guage implementation to explicitly consider a suite of be-
spoke interface components. This approach can support
multiple alternative DSLs and external interfaces by pro-
viding a common run-time on top of which these clients
may be designed and built. By sharing a common run-time
environment these clients can therefore inter-operate allow-

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

382

ing a performer to create and combine a set of specifically
designed interfaces for a given musical task. This separation
of the traditional language implementation into system and
client aspects allows for explicit design decisions regarding
those system concerns that don’t change from a given work
or performance to the next (such as abstractions represent-
ing process and sound), from user concerns that must be
changeable at any time, (such as the definition of new vir-
tual ‘instruments’ and their particular control interfaces).

Audio Synthesis

Client 3

Common Music Runtime

Internal Clients

Client 4Client 1

External Clients

Client 2

DSL

Interfaces

monome 3D Mouse OSC
Device

OSC

Virtual Instruments

Direct
Connection

Various
Protocols

Figure 2: The Improcess architecture

The Improcess architecture consists of three tiers as illus-
trated in figure 2. At the bottom tier we have chosen to use
the SuperCollider server as the audio synthesis engine. This
provides an efficient, flexible and real-time-capable founda-
tion, and allows us to focus on interaction and language de-
sign issues rather than audio processing. Controlling and
manipulating the audio synthesis engine is the Common
Music Runtime environment (CMR) which provides a suite
of abstractions specifically designed for the creation and ma-
nipulation of musical processes and sound synthesis. Direct
communication between the CMR and the SuperCollider
server is defined in terms of Overtone [3], an open source
project initiated by Jeff Rose with significant contributions
by the first author.

Overtone, and the CMR, are implemented in Clojure,
which was chosen because it provides a firm foundation for
language experimentation and design. Clojure is an efficient
functional language with an emphasis on immutability and
concurrency as well as full wrapper-free access to the com-
prehensive Java ecosystem, highly flexible lisp syntax and
meta-programming facilities that are currently best in class.

The top layer of the architecture is primarily meant for
end-user interaction. This is via a suite of composable mod-
ular interfaces, which we call virtual instruments, at a level
of complexity that can include complete DSLs. Each instru-
ment has two aspects: an interface and a client implement-
ing the required logic. Clients may either be implemented
as a separate external process or as a concurrent extension
to the CMR. The interaction with these instruments may ei-
ther be via a conventional programming environment such
as a GNU/Emacs buffer, or via a physical device such as
the monome. These instruments then communicate with
the CMR via the appropriate protocol in order to create
and manipulate musical processes.

A frequent risk in the design of abstract architectures is
the potential to disconnect from practical concerns within
the application domain [9]. This can result in a design that
may appear computationally powerful, yet not offer signifi-
cant practical benefit for its intended purpos.e Another po-
tential risk is the efficacy of the chosen technologies. For

example, a given programming language might be able to
express the desired operations yet not offer the performance
semantics necessary to execute the operations within the re-
quired constraints.

We therefore took a strategic decision at the outset of the
project to explore the interactive potential of our proposed
software architecture by taking a number of established
music applications for the monome, and re-implementing
them within the proposed architecture using Clojure. Ini-
tially this has consisted of the re-implementation of monome
prior-art including applications such as a sample looper,
boiingg, Blinkin Park and Press Cafe. This also allowed
us to explore some key technical parameters in the con-
text of a mature interactive music application, rather than
encountering them only while interacting with exploratory
prototypes.

5. ABSTRACTION DESIGN
A useful and sufficient set of musical abstractions is a chal-
lenge for musical systems [7] and key to the success of the
CMR. The programming abstractions found in SuperCol-
lider are also widely available in other programming lan-
guages [19] and so it is clearly possible to reproduce equiva-
lent semantics via a number of alternative methods. Hence
we were left with the question of which musical abstractions
to present to the user in the coding layer. Typical Super-
Collider programs contain abstractions such as synthesisers,
milliseconds, random numbers and routines. Would it be
useful to also offer notions such as tunings, scales, melodies,
counterpoint, rhythm and groove?

