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ABSTRACT 
In this paper we discuss how the band 000000Swan uses 
machine learning to parse complex sensor data and create 
intricate artistic systems for live performance. Using the 
Wekinator software for interactive machine learning, we have 
created discrete and continuous models for controlling audio 
and visual environments using human gestures sensed by a 
commercially-available sensor bow and the Microsoft Kinect. 
In particular, we have employed machine learning to quickly 
and easily prototype complex relationships between performer 
gesture and performative outcome. 
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1. INTRODUCTION 
Obsessed with electronics, rare birds, myth, Native American 
art, pagan ritual, fetish, punk, and tribal percussion, 
000000Swan is an experiment in performing process and 
interaction. We create high-impact, hard-to-predict events 
beyond the realm of normal expectations, performing on a 
variety of electronic instruments including keyboards, a 
JazzMutant Lemur, a Zeta cello with a sensor bow, and a 
Kinect. We are able to quickly create interactive audio and 
visuals by harnessing the power of machine learning with 
Wekinator. In this paper, we discuss how we created the 
interactive audio and visual elements for the song Monster.  

2. HARDWARE AND SOFTWARE 
2.1 Wekinator 
The Wekinator [2][3] is a freely available software 
environment  designed to facilitate the interactive application of 
supervised learning to real-time problem domains, including 
music.1 Supervised learning algorithms are a family of machine 
learning algorithms capable of using a training dataset to 
produce a model (see, e.g., [1]). This model can be understood 
as a function capable of producing some output value (e.g., a 
gesture label, such as “staccato”) from some input value (e.g., a 
feature vector computed from sensor bow outputs). The training 
set consists of a set of example input-output pairs (e.g., each 

                                                                    
1 http://wekinator.cs.princeton.edu/ 

pair might consist of a single feature vector and the true gesture 
label that should be applied to that feature vector). Supervised 
learning has been an effective tool for building models in many 
problem domains in which labeled training data is available, 
but where the relationship between features and labels is too 
complex to specify explicitly in code. Musical gesture 
identification and mapping creation are two such domains in 
which prior work has found supervised learning to be useful 
(e.g., [6][9][12]). 
 The Wekinator provides a graphical user interface for 
collecting and editing training data, training learning 
algorithms, and running trained models to produce outputs from 
inputs in real-time. Users create training examples by 
specifying the target output (e.g., gesture class) in the GUI and 
demonstrating the corresponding gesture or other input signal; 
features are extracted from the user’s input and saved with the 
target value. Wekinator includes implementations of standard 
discrete classification algorithms (k-nearest neighbor, decision 
trees, support vector machines, and AdaBoost.M1), as well as 
multilayer perceptron neural networks for regression. Users are 
able to interactively change algorithms, algorithm parameters, 
and selected features. Significantly, users are also able to 
influence model behaviors by adding, deleting, and editing the 
training examples. Compared to other machine learning tools, 
the Wekinator was designed to more explicitly support rapid, 
iterative model design through interactive changes to the 
training dataset [3]. 
 Once a user has created a model by training a chosen 
algorithm, (s)he can run the model to produce predicted outputs 
for incoming feature vectors that are extracted in real-time. In 
our bow gesture classification system, for example, the user can 
execute different types of bow gestures using the K-Bow and 
observe the model’s predicted output over time. 

2.2 Kinect 
The Kinect is a hands-free accessory for Microsoft’s Xbox 360. 
It uses an RGB camera in combination with a depth sensor and 
multi-array microphone to enable users to interact with video 
games without a physical controller.2 It was released in the 
USA in November of 2010 and was quickly hacked to enable 
units to send data directly to computers via the USB port. In our 
performance, we use the depth data as input to supervised 
learning models created by the Wekinator, allowing us to use 
body movement to control and trigger both audio and video.  

2.3 K-Bow 
The K-Bow is the first commercially-developed, mass-
produced sensor bow for string players [7]. It contains 1) a 
three-axis accelerometer located inside the frog, which senses 
tilt and acceleration of the bow in space; 2) a grip sensor that 
perceives changes in the grip pressure and surface area of the 

                                                                    
2 http://www.xbox.com/en-US/kinect 
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cellist’s bow hand; 3) an angle-sensitive pressure sensor located 
at the junction between the bow hair and the frog, which 
measures changes in the tension of the bow hair; and 4) an 
infrared detector inside the frog, which measures the bow 
position and angle relative to a circuit board and IR emitter 
mounted under the fingerboard. 
 The K-Bow ships with a software suite, K-Apps, which 
receives sensor values from the bow. This software provides a 
GUI interface for sensor calibration and sends sensor values to 
other software programs via OSC or MIDI. We use data from 
the K-Apps as input to several Wekinator models to control and 
trigger audio and visuals in our performance. 

