
Integra Live: a new graphical user interface for live
electronic music

Jamie Bullock
Birmingham Conservatoire

Birmingham, UK
jamie.bullock@bcu.ac.uk

Daniel Beattie
Beelion Interactive

London, UK
dnl.bttie@gmail.com

Jerome Turner
User-lab, BIAD

Birmingham, UK
jerome.turner@bcu.ac.uk

ABSTRACT
In this paper we describe a new application, Integra Live,
designed to address the problems associated with software
usability in live electronic music. We begin by outlining
the primary usability and user-experience issues relating to
the predominance of graphical dataflow languages for the
composition and performance of live electronics. We then
discuss the specific development methodologies chosen to
address these issues, and illustrate how adopting a user-
centred approach has resulted in a more usable and humane
interface design. The main components and workflows of
the user interface are discussed, giving a rationale for key
design decisions. User testing processes and results are pre-
sented. Finally, a critical evaluation application usability
is given based on user-testing processes, with key findings
presented for future consideration.

Keywords
software, live electronics, usability, user experience

1. INTRODUCTION
In this paper we present Integra Live, a new software ap-
plication designed to address issues of software usability in
live electronic music1. As musical practitioners working in
a range of contexts including university-teaching, contem-
porary classical music and free improvisation, we have ob-
served that existing software consistently presents an ‘entry
barrier’ to musicians wishing to work with live electronics[2].
The most commonly used software for live electronics in an
academic or ‘contemporary classical’ context is Max by Cy-
cling 742[14]. Max was conceived as a ‘graphical program-
ming environment for developing real-time musical appli-
cations’[12], and as such it consists of a graphical dataflow
language providing control data processing functionality for
patchable digital signal processing (DSP) ‘objects’. Max re-
quires live electronics musicians to have an understanding
of programming concepts such as conditional evaluation, it-
eration, mathematical and logical operators as well as DSP
principles such as oscillation, filter design, delay buffering,
table lookup and Fourier analysis. All of this is literally ‘an-
other language’ to musicians who have devoted their lives to

1Music based on live processing of audio in performance
2http://www.cycling74.com

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

NIME’11, 30 May–1 June 2011, Oslo, Norway.

Copyright remains with the author(s).

acoustic instrumental study or composition and simply want
to experiment with live electronics. As a tool for dataflow
programming and DSP, Max may be highly usable, but for
musicians with little experience in this area, Max presents
an unreasonably steep learning curve.

A number of existing projects seek to address this prob-
lem. For example, the Jamoma project3 provdes ‘a system
for developing high-level modules in the Max/MSP/Jitter
environment’[9], and more recently, a set of frameworks
for developing Jamoma modules outside of Max[10, 11].
Jamoma offers significant advantages for both users and de-
velopers, presenting itself as a complete ‘platform’ within
which processing modules may be used and/or developed.

An earlier project, Open Sound World (OSW), also sought
to address usability issues identified in Max, by developing
a new software application informed by user testing and us-
ability evaluation[4]. However, like Max, OSW presented
itself as a ‘a scalable, extensible object-oriented language’,
and so, clearly targeted programming-savvy users rather
than non-technical musicians.

Commercial software such as Bidule, Audiomulch, Reak-
tor, Ableton Live and Mainstage all have varying degrees of
ease-of-use and applicability in live electronic music, with
Bidule and Ableton Live being particularly popular with
free improvisors and live electronic dance musicians respec-
tively. However, due to its wide acceptance within academic
institutions and research centres, Max remains the standard
tool and entry route for composers working with electronics.

2. REQUIREMENTS
In order to verify our hypothesis that there is a need for
a new application for live electronic music which is power-
ful yet usable for ‘non-technical’ musicians, we conducted
a software requirements analysis. The purpose of this is to
elicit requirements from stakeholders and potential users,
and to analyse recorded data in order to establish design
criteria.

2.1 Interviews
Four stakeholders consisting of: performer, professional com-
poser, undergraduate composer, and post-graduate com-
poser were interviewed in an informal setting. Interviewees
were asked about their experience with existing software
and informed about the aims of Integra Live and given the
opportunity to respond freely about this. Some of the most
salient comments are listed below.