Such abstractions allow expressions that would have oc-
curred in terms of the original complex sub-parts to be
articulated more succinctly and accurately. Through re-
developing prior-art monome applications we were able to
develop a vocabulary of abstractions pertaining to the monome
shared across the group. We feel that this has provided
a marked increase of the musical relevance of our discus-
sions allowing much more subtle and precise notions of novel
monome applications to be considered.

The main goal of the CMR is to present a suite of ab-
stractions useful to the general task of building music per-
formance processes. These can then be used and shared
across a given set of clients to create new forms of instru-
ment. The CMR currently supports many of the standard
SuperCollider abstractions in addition to others found in al-
ternative environments such as Impromptu’s notion of ‘re-
cursion through time’ [23] whereby recursive function calls
are guarded by timed offsets.

An important aspect to consider with regard to abstrac-
tions is their symbolic representation. Within a procedu-
ral environment it is possible to automatically create new
abstractions as part of the normal execution of the system.
The ease with which this is possible is very much dependent
on the syntactic structure of the representation. One of the
main advantages of using a lisp as the syntactic framework
is that it is very amenable to code generation. This is made
possible because the syntax is represented by the basic data
structures of the language (lists, maps and vectors in Clo-
jure’s case) and so generating and manipulating new code is
as trivial as generating and manipulating these basic data
structures.

As an example of this consider the CMR’s synthesiser ab-
straction which comes directly from the notion of a synth in
SuperCollider’s server implementation. This is essentially a
directed graph of unit generators such as oscillators and
filters. Consider the ‘bubbles’ synth described SuperCol-
lider’s documentation. In listing 1 we have the SuperCol-

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

383

lider syntax for this synth which should be compared with
Overtone’s version in listing 2. Notice that conceptually
they are very similar in addition to being represented with
a similar number of characters. The Overtone syntax does
not focus specifically on typing efficiency [22] but it is in a
form that is relatively straightforward to generate automati-
cally. This opens up a number of exciting possibilities where
synthesiser definitions may be automatically generated by
bespoke procedures driven by client interfaces. For exam-
ple, we expect to create monome applications that allow the
performer to both design and instantiate new synthesisers
live as part of the performance.

Listing 1: SuperCollider bubbles representation
SynthDef (”bubbles ” , {

var f , zout ;
f = LFSaw . kr (0 . 4 , 0 , 24 , LFSaw . kr ([8 , 7 . 2 3] ,

0 , 3 , 8 0)) . midicps ;
zout = CombN. ar (SinOsc . ar (f , 0 , 0 . 0 4) , 0 . 2 ,

0 . 2 , 4) ;
Out . ar (0 , zout) ;

}) ;

Listing 2: Overtone bubbles representation
(d e f i n s t bubbles []

(l e t [root (+ 80 (∗ 3 (l f−saw : kr 8 0)))
g l i s (+ root (∗ 24 (l f−saw : kr 0 .4 0)))
f r e q (midicps g l i s)
s r c (∗ 0 .04 (s in−osc f r e q))]

(comb−n s r c : decaytime 4)))

6. IMPLEMENTATION ISSUES
Music processing architectures often introduce subtle and
demanding engineering issues relating to the management
of processor load, timing mechanics, and latency. A detailed
discussion of these engineering issues is not appropriate to
this overview paper, but in this section, we record some
of the general implementation challenges that we have en-
countered while developing the CMR, both as a warning
to newcomers, and to confirm findings reported by other
developers in the past.

