
Wekinating 000000Swan: Using Machine Learning to
Create and Control Complex Artistic Systems

Margaret Schedel
Stony Brook University

Stony Brook, NY
margaret.schedel@stonybrook.edu

Phoenix Perry

NYU Poly
New York, NY

phoenix@areyoudevoted.com

Rebecca Fiebrink
Princeton University

Princeton, NJ
fiebrink@princeton.edu

ABSTRACT
In this paper we discuss how the band 000000Swan uses
machine learning to parse complex sensor data and create
intricate artistic systems for live performance. Using the
Wekinator software for interactive machine learning, we have
created discrete and continuous models for controlling audio
and visual environments using human gestures sensed by a
commercially-available sensor bow and the Microsoft Kinect.
In particular, we have employed machine learning to quickly
and easily prototype complex relationships between performer
gesture and performative outcome.

Keywords
Wekinator, K-Bow, Machine Learning, Interactive,
Multimedia, Kinect, Motion-Tracking, Bow Articulation,
Animation

1. INTRODUCTION
Obsessed with electronics, rare birds, myth, Native American
art, pagan ritual, fetish, punk, and tribal percussion,
000000Swan is an experiment in performing process and
interaction. We create high-impact, hard-to-predict events
beyond the realm of normal expectations, performing on a
variety of electronic instruments including keyboards, a
JazzMutant Lemur, a Zeta cello with a sensor bow, and a
Kinect. We are able to quickly create interactive audio and
visuals by harnessing the power of machine learning with
Wekinator. In this paper, we discuss how we created the
interactive audio and visual elements for the song Monster.

2. HARDWARE AND SOFTWARE
2.1 Wekinator
The Wekinator [2][3] is a freely available software
environment designed to facilitate the interactive application of
supervised learning to real-time problem domains, including
music.1 Supervised learning algorithms are a family of machine
learning algorithms capable of using a training dataset to
produce a model (see, e.g., [1]). This model can be understood
as a function capable of producing some output value (e.g., a
gesture label, such as “staccato”) from some input value (e.g., a
feature vector computed from sensor bow outputs). The training
set consists of a set of example input-output pairs (e.g., each

1 http://wekinator.cs.princeton.edu/

pair might consist of a single feature vector and the true gesture
label that should be applied to that feature vector). Supervised
learning has been an effective tool for building models in many
problem domains in which labeled training data is available,
but where the relationship between features and labels is too
complex to specify explicitly in code. Musical gesture
identification and mapping creation are two such domains in
which prior work has found supervised learning to be useful
(e.g., [6][9][12]).
 The Wekinator provides a graphical user interface for
collecting and editing training data, training learning
algorithms, and running trained models to produce outputs from
inputs in real-time. Users create training examples by
specifying the target output (e.g., gesture class) in the GUI and
demonstrating the corresponding gesture or other input signal;
features are extracted from the user’s input and saved with the
target value. Wekinator includes implementations of standard
discrete classification algorithms (k-nearest neighbor, decision
trees, support vector machines, and AdaBoost.M1), as well as
multilayer perceptron neural networks for regression. Users are
able to interactively change algorithms, algorithm parameters,
and selected features. Significantly, users are also able to
influence model behaviors by adding, deleting, and editing the
training examples. Compared to other machine learning tools,
the Wekinator was designed to more explicitly support rapid,
iterative model design through interactive changes to the
training dataset [3].
 Once a user has created a model by training a chosen
algorithm, (s)he can run the model to produce predicted outputs
for incoming feature vectors that are extracted in real-time. In
our bow gesture classification system, for example, the user can
execute different types of bow gestures using the K-Bow and
observe the model’s predicted output over time.

2.2 Kinect
The Kinect is a hands-free accessory for Microsoft’s Xbox 360.
It uses an RGB camera in combination with a depth sensor and
multi-array microphone to enable users to interact with video
games without a physical controller.2 It was released in the
USA in November of 2010 and was quickly hacked to enable
units to send data directly to computers via the USB port. In our
performance, we use the depth data as input to supervised
learning models created by the Wekinator, allowing us to use
body movement to control and trigger both audio and video.

2.3 K-Bow
The K-Bow is the first commercially-developed, mass-
produced sensor bow for string players [7]. It contains 1) a
three-axis accelerometer located inside the frog, which senses
tilt and acceleration of the bow in space; 2) a grip sensor that
perceives changes in the grip pressure and surface area of the

2 http://www.xbox.com/en-US/kinect

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’11, 30 May–1 June 2011, Oslo, Norway.
Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

453

cellist’s bow hand; 3) an angle-sensitive pressure sensor located
at the junction between the bow hair and the frog, which
measures changes in the tension of the bow hair; and 4) an
infrared detector inside the frog, which measures the bow
position and angle relative to a circuit board and IR emitter
mounted under the fingerboard.
 The K-Bow ships with a software suite, K-Apps, which
receives sensor values from the bow. This software provides a
GUI interface for sensor calibration and sends sensor values to
other software programs via OSC or MIDI. We use data from
the K-Apps as input to several Wekinator models to control and
trigger audio and visuals in our performance.