“I would like to see a piece of software that is
more closely aligned to musical thought processes”

“Current software is a big barrier for me using
live electronics. It’s a big deal for me to create
the processing I need in my piece using Max”

3http://jamoma.org

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

387



“The basic processing modules should be already
done so a composer can come and think about
high level things. It would be nice if the most
common processors were already there to be dragged
or selected”

“Max-like environments remove the element of
play that you get with things like guitar pedals.
These make more sense to the performer”

2.2 Online Survey
A survey of 76 potential users was conducted, drawing on
Conservatoire students and staff, composers, members of
new music ensembles, and members of Sonic Arts Network,
Digital Music Research Network, British Computer Mu-
sic and Canadian Electroacoustic Community mailing lists.
95% of those who completed the survey considered them-
selves to be composers with 68% considering themselves to
be performers, and in general the results indicate that de-
mographic group felt comfortable in at least two different
roles. Most respondents reported that they used software
for ‘creation of new works’, ‘live performance’ and ‘experi-
mentation’, although 50% of respondents also use software
for ‘rehearsal’, ‘teaching’ and ‘writing new software com-
ponents’. 78% of respondents indicated that they use ‘live
processing’ software, with 85% indicating that they use soft-
ware for ‘Experimenting with sounds, controls, processing’
and 76% indicating that they use software for ‘performing
live’.

Max was shown as being the most popular piece of soft-
ware, with 21% of respondents indicating it as their favourite.
SuperCollider4 had 8% indicating it as their favourite with,
Ableton Live accounting for 5%. Audiomulch and Bidule
were both mentioned twice by those who indicated ‘other’
as their favourite software.

In addition to quantitative data gathered, the survey also
recorded qualitative responses including reasons for liking
or disliking specific software, and answers to the question:
‘What features would you like to see in your ideal piece
of music software?’. Salient responses include some of the
following examples:

“Everything. All in one. Allowing simplicity to
complexity. For instance, most of people are us-
ing the basic function of Ableton Live but when
you dig you can do really fancy things, program-
ming kind of.”

“MUSICALITY. It has to work as a musical ‘tool’
not just as a software tool”

Something like Max/MSP with an interface that’s
already in place, but that allow for infinite mod-
ification. Actually, I am thinking about Au-
dioMulch for Mac, with a multitrack recording
set up.

An ideal piece of software would be able to be
adapt to the users thought processes; this would
make the software more intuitive to the user’s
own sense of logic. Sadly, every piece of soft-
ware on the market requires a lot time just learn-
ing the program; having music software that was
more ‘human’ would undoubtedly encourage more
composers to explore different creative outlets.

- easy way to connect any external hardware/instrument
- few clicks to do tasks - uncomplicated first page

4http://supercollider.sourceforge.net/

- palettes of resources to choose from e.g. audio
file pool, module pool

Common keywords include the following or their syn-
onyms (number of people using the word out of the 64 who
answered the section shown in brackets):

• easy (11)

• simple (4)

• like (15)

• user (9)

• interface (7)

• flexible (9)

• control (8)

The word ‘like’ was mostly used the context of a ‘like X
but with Y’ idiom to indicate similarity to another piece of
software e.g. ‘Like Main Stage but adapted for live electron-
ics, simply, a piece of software like those but with flexible
control over time, in concert and in rehearsal.’

2.3 ixi survey
In addition to our own surveys, conversations and inter-
views, we also drew on a recent survey conducted by the
‘ixi’ project[7] as part of our requirements gathering. This
survey covers a slightly different demographic to the Integra
survey, having a slightly greater emphasis towards partici-
pants with significant technical experience. This is reflected
in the number of respondents reporting experience of tools
that require some programming knowledge. Out of 209 sur-
vey participants, 52% indicated that they used Max/MSP,
49% indicating Pure Data and 40% indicating that Super-
Collider. Interestingly, across all of the software indicated
in the survey, the number of people indicating a program
as their ‘tool of choice’ was relatively low compared to the
number of users. For example, out of the 108 people that
had used Max/MSP, only 35 indicated it as their tool of
choice, and out of the 93 that used Reaktor, only 20 indi-
cated it as their tool of choice. Across all of the applica-
tions in the survey the average number of users indicating
a given application as their tool of choice was 17% of the
total for that tool, suggesting a high level of dissatisfaction
with available tools.