2.4 Audio and Visual Software  
Ableton Live is a Digital Audio Workstation optimized for live 
performance.3 Using data from the keyboards, Lemur, Zeta 
Cello, and Wekinator we are able to control audio processing, 
launch samples and loops, as well as play software synthesizers 
while simultaneously controlling synthesis parameters. For 
example, the lead singer might be playing keyboards while data 
from the K-Bow adjusts the distortion on the patch she is 
playing. 
 Unity is an integrated graphical environment for creating 3D 
games and animations.4 Its game engine runs on multiple 
platforms including Windows and OS X, a web plug-in, 
iDevices, and most commercial game consoles. Using data 
from the Wekinator we are able to control an interactive game 
environment, launching visuals, changing colors and camera 
angles, and creating generative graphics such as particle 
systems to create visuals for Monster.   
2.5  Data Flow 
Our data flow is illustrated in Figure 1. K-Apps receives K-
Bow sensor outputs and forwards them to a standalone feature 
extractor, which extracts features (e.g., minima and maxima, 
first- and second-order difference) and sends them to 
Wekinator via OSC [11]. Simultaneously, rudimentary features 
are extracted from the Kinect to roughly describe the 3D 
location of the human performers, and these are sent to the 
Wekinator as well. Certain Wekinator models are trained to 
create and control Ableton Live sounds in response to features 
extracted from the K-Bow and/or Kinect, and other Wekinator 
models are trained to drive aspects of the Unity game engine.  

Figure 1. Data Flow for 000000Swan 
 

3. DISCRETE CLASSIFICATION OF 
BOW ARTICULATIONS  

3.1 Prior Work using K-Bow and 
Wekinator  
Prior research has shown the discrimination of string bow 
strokes and articulations to be tractable using sensor bows and 
machine learning (e.g., [9][12]), though this work has not 
studied the production of classifiers that were later used in live 
                                                                    
3 http://www.ableton.com/ 
4 http://unity3d.com/ 

performance. In our own prior work, we used the Wekinator to 
create eight bow stroke classifiers for the 000000Swan cellist 
using the K-Bow. For example, our articulation model 
classifies seven standard bow articulations (see [4]): legato 
(smooth and connected), marcato (onsets emphasized and 
slightly detached), spiccato (enunciated and percussive), 
riccocet (bouncing, rapid notes), battuto (struck with the wood 
of the bow), hooked (re-articulation of notes without a change 
in bow direction), and tremolo (rapid alternation of up-bows 
and down-bows). The classifiers were constructed to identify 
articulations played on any string of the cello and to be 
reasonably robust to changes in horizontal and vertical bow 
position (i.e., frog, middle, tip; sul tasto, sul ponticello), bow 
pressure, and bow speed. The articulation classifier was the 
most complex model that we built, and it achieved a 98.8% 
cross-validation accuracy and a subjective quality rating by the 
cellist of “9” out of “10.” 

3.2 Discrete Classification Experience with 
000000Swan and Wekinator  
In performance we found we needed a way for the cellist to 
trigger discrete events, much like a button on the Lemur. 
During difficult vocal passages for the lead singer, we decided 
it was much more important to focus on the vocal line, versus 
attempting to both sing and trigger, therefore the cellist needed 
to be able to trigger samples. We tried using particular notes on 
the cello, but the unique notes for triggering stood out from the 
rest of the cello line. Triggering from bow position did not give 
satisfactory results; the only way to make it consistent left only 
two possible triggers at the very tip and directly at the frog. By 
using the seven identifiable articulations from the Wekinator in 
combination with string information and extreme bow position 
(i.e. frog, tip, ponticello, and sul tasto), we were able to 
recognize 112 unique triggers which we use for multiple songs 
in a set. 
3.3 Discrete Classification in Monster  
One way we use the bow articulation triggers in Monster is to 
change the color of the visualization. The bass line is consistent 
throughout each verse, but the first verse uses a legato bowing 
to produce a purple visualization, and the second uses marcato 
to create white particles.  
 We also use bow articulations to trigger samples; almost 
inaudible riccocets, tremolos, and batuttos on the A and D 
string in the ponticello and sul tasto positions enable the cellist 
to trigger 12 discrete audio samples varying in length from 0.2 
seconds to a minute-long ambient sweep towards the end of the 
piece. This ability to add elements during the performance is 
important to us; an integral element of the 000000Swan 
aesthetic is to make each live show unique. 