2.4 Audio and Visual Software
Ableton Live is a Digital Audio Workstation optimized for live
performance.3 Using data from the keyboards, Lemur, Zeta
Cello, and Wekinator we are able to control audio processing,
launch samples and loops, as well as play software synthesizers
while simultaneously controlling synthesis parameters. For
example, the lead singer might be playing keyboards while data
from the K-Bow adjusts the distortion on the patch she is
playing.
 Unity is an integrated graphical environment for creating 3D
games and animations.4 Its game engine runs on multiple
platforms including Windows and OS X, a web plug-in,
iDevices, and most commercial game consoles. Using data
from the Wekinator we are able to control an interactive game
environment, launching visuals, changing colors and camera
angles, and creating generative graphics such as particle
systems to create visuals for Monster.
2.5 Data Flow
Our data flow is illustrated in Figure 1. K-Apps receives K-
Bow sensor outputs and forwards them to a standalone feature
extractor, which extracts features (e.g., minima and maxima,
first- and second-order difference) and sends them to
Wekinator via OSC [11]. Simultaneously, rudimentary features
are extracted from the Kinect to roughly describe the 3D
location of the human performers, and these are sent to the
Wekinator as well. Certain Wekinator models are trained to
create and control Ableton Live sounds in response to features
extracted from the K-Bow and/or Kinect, and other Wekinator
models are trained to drive aspects of the Unity game engine.

Figure 1. Data Flow for 000000Swan

3. DISCRETE CLASSIFICATION OF
BOW ARTICULATIONS

3.1 Prior Work using K-Bow and
Wekinator
Prior research has shown the discrimination of string bow
strokes and articulations to be tractable using sensor bows and
machine learning (e.g., [9][12]), though this work has not
studied the production of classifiers that were later used in live

3 http://www.ableton.com/
4 http://unity3d.com/

performance. In our own prior work, we used the Wekinator to
create eight bow stroke classifiers for the 000000Swan cellist
using the K-Bow. For example, our articulation model
classifies seven standard bow articulations (see [4]): legato
(smooth and connected), marcato (onsets emphasized and
slightly detached), spiccato (enunciated and percussive),
riccocet (bouncing, rapid notes), battuto (struck with the wood
of the bow), hooked (re-articulation of notes without a change
in bow direction), and tremolo (rapid alternation of up-bows
and down-bows). The classifiers were constructed to identify
articulations played on any string of the cello and to be
reasonably robust to changes in horizontal and vertical bow
position (i.e., frog, middle, tip; sul tasto, sul ponticello), bow
pressure, and bow speed. The articulation classifier was the
most complex model that we built, and it achieved a 98.8%
cross-validation accuracy and a subjective quality rating by the
cellist of “9” out of “10.”

3.2 Discrete Classification Experience with
000000Swan and Wekinator
In performance we found we needed a way for the cellist to
trigger discrete events, much like a button on the Lemur.
During difficult vocal passages for the lead singer, we decided
it was much more important to focus on the vocal line, versus
attempting to both sing and trigger, therefore the cellist needed
to be able to trigger samples. We tried using particular notes on
the cello, but the unique notes for triggering stood out from the
rest of the cello line. Triggering from bow position did not give
satisfactory results; the only way to make it consistent left only
two possible triggers at the very tip and directly at the frog. By
using the seven identifiable articulations from the Wekinator in
combination with string information and extreme bow position
(i.e. frog, tip, ponticello, and sul tasto), we were able to
recognize 112 unique triggers which we use for multiple songs
in a set.
3.3 Discrete Classification in Monster
One way we use the bow articulation triggers in Monster is to
change the color of the visualization. The bass line is consistent
throughout each verse, but the first verse uses a legato bowing
to produce a purple visualization, and the second uses marcato
to create white particles.
 We also use bow articulations to trigger samples; almost
inaudible riccocets, tremolos, and batuttos on the A and D
string in the ponticello and sul tasto positions enable the cellist
to trigger 12 discrete audio samples varying in length from 0.2
seconds to a minute-long ambient sweep towards the end of the
piece. This ability to add elements during the performance is
important to us; an integral element of the 000000Swan
aesthetic is to make each live show unique.