However, overall [7] suggests several classes of user, only
some of whom are dissatisfied with available software. Par-
ticularly relevant to Integra Live are these findings:

‘Some survey participants expressed the wish for
more limited expressive software instruments, i.e.
not a software that tries to do it all but“does one
thing well and not one hundred things badly”.
They would like to see software that has an easy
learning curve but incorporates deep potential
for further explorations, in order not to become
bored with the instrument. True to form, the
people asking for such software tools had a rela-
tively long history as instrumentalists.’[7]

2.4 Objectives
The survey results obtained, along with findings from inter-
views and informal conversations has led to the following
observations:

1. A significant number of musicians from both acous-
tic and electronic music backgrounds feel that existing
software for live electronics doesn’t meet their require-
ments

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

388



2. Many users currently use Max, so any alternative soft-
ware must provide equivalent functionality, but with
a musician-centred interface

3. Users require ease-of-control including the ability to
easily connect external control sources

4. Users require a clean, well designed user interface that
is somehow aligned with ‘musical’ thinking

Additionally, we aim to adhere to the following principles:

1. The software should behave like a normal application
(i.e. not a framework or a programming environment)

2. The software should make the most common tasks eas-
iest to achieve

3. The software should be visually appealing, and the
visual design should enhance usability

4. The software should Just Work, providing low latency
and stability

5. The software should be easy to download and install
(good user experience)

6. The user interface should be self-explanatory [5]

7. The interface should favour standardisation over con-
figurability

8. The software should hide complex functionality with
simple UI

3. METHODOLOGY
As this project was part-funded by Integra (cf. section 8),
the final application was required to be completed in a 12-
month time frame. The project developers were divided
between five research centres involved in the project: Birm-
ingham Conservatoire (210 days), IEM (180 days), Notam
(180 days), Malmö Academy of Music (45 days) and Muzyka
Centrum (45 days). Each research centre agreed to a spe-
cific area of responsibility as follows:

• Birmingham Conservatoire: project management and
core application development

• IEM: DSP module development

• Notam: Scripting functionality and Faust support

• Muzyka Centrum: module control development

• Malmö Academy: file format development and online
storage

In order to deliver a user-centred application in the time
frame given, a professional design company was contracted
to collaborate on initial wireframes and graphic designs
based on our detailed user requirements specification. This
was then used as basis for an iterative development pro-
cess. The Adobe AIR runtime environment was chosen as
a platform for the GUI. This was due to its combination of
portability, graphical richness and potential for rapid devel-
opment. The Pure Data software was used as a DSP host
partly for its parity with Max, but also for rapid DSP mod-
ule development. Finally, the Integra Framework was de-
veloped as a middleware layer alongside the GUI to provide
basic functionality such as file save/load, module manage-
ment, host communications and an OSC interface[3].

Due to the disparate nature of the development team it
wasn’t possible to follow one specific development method-
ology, however, the general principles of the Agile mani-
festo[1] were adhered to:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Additionally, testing (user and functional) was given high
priority, with testing results feeding into each iteration.
This enabled us to minimise risk by finding problems early
in the project.

4. APPLICATION WORKFLOW
Integra Live is divided into two main views, ‘Arrange view’,
which is designed for arranging musical interactions in time,
and ‘Live view’, which is designed to greatly simplify on-
screen control during live performance.

4.1 Arrange View
The information architecture of the application follows a
tree-like structure with a project at the top level. Projects
may contain many tracks each of which may contain many
blocks, each containing many modules. This is shown con-
cisely in figure 1.

A Scene Another Scene

A Track

A Block

Modules

A Block

Modules

Another Track

A Block
Modules

Architecture

Figure 1: Integra Live information architecture

The arrange view represents this architecture visually,
showing tracks as pairs of horizontal lines between which
blocks can be placed. The user can navigate ‘inside’ blocks
by clicking a ‘+’ icon to expand them.