6.1 Event stream architecture
One of the main roles of the CMR is to convert performer
actions such as button presses into generated audio that
is specified in terms of musical processes. From an imple-
mentation perspective a key consideration is the internal
representation of these actions and processes, particularly
with respect to time [16]. Existing music synthesis archi-
tectures are often event based, but as already noted, they
do not support higher-order descriptions to the extent of-
fered by functional programming languages i.e. function
composition. But in a functional language, it might also be
considered more natural to represent action in terms of a
function. We therefore had to decide whether to use func-
tions or events as the “first class” internal representation of
musical actions.

A key concern within our process-based model was sup-
port for thread concurrency. Function calls are typically
a synchronous mechanism, with function calls executing
within the current thread. Events are typically asynchronous,
resulting in concurrent execution by a separate thread. For
this reason, we chose an event model of musical actions,
to better support our overall concern with concurrent pro-
cesses in music. This also plays to Clojure’s strengths given
its novel concurrency semantics which are currently state
of the art relative to other functional languages. In par-
ticular, events can then be represented by immutable data

structures. This means that they may not be modified once
created, allowing them to be freely passed around from one
thread to another without risk of being modified by one
thread whilst being simultaneously used a second - a com-
mon cause of error in concurrent systems, and one that
would be undesirable in a live coding context.

Events also provide an intuitive computational approach
to combining musical actions. For example, we may com-
bine a series of events into a stream which is ordered in
time. We may then consider flowing the stream of events
through a series of functions in a similar manner that we
may wish to flow an audio stream from an electronic guitar
through a series of effects pedals. As in other audio pro-
cessing systems such as Max/MSP, this patching together
of streams of events through functions also opens us up to
the possibility of forking and merging given streams. We
can therefore uses a source stream to create a number of
new streams which contain an identical series of events but
continue on their own path. One application of this would
be to generate a chord with each note played by a different
synthesiser yet triggered by one root event.

For example, consider Figure 3 which represents a sim-
ple event stream setup for sending basic monome keypress
events to two separate synthesisers A and B. In this exam-
ple we are taking the basic events from the monome, and
adding them to a buffer which then forked to two sepa-
rate streams - one which is connected directly to synthe-
siser B and another which is mapped through a function
to modify the parameters of each event and then sent to
synthesiser A. This approach is extremely flexible allowing
the performer to define arbitrary modifications to a given
input stream. Provided the performance semantics of the
mapping functions is within acceptable boundaries the end
to end latency of the event stream should be acceptable for
live performance.

Synth A

Synth B

(λ (e) …)

Figure 3: A typical monome event stream configu-
ration

6.2 Performance and timing
Prior to the Improcess project the first author had imple-
mented a monome application framework, ‘monomer’, us-
ing a generic programming language [4]. Monomer was in-
tended as a general purpose toolkit for building monome
applications which interfaced with external audio synthesis
software via a basic MIDI interface. The result was suf-
ficiently capable to build tools such as 8track (a Roland
X0X-style MIDI step sequencer with 8 instruments / tracks
[2]), but monomer suffered from two technical problems that
posed considerable obstacles to building more sophisticated
applications. First was the issue of performance. Even ap-
plications with minimal logic used an excessive amount of
CPU. Whilst this might be acceptable for basic applications,
it meant that adding any more complexity soon saturated
the machine. Secondly, monomer’s timing mechanics were
built on top of Ruby’s kernel method sleep. However vari-
able delay in the process scheduler meant that the actual
sleep time was greater than specified, and resulted in poor
synchronisation with external rhythmic sources.

These experiences informed the Improcess architecture
and implementation. Precise timing of event triggering is

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

384

handled by SuperCollider, which uses a prioritised real-time
thread rather than Ruby’s non-realtime sleep operation.
Clojure’s execution performance far exceeds that of Ruby,
and is able to further optimise particular code paths by
adding type hints. Within our new architecture the main
performance issue currently faced is the variable latency of
message streams within the CMR. This is not always ac-
ceptable within a performing context (it may result in stut-
tering or jitter of audio output, or delayed response to but-
ton presses). This is a general issue of modern computing
architectures due to the fact that time is often abstracted
away [17]. In our specific case it may be due to low level
mechanisms such as the JVM garbage collector (GC) halt-
ing all executing threads during the compaction phase or
intermediate IO buffers interrupting the flow of events. In
most cases these issues are resolved by fine tuning the GC,
scheduling events ahead of time where possible and the re-
moval of blocking event calls. However, this is not always an
option - particularly in a situation whereby the performer
wishes to trigger an immediate musical event.