4. CONTINUOUS CONTROL USING
KINECT
4.1 Prior Work in Continuous Control with
Wekinator
The Wekinator has previously been used by other composers to
create interactive systems in which performers’ gestures
continuously control sound synthesis parameters [8][10]. In
those compositions, as in components of our own work,
composers used the Wekinator to prototype, refine, and
perform with many-to-many mapping functions built from
neural networks. Unlike prior compositions, we have combined
continuous and discrete control mechanisms, and we engage
gestures of multiple performers to control both audio and
visuals.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

454

4.2 Continuous Control Experience with
000000Swan and Wekinator
Our lead singer has a dance background, and we often work
with aerialists. We wanted a way to use body movement to
control aspects of the performance. We programmed several
tracking systems in Max/MSP/Jitter/SoftVNS, but we were
unhappy with the results. Either the mapping from gesture was
too direct and uninteresting, or else the tracking was not robust.
In addition, the system ran very slowly. Using the Wekinator
circumvented these problems. Since the Kinect sends formatted
vision tracking data directly into Wekinator the environment is
very responsive. Unity runs directly on the GPU so we are able
to create complex visuals without taking up too much of the
CPU, leaving more power for Ableton.
 With Wekinator we are able to quickly train models to drive
sound and visuals in response to gestures performed in front of
the Kinect. We can train models for specific spaces by creating
training examples in the venue before the performance. For
example, we may use the downward motion of the aerial dancer
to manipulate the EQ on a synthesizer patch in Live. The range
of the dancer’s height changes depending on the elevation of
the rigging. We only need to give Wekinator two training
examples—one at the top of the dancer’s range, mapped to a
narrow EQ of 2, and one at the bottom, mapped to a wide EQ
of 18—to recalibrate the height-EQ model for a new venue.
This is a simple mapping, but we also use the Wekinator for
many-to-many mappings as discussed in the next section.
 We also use the Kinect to track the musicians’ movement to
influence sound and visuals. Previous tracking systems were
very dependent on costumes and lighting; using the depth
sensor from the Kinect, we have eliminated lighting as a
variable. Since the Wekinator is so easy to train we can create
models in multiple costumes, making our performances more
robust.

4.3 Continuous Control in Monster
In Monster, we use a particle generator to create interactive
visuals. One layer on top of the particle generator is a spiral of
triangle shapes. The position of the triangles is controlled by
the position of the right arm of the lead singer. The Kinect is
able to track this variable through the entire field of the camera.
Using neural networks to create continuous mappings from arm
position to triangle position allows the visuals to respond
dynamically to gradual changes in the singer’s movement.
 We also use body position to control camera parameters in
Unity. Using a set of five Wekinator models, we are able to
create a many-to-many mapping between performer gesture and
Unity’s camera focus, angle, and 3D position. The same
position features are used to drive seven of Live’s processing
parameters. Performers thus affect the visuals and audio in
complex and dynamic ways that which would be difficult, if not
impossible to code by hand.
 We train these models in the venue using four types of
training examples: 0) Standing close, cello playing arco, left
hand high on the strings 1) standing close, cello playing
pizzicato, left hand low on the strings 2) standing far apart,
cello playing arco 3) lead singer crouching, cellist leaning
backward 4) lead singer with arms in the air, cellist kneeling.
We know basically what visuals and audio processing will
result from these position states, but we do not know how the
“in between” states will react. We know generally what will
happen, but sometimes the results surprise us. For example, if
the lead singer is crouching and the cellist is kneeling, the
visual state may be somewhere between (3) and (4), but we
don’t know for sure until we experiment with the trained
models. This poses a creative challenge; we want the system to

be predictable and reproducible, while remaining engaging.
This type of mapping is also rewarding in that, by creating
“meta-sensors” driven by the actions of both performers, each
member has her own role in shaping the collective experience.

5. DISCUSSION
5.1 Advantages of Machine Learning
000000Swan is extremely pleased with the Wekinator. Previous
interactive systems we developed were not robust over multiple
venues and costumes, we found it difficult to program complex
results, and we felt we were spending more time coding than
working on the music and visuals. With the Wekinator we are
able to take complex streams of information from multiple
controllers and quickly program audio and visual responses.
We use both concrete classifiers as triggers and continuous
classifiers to transform between states.
 We see five real advantages to using interactive machine
learning in our multimedia performance:

1) Efficiency in design: We no longer have to parse complex
sensor information ourselves. Instead of trying to understand
eight variables coming in from the K-BOW every 10ms, and
thousands of IR points coming from the Kinect every 33ms,
we can think about the bigger picture and let Wekinator
handle the details.

2) Customizability: The Wekinator is fast to train; we are no
longer anxious about how our system will respond in
different venues. We simply train the program in each setting,
in costume. We create models in our dress rehearsal but
retain the output response.

3) Supporting complex performer-performer interactions:
The Wekinator does not distinguish between the types of data
coming in; therefore, we can track multiple sensors at the
same time to create “meta-sensors.” This augments the
interaction between the performers.