4.1.1 Module View
When the user navigates inside a given block, they are pre-
sented with a library of modules that can be dragged onto
the block’s canvas. Modules are discrete pieces of audio sig-
nal processing, synthesis or analysis functionality. It is part
of the application’s design that individual modules should
be musically useful. That is, unlike software such as Max,
which provides objects as ‘building blocks’ or primitives
that can be combined to make more advanced units, Integra
Live modules are aimed at immediate musical use. Another
difference is that all Integra Live modules have pre-defined
controls associated with with their attributes. These con-
trols are displayed in the module properties window when a
module is selected. The Integra Live core modules include a

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

389



range of filters, delays, reverbs, pitch shifter, granular syn-
thesis, phase vocoding, resonators, soundfile playback and
spatialisation. Module controls include slider, knob, range
slider, x-y ‘scratchpad’, toggle, button as well as more spe-
cialised module-specific controls. In order to keep the user
experience (UX) consistent, it was decided that the control
type for each module attribute should stay fixed. That is,
by design, users can’t change the controls that are assigned
to attributes. Figure 2 shows the module properties panel
with the controls for the selected module.

Figure 2: Module properties panel containing at-
tribute controls

Module controls (such as sliders and dials) can be used
to change Module attributes in real-time and are interac-
tive through clicking, dragging and text-entry. Precise val-
ues can be entered by double-clicking the control’s numeric
value and typing the new value in the text-entry box (fig-
ure 3).

Figure 3: Entry of precise values into controls

The intended workflow in module view is that users cre-
ate small groupings of interconnected high level modules
and encapsulate these into blocks. The graphical presenta-
tion of modules is therefore relatively large to discourage
the creation of highly complex networks of modules. If the
user finds they can’t achieve their goals without creating
complex blocks, this would indicate a requirement for new
modules providing the required functionality.

4.2 Live View
All modules and controls have a checkbox, which enables
controls to be added to Live view either individually or per-
module. The live view of the application shows all checked
controls so that they can visualised and operated easily in
live performance. Controls can additionally be resized and
moved in live view. This design acknowledges that a differ-
ent interaction model is required in live performance, where
simplicity and immediacy of control are favoured.

4.3 Timeline
Integra Live has one master timeline, which is shown in
the UI as a numbered horizontal strip near the top of the
window. This provides a spatio-temporal reference point
against which musical ideas can be organised. Timeline
progression can be linear, where the ordering and duration
of blocks corresponds to their ordering in performance, or
non-linear, where the playhead moves to arbitrary points on
the timeline with some blocks being activated indefinitely
or stopped and started through user interaction. The play-
head position can be changed manually by click-dragging

the control triangle. The playhead state can be set to ‘play’
or ‘pause’ using the button controls in the top-left of the
arrange view. Clicking the timeline numbering, can be used
to zoom and scroll; clicking and dragging left/right scrolls,
dragging up/down zooms.

Figure 4: Integra Live timeline and playhead

4.4 Envelopes
Envelopes provide a means to automate the control of mod-
ule attributes over time. Envelopes are created by drawing
control points into blocks in arrange view. Presenting en-
velopes in this way allows the user to visualise the musical
‘shape’ of a piece by looking at the arrangement of blocks
and envelopes within the arrange view. Envelopes can be
used for simple state changes (on/off) and for creating pre-
defined musical gestures resulting from multiple module at-
tributes changing simultaneously.

Figure 5: Adding control points to a block to create
envelopes

4.5 Scenes
Scenes are used to create user-defined progressions through
musical time. One application of this is to define Scenes
that correspond to different sections of a musical work ‘Sec-
tion A’, ‘Section B’, ‘Cadenza’ etc. Another application is
to create multiple pathways within a work as found in im-
provisation and ‘open form’ composition. Scenes provide an
additional layer on top of tracks and blocks, so that the play-
head can be automatically moved to a given location on the
timeline and optionally set to a ‘play’ state. This is achieved
using scenes, which can be created by click-dragging in the
space below the timeline. Like blocks, scenes have a dura-
tion, and additionally three possible states: hold, play and
loop. If a scene is set to ‘hold’, when it is selected, the play-
head will remain at the beginning of the scene. This means
that all blocks under the playhead will become active and
no further action will be performed unless the user gives
further input to the system. If the scene is set to ‘play’
or ‘loop’ when selected, the playhead will proceed from the
beginning of the scene and stop at the end of the scene or
loop respectively.