7. DEVELOPING A PRACTICE REGIME
A key concern of this project has been to maintain a re-
search focus on live coding as a performance practice, rather
than simply a technical practice. An explicit goal of the
research was for the first author, who was already a highly
competent software developer and computer science researcher,
to acquire further expertise as a performer. We build on re-
search previously reported at NIME, including Nick Collins’
(alias Click Nilson) discussion of live coding practice [21]
and Jennifer Butler’s discussion of pedagogical etudes for
interactive instruments [13]. Butler’s advice could certainly
be applied to monome performers, as a ‘method’ to develop
virtuosity on that particular controller. However, the notion
of virtuosity for a programmer (or composer, as in Nash’s
work [20]) is more complex.

As Click Nilson reports of experiments in reflective prac-
tice by his collaborator Fredrik Olson:

“‘I [Olson] feel I’d have to rehearse a lot more
to be able to do abrupt form changes or to have
multiple elements to build up bigger structures
over time with. I sort of got stuck in the A of
the ABA form.’ Yet we also both felt we got
better at it, by introducing various shortcuts, by
having certain synthesis and algorithmic compo-
sition tricks in the fingers ready for episodes, and
just by sheer repetition on a daily basis.” [21], p.
114.

Nilson suggests a series of live coding practice exercises,
which he warns must be approached in a reflective manner.
As he notes,

“it would be a Cagean gesture to compose an
intently serious series of etudes providing frame-
works for improvisation founded on certain tech-
nical abilities” (ibid, p. 116).

Despite Click Nilson’s love of Cagean gestures, we agree
that there is potential for a reflective approach to live coding
practice to inform the development of etudes for the live
coder. Others have noted this, for example Sorenson and
Brown [22] describe the problem of being able to physically
type fast enough, and suggest that technical enhancements
such as increased abstraction and editor support are the
most important preparations for effective performance.

Our collaborative project between senior computer scien-
tists and music academics has encouraged a perspective that

extends beyond virtuosity as a purely technical accomplish-
ment, to the artistic engagement of a practised performer
with a live audience. This resulting change with respect
to the intellectual scope of the first author’s prior experi-
ence of DSL research can be compared to recent attention
in computer science, and especially within HCI, to the value
of a “critical technical practice” [6] that integrates critical
and philosophical perspectives into computing. In the case
of our own work, we consider performance as a category of
human experience that does not arise naturally from techni-
cal work, and hence must be an explicit focus of preparation
and reflection. We might call this a ‘Performative Technical
Practice’, by analogy to Agre’s work.

As noted by Nilson, Butler and Sorenson, while all musi-
cians prepare themselves through regular practice, the analo-
gies between conventional musical instruments and program-
ming languages are far from straightforward. Live coding
is, in many ways, more similar to musical composition than
to instrumental performance. Yet it seems Quixotic to dis-
tinguish between ‘practicing composition’ and ‘doing com-
position’. A composer practices composition by doing more
composition. If regarded in that light, any coding might
be regarded as practice for live coding. However, we did
not believe that this offers adequate insight into the special
status of live coding. We preferred to distinguish between
coding that is presented as a performance in front of an au-
dience - live coding - and preparation for that performance,
with no audience present - practice.