4) Supporting complex mapping strategies: We can create
both discrete triggers and continuous control in the same
program, and Wekinator’s neural networks create complex,
interpolating systems with many-to-many mappings without a
lot of programming.

5) Rapid prototyping: We can re-train and experiment
quickly with different models for the same sensors to control
the sound and visual environment.

To some extent, the practical advantages that machine learning
offers in creating customizable, complex mappings without
explicit programming are inherent to the use of a generative
mapping strategy (e.g., see [5]). In our experiences, these
benefits are also contingent on the ability to rapidly create,
explore and change the machine learning models. A less
interactive system that did not allow us to experiment with
changing training examples, that took a long time to train, or
that made it difficult to quickly test models by running them on
real-time inputs would be significantly less useful to our work.

5.2 Disadvantages of the Wekinator
Although we are happy with the Wekinator, there are some
disadvantages that we have had to work around.

1) There is no explicit support for triggering. In
Max/MSP/Jitter it is trivial to create a trigger. With the
Wekinator you must go through a secondary router in order
to create a trigger.

2) The Wekinator’s OSC output messages aren’t
customizable in format. We therefore rely on a third-party

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

455

routing software (OSCulator) to translate them into the
correct format for Ableton.

3) There isn’t an easy way to “turn off” the output of
selected Wekinator models. The easiest way to program
Ableton for control by an external OSC process is to click on
the parameter to control (e.g., volume) and move the
controller (and only that controller). However, because
Wekinator’s models all continuously output values
simultaneously, OSCulator was also used for this function.

In order to streamline our workflow, we are working with the
creator of Wekinator to improve the software by allowing
triggering and greater control over its OSC output behavior.

5.3 Other control strategies in Monster
We don’t use Wekinator for all of the controller data in
Monster. We a keyboard to send traditional MIDI in order to
play synth pads, and we use a LEMUR to send OSC directly to
Ableton, using sliders to control the volume of the singers,
electronic sound and cello and buttons to launch the song, and
to trigger samples. For one-to-one mappings, such as the
horizontal bow position mapping to distortion on the synth pad
we bypass the Wekinator and simply use the OSC data from K-
Apps.
6. CONCLUSION
We have summarized our use of machine learning techniques in
driving sound and graphics in our live interactive performance,
Monster. Our use of these techniques builds on a large
foundation of prior work that has demonstrated the feasibility
of applying machine learning to gesture analysis and mapping
creation. Through the use of the Wekinator software, we have
been able to put these techniques into practice in our own work.
 Although the use of the Wekinator software has required us
to create several extra software modules for feature extraction,
the most significant impact machine learning has had on our
work is the reduction in the need to write code and the
expansion of control possibilities available to us. As a result,
more of our development and composition time has been
devoted to exploration of these possibilities, and our attention

has been more focused on cultivating the creative and artistic
qualities of our work.

7. REFERENCES
[1] Bishop, C. M. 2007. Pattern Recognition and Machine

Learning, 2nd ed. Springer.
[2] Fiebrink, R. 2011. Real-time Human Interaction with

Supervised Learning Algorithms for Music Composition
and Performance. PhD thesis, Princeton University.

[3] Fiebrink, R., Trueman, D., and Cook, P. R. 2009. “A
meta-instrument for interactive, on-the-fly machine
learning.” In Proc. Intl. Conf. on New Interfaces for
Musical Expression (NIME).

[4] Flesch, C. 2000. The Art of Violin Playing: Book One.
Carl Fischer, New York, NY, USA.

[5] Hunt, A., and M. M. Wanderley. 2002. “Mapping
performer parameters to synthesis engines.” Organised
Sound, 7(2): 97–108.

[6] Lee, M., A Freed, and D. Wessel. 1992. “Neural networks
for simultaneous classification and parameter estimation in
musical instrument control.” Adaptive and Learning
Systems 1706: 244–255.

[7] McMillen, K. A. 2008. “Stage-worthy sensor bows for
stringed instruments.” In Proc. Intl. Conf. on New
Interfaces for Musical Expression (NIME).

[8] Nagai, M. 2010. MARtLET. http://michellenagai.com/Site/
MARtLET.html

[9] Rasamimanana, N., Flety, E., and Bevilacqua, F. 2005.
“Gesture analysis of violin bow strokes.” In Proceedings
of Gesture Workshop 2005 (GW05). 145–155.

[10] Trueman, D. 2010. “Clapping Machine Music Variations.”
In Proc. Intl. Computer Music Conference (ICMC).

[11] Wright, M. and Freed, A. 1997. “Open Sound Control: A
new protocol for communicating with sound synthesizers.”
In Proc. Intl. Computer Music Conference (ICMC).

[12] Young, D. 2008. “Classification of common violin bowing
techniques using gesture data from a playable
measurement system.” In Proc. Intl. Conf. on New
Interfaces for Musical Expression (NIME).

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

456