4.6 Properties
When the software is in arrange view properties panels can
be activated in the lower part of the screen by selecting
entities within the UI. The properties panels follow a con-
sistent layout, showing ‘routing’ and ‘scripting’ tabs for the

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

390



selected entity. The ‘routing’ tab is used to make connec-
tions between module attributes thus routing control data
from one attribute to another. Multiple connections can be
used to create one-to-many or many-to-one relations. Typi-
cal applications are for connecting external controllers such
as fader boxes to DSP modules, and for ‘ganging’ attributes
to be controlled in parallel. Activation of properties panels
is shown in figure 6.

Figure 6: Block, Track and Project properties se-
lection in arrange view

Clicking the scripting tab in the properties panel, pro-
vides access to the Integra Live scripting language. This is
simple scripting functionality built on top of the Lua pro-
gramming language. Module attribute state can be accessed
from Integra script, allowing for procedural operations such
as conditional evaluation and looping. The example below
shows how the delayTime attribute of a TapDelay module
can be modulated by side-chaining the audio input level.

x = AudioIn1.vu1
TapDelay1.delayTime = 100 / (x + 100)

5. USABILITY CONSIDERATIONS
Various features have been added across the application
to improve usability and user experience. All entity in-
stances are rename-able, allowing the user to add mean-
ingful semantic information. For example, scenes can be
given meaningful names like ‘sectionA’, ‘coda’, ‘introduc-
tion’ or ‘improvsection’. Likewise, tracks, blocks and module
instances can also be renamed.

All of these entities can also be exported from a given
project and imported under a different node in the same
project or into a different project. For example, the soft-
ware allows a block to be renamed ‘SpacialGranularSynth’,
and then exported as an Integra file for potential re-import.
Blocks can additionally added to the in-application block
library through a context menu that appears by context-
clicking the block.

We stated in section 2.4 that Integra Live should behave
like a ‘normal’ application. This means that it should meet
the user’s expectations on supported platforms, complying
to the platform’s human interface guidelines (HIG) as ap-
propriate. Integra Live therefore has automatic association
with its supported file type (.ixd). When a given .ixd file is
double-clicked or dropped onto the application’s icon, the
file is opened in Integra Live as expected.

Finally, Integra Live supports infinite undo and redo for
all undoable actions. Undoable actions include: adding
or removing tracks, blocks, modules and scenes; changing
module attributes; and renaming or moving entities.

Many of these features are standard in conventional desk-
top applications, but some or all of them are currently miss-
ing in commonly used frameworks and programming envi-
ronments for live electronic music.

6. USER TESTING
So called ‘hallway testing’ [13] was employed throughout
the development process particularly when significant new
features were added. This was made possible by basing
development at a UK Conservatoire, where potential users
were easy to find and willing to offer time.

Additionally, more structured lab-based testing was con-
ducted in the later part of the project when the software
had reached a semi-stable state. User testing sessions were
set-up with five users following Nielsen [8]. Each session
lasted 45 minutes and consisted of:

• Introductions and coffee

• Pre-questionnaire for demographic data

• 4 structured tasks focusing on specific aspects of the
software

• Post-test questionnaire gathering users’ evaluation and
conclusions

Tests were conducted at bespoke testing facilities pro-
vided by User-lab, part of the Birmingham Institute of Art
and Design in the UK. The tests were observed by both a
usability researcher and an Integra developer who was avail-
able to assist with technical problems.

An evaluation of the complete findings of the user testing
process is beyond the scope of this paper, however the most
salient data will be presented. The post-test questionnaire
showed Max/MSP to be the most commonly used software
by participants seeking to achieve similar results to Integra
Live. Participants were asked to rate their experience using
Integra Live using a Lickert scale [6]. The results are shown
in figure 7, where the red dot indicates the average score
across all five participants and the yellow bar indicates the
full range of answers.