From this perspective, not all coding is necessarily effec-
tive practice. At one extreme, the first author’s day-to-day
programming requires detailed engineering work that is es-
sential to successful performance, but might not be effective
if presented as coding to an audience (e.g. the optimisation
of device drivers). At the other extreme, as noted in previ-
ous research on this topic, the live coding context expects
a degree of improvisation, so preparation by simply writing
the same program over and over (as when playing scales on
a musical instrument) seems pointless - if the program is
always the same, could it not simply be retrieved from a
code library? Preparation for performance should therefore
involve activities that are neither original engineering, nor
simple repetition. This suggests an analogy to jazz impro-
visation, rather than composition or classical instrumental
competence.

We explored this analogy with our advisory board mem-
ber Nick Cook, a professor of ‘mainstream’ music research,
but with specialist knowledge in both performance research
and digital media. Although aware of live coding as a per-
formance genre, he had not engaged with it in the context
of preparation for performance, so provided us with a fresh
perspective from which to review the previous literature.
This helped us to distinguish between those aspects of in-
strumental practice that are predetermined and intention-
ally over-learned (e.g. scales), those concerned with ‘diffi-
cult corners’ in a specific genre that might be practiced (e.g.
a tricky bridge when a verse has a key change), those that
develop a vocabulary of reference to other works (perhaps
through riffs or ‘formulae’), and those that prepare a specific
‘piece’ for performance (although the notes played within
any given improvised performance will naturally vary).

Our current strategy has therefore been to integrate these
elements into a series of daily exercises that develop fluency
of low-level actions relevant to live coding. We assume that
in actual performance, the program being created will be
novel. But a fluent repertoire of low-level coding activi-
ties will allow the performer to approach performance at a
higher level of structural abstraction - based on questions
such as ‘where am I going in this performance’ and ‘what

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

385

alternative ways are there for getting there’. In accordance
with proposals by Collins and Butler, we are planning to
publish a set of etudes that can develop fluency in aspects
of a program related to rhythm, to harmonic/melodic struc-
ture, to texture, and to software structure. We also recog-
nise that live coding performance is a multimedia genre,
in which the contents of the screen display, and the stage
presence of the performer are also essential components. A
daily practice regime of preparation for performance should
also incorporate etudes that develop fluency of action in
these respects. These aspects of our work might be consid-
ered as constructing an ‘architecture’ of performance skill
that complements the technical architecture of the software
infrastructure.

8. CONCLUSIONS & FUTURE WORK
We have described the initial results of the Improcess project,
which has developed an architecture for live coding perfor-
mance motivated by the considerations of domain-specific
programming language design, and by research into end-
user programming. We also have an explicit concern with
music performance practice that has led us to treat the in-
tegration of interface devices such as the monome as a pri-
mary architectural consideration. We have created an ef-
fective architecture with a functioning implementation, and
have demonstrated that it can be used to reimplement some
popular monome applications. We are now using this plat-
form to further develop a regime of preparation for perfor-
mance within a reflective research context. The Improcess
environment provides a technical foundation that mirrors
this musical and collaborative goal. We expect that it will
enable rapid exploration of a diverse range of language op-
tions, including the potential implementation of new lan-
guage features in live contexts, and even the construction
of tangible performance ‘instruments’ that can themselves
generate code processes.

We have also found that explicit reflection on interdis-
ciplinary collaboration has been a valuable element of our
research. Improcess is hosted by the Crucible network for
research in interdisciplinary design, which aims to make in-
formed contributions to public policy on the basis of projects
like this [11]. In Improcess we found the intellectual con-
trasts between computational and musical perspectives suf-
ficiently extreme (for example, in different team-members
various interpretations of the monome as either ideally flex-
ible or undesirably grid-like) that we represented not only
multiple organisations, but multiple research cultures. We
have used the Cross-Cultural Partnership template [1] to
help us bring together people from these different ‘cultural
norms and legal frameworks for sharing culture’.

As a project demonstrating a ‘performative technical prac-
tice’, we believe that this juxtaposition and improvisation
of cultural, technical and musical processes represents the
essence of the live coding enterprise.