Finally participants were asked to tick words from a list
they felt described their experience of using the software.
Words were presented in a random order for each partici-
pant in order to eliminate potential patterns emerging as
a result of word ordering. The resulting word counts were
then submitted to the online word-count generator Wordle5,
with all words included in the resulting word cloud and a
black font with a horizontal layout. The result is shown in
figure 8.

7. CONCLUSIONS
In this paper we have described the development of Integra
Live, a new software application for the composition and
performance of live electronic music. We have presented
our requirements gathering process, and illustrated how de-
ficiencies in existing software can be addressed by engaging
users in the development process. We have described the
workflow of the new interface in detail and illustrated how
the interface design is intended to meet the needs of mu-
sicians and addresses a range of usability issues. Our user
testing results show that Integra Live goes part way to suc-
ceeding in its goals, but still has some way to go. In general
users found Integra Live to be exciting to use, and more
creative and less technical than existing software for per-
forming similar tasks. However, whilst users found Integra
5http://www.wordle.net/

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

391



Figure 7: User testing Lickert scale results

Figure 8: Word cloud showing questionnaire word-
tick response

Live ‘easier’ to use than existing software, they didn’t find
it ‘easy’. Additionally, the software was found to be limited
in terms of control-data processing functionality. Although,
advanced control-data processing is possible through the
scripting facility, this is clearly an unsuitable interface for
entry-level use. In future work, these issues will be ad-
dressed through the addition of appropriate UI components.

8. ACKNOWLEDGMENTS
Integra Live was developed in order to meet the objectives
of Integra, a 3 year EU-funded project led by Birmingham
Conservatoire, following another 3-year EU-funded project,
“Integra, A European Composition and Performance Envi-
ronment for Sharing Live Music Technologies”, both part-
funded by the Culture programme of the European Com-
mission.

9. REFERENCES
[1] K. Beck. Manifesto for agile software development.

http://agilemanifesto.org/, Feb. 2011.
[2] J. Bullock and L. Coccioli. Towards a humane

graphical user interface for live electronic music. In
Proceedings of the NIME Conference, Pittsburgh,
USA, 2009.

[3] J. Bullock and H. Frisk. The integra framework for
rapid modular audio application development. In
Proceedings of the International Computer Music
Conference, Huddersfield, UK, 2011.

[4] A. Chaudhary, A. Freed, and M. Wright. An open
architecture for real-time music software. In
Proceedings of the International Computer Music
Conference, Berlin, Germany, 2000.

[5] S. Krug. DonâĂŹt Make Me Think: A Common
Sense Approach to Web Usability, chapter 1. New
Rider Publishing, 2000.

[6] R. Lickert. A technique for the measurement of
attitudes. Archives of Psychology, 50:1–55, 1991.

[7] T. Magnusson and H. M. Mendieta. The acoustic, the
digital and the body: a survey on musical
instruments. In Proceedings of the NIME Conference,
New York, USA, 2007.

[8] J. Nielsen. Why you only need to test with 5 users:
Alertbox.
http://www.useit.com/alertbox/20000319.html,
Feb. 2011.

[9] T. Place and T. Lossius. Jamoma: A modular
standard for structuring patches in max. In
Proceedings of the International Computer Music
Conference, New Orleans, USA, 2006.

[10] T. Place, T. Lossius, and N. Peters. A flexible and
dynamic c++ framework and library for digital audio
signal processing. In Proceedings of the International
Computer Music Conference, New York, USA, 2010.

[11] T. Place, T. Lossius, and N. Peters. The jamoma
audio graph layer. In Proceedings of The 13th
International Conference on Digital Audio Effects,
Graz, Austria, 2010.

[12] M. Puckette. Combining event and signal processing
in the max graphical programming environment.
Computer Music Journal, 15(3):68–77, 1991.

[13] J. Spolsky. User Interface Design for Programmers,
chapter 13. Springer, 2001.

[14] D. Zicarelli. An extensible real-time signal processing
environment for max. In Proceedings of the
International Computer Music Conference, San
Francisco, USA, 1998.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

392