9. ACKNOWLEDGEMENTS
Thanks to the other members of the Improcess partner-
ship - Tom Hall, Stuart Taylor, Chris Nash and Ian Cross -
for their continued support and encouragement, and to the
members of our advisory board: Simon Peyton Jones, Nick
Cook, Simon Godsill, Nick Collins and Julio d’Escrivan.
Thanks also to Jeff Rose and Fabian Aussems for their work
on the Overtone project.

10. REFERENCES
[1] http://connected-knowledge.net/.

[2] http://docs.monome.org/doku.php?id=app:8track.

[3] http://github.com/overtone/overtone.

[4] http://github.com/samaaron/monomer.

[5] http://www.vimeo.com/290729.

[6] P. E. Agre. Toward a Critical Technical Practice :
Lessons Learned in Trying to Reform AI. Lawrence
Erlbaum Associates, 1997.

[7] P. Berg. Abstracting the Future: The Search for
Musical Constructs. Computer Music Journal,
20(3):24–27, 1996.

[8] A. F. Blackwell. First steps in programming: a
rationale for attention investment models. Proceedings
of IEEE Symposia on Human Centric Computing
Languages and Environments, pages 2–10, 2002.

[9] A. F. Blackwell, L. Church, and T. Green. The
Abstract is ‘an Enemy’: Alternative Perspectives to
Computational Thinking. Proceedings of the 20th
annual workshop of the Psychology of Programming
Interest Group, pages 34–43, 2008.

[10] A. F. Blackwell and N. Collins. The Programming
Language as a Musical Instrument. Psychology of
Programming Interest Group, pages 120–130, 2005.

[11] A. F. Blackwell and D. A. Good. Languages of
Innovation, pages 127–138. University Press of
America, 2008.

[12] A. F. Blackwell and T. Green. Notational Systems -
the Cognitive Dimensions of Notations framework,
pages 103–134. Morgan Kaufmann, 2003.

[13] J. Butler. Creating Pedagogical Etudes for Interactive
Instruments. Proceedings of the International
Conferences on New Interfaces for Musical
Expression, pages 77–80, 2008.

[14] M. Duignan, J. Noble, and R. Biddle. Abstraction and
Activity in Computer Mediated Music Production.
Computer Music Journal, 34(Barr 2003):22–33, 2010.

[15] M. Fowler. Domain-Specific Languages.
Addison-Wesley, 2011.

[16] H. Honing. Issues on the representation of time and
structure in music. Contemporary Music Review,
9(1):221–238, 1993.

[17] E. A. Lee. Computing needs time. Communications of
the ACM, 52(5):70–79, May 2009.

[18] H. Lieberman, F. Paterno, and V. Wulf. End User
Development. Springer, 2006.

[19] J. McCartney. Rethinking the Computer Music
Language: SuperCollider. Computer Music Journal,
26(4):61–68, Dec. 2002.

[20] C. Nash and A. Blackwell. Beyond Realtime
Performance : Designing and Modelling the Creative
User Experience. Submission to NIME, 2011.

[21] C. Nilson. Live coding practice. Proceedings of the 7th
international conference on New interfaces for
musical expression, page 112, 2007.

[22] A. Sorensen and A. R. Brown. aa-cell In Practice :
An Approach to Musical Live Coding. Proceedings of
the International Computer Music Conference, 2007.

[23] A. Sorensen and H. Gardner. Programming With
Time Cyber-physical programming with Impromptu.
Proceedings of the ACM international conference on
Object Oriented Programming Systems Languages and
Applications, pages 822–834, 2010.

[24] O. Vallis, J. Hochenbaum, and A. Kapur. A Shift
Towards Iterative and Open-Source Design for
Musical Interfaces. Proceedings of the 2010
Conference on New Interfaces for Musical Expression
(NIME 2010), (Nime):1–6, 2010.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

386