4. CONTINUOUS CONTROL USING 
KINECT  
4.1  Prior Work in Continuous Control with 
Wekinator  
The Wekinator has previously been used by other composers to 
create interactive systems in which performers’ gestures 
continuously control sound synthesis parameters [8][10]. In 
those compositions, as in components of our own work, 
composers used the Wekinator to prototype, refine, and 
perform with many-to-many mapping functions built from 
neural networks. Unlike prior compositions, we have combined 
continuous and discrete control mechanisms, and we engage 
gestures of multiple performers to control both audio and 
visuals. 
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4.2 Continuous Control Experience with 
000000Swan and Wekinator 
Our lead singer has a dance background, and we often work 
with aerialists. We wanted a way to use body movement to 
control aspects of the performance. We programmed several 
tracking systems in Max/MSP/Jitter/SoftVNS, but we were 
unhappy with the results. Either the mapping from gesture was 
too direct and uninteresting, or else the tracking was not robust. 
In addition, the system ran very slowly. Using the Wekinator 
circumvented these problems. Since the Kinect sends formatted 
vision tracking data directly into Wekinator the environment is 
very responsive. Unity runs directly on the GPU so we are able 
to create complex visuals without taking up too much of the 
CPU, leaving more power for Ableton. 
 With Wekinator we are able to quickly train models to drive 
sound and visuals in response to gestures performed in front of 
the Kinect. We can train models for specific spaces by creating 
training examples in the venue before the performance. For 
example, we may use the downward motion of the aerial dancer 
to manipulate the EQ on a synthesizer patch in Live. The range 
of the dancer’s height changes depending on the elevation of 
the rigging. We only need to give Wekinator two training 
examples—one at the top of the dancer’s range, mapped to a 
narrow EQ of 2, and one at the bottom, mapped to a wide EQ 
of 18—to recalibrate the height-EQ model for a new venue. 
This is a simple mapping, but we also use the Wekinator for 
many-to-many mappings as discussed in the next section. 
 We also use the Kinect to track the musicians’ movement to 
influence sound and visuals. Previous tracking systems were 
very dependent on costumes and lighting; using the depth 
sensor from the Kinect, we have eliminated lighting as a 
variable. Since the Wekinator is so easy to train we can create 
models in multiple costumes, making our performances more 
robust.  

4.3 Continuous Control in Monster  
In Monster, we use a particle generator to create interactive 
visuals. One layer on top of the particle generator is a spiral of 
triangle shapes. The position of the triangles is controlled by 
the position of the right arm of the lead singer. The Kinect is 
able to track this variable through the entire field of the camera. 
Using neural networks to create continuous mappings from arm 
position to triangle position allows the visuals to respond 
dynamically to gradual changes in the singer’s movement. 
 We also use body position to control camera parameters in 
Unity. Using a set of five Wekinator models, we are able to 
create a many-to-many mapping between performer gesture and 
Unity’s camera focus, angle, and 3D position. The same 
position features are used to drive seven of Live’s processing 
parameters. Performers thus affect the visuals and audio in 
complex and dynamic ways that which would be difficult, if not 
impossible to code by hand.  
 We train these models in the venue using four types of 
training examples: 0) Standing close, cello playing arco, left 
hand high on the strings 1) standing close, cello playing 
pizzicato, left hand low on the strings 2) standing far apart, 
cello playing arco 3) lead singer crouching, cellist leaning 
backward 4) lead singer with arms in the air, cellist kneeling. 
We know basically what visuals and audio processing will 
result from these position states, but we do not know how the 
“in between” states will react. We know generally what will 
happen, but sometimes the results surprise us. For example, if 
the lead singer is crouching and the cellist is kneeling, the 
visual state may be somewhere between (3) and (4), but we 
don’t know for sure until we experiment with the trained 
models. This poses a creative challenge; we want the system to 

be predictable and reproducible, while remaining engaging. 
This type of mapping is also rewarding in that, by creating 
“meta-sensors” driven by the actions of both performers, each 
member has her own role in shaping the collective experience.  

5.  DISCUSSION 
5.1 Advantages of Machine Learning 
000000Swan is extremely pleased with the Wekinator. Previous 
interactive systems we developed were not robust over multiple 
venues and costumes, we found it difficult to program complex 
results, and we felt we were spending more time coding than 
working on the music and visuals. With the Wekinator we are 
able to take complex streams of information from multiple 
controllers and quickly program audio and visual responses. 
We use both concrete classifiers as triggers and continuous 
classifiers to transform between states.  
 We see five real advantages to using interactive machine 
learning in our multimedia performance: 

1) Efficiency in design: We no longer have to parse complex 
sensor information ourselves. Instead of trying to understand 
eight variables coming in from the K-BOW every 10ms, and 
thousands of IR points coming from the Kinect every 33ms, 
we can think about the bigger picture and let Wekinator 
handle the details.  

2) Customizability: The Wekinator is fast to train; we are no 
longer anxious about how our system will respond in 
different venues. We simply train the program in each setting, 
in costume. We create models in our dress rehearsal but 
retain the output response. 

3) Supporting complex performer-performer interactions: 
The Wekinator does not distinguish between the types of data 
coming in; therefore, we can track multiple sensors at the 
same time to create “meta-sensors.” This augments the 
interaction between the performers.  

4) Supporting complex mapping strategies: We can create 
both discrete triggers and continuous control in the same 
program, and Wekinator’s neural networks create complex, 
interpolating systems with many-to-many mappings without a 
lot of programming. 

5) Rapid prototyping: We can re-train and experiment 
quickly with different models for the same sensors to control 
the sound and visual environment.  

To some extent, the practical advantages that machine learning 
offers in creating customizable, complex mappings without 
explicit programming are inherent to the use of a generative 
mapping strategy (e.g., see [5]). In our experiences, these 
benefits are also contingent on the ability to rapidly create, 
explore and change the machine learning models. A less 
interactive system that did not allow us to experiment with 
changing training examples, that took a long time to train, or 
that made it difficult to quickly test models by running them on 
real-time inputs would be significantly less useful to our work. 

5.2 Disadvantages of the Wekinator 
Although we are happy with the Wekinator, there are some 
disadvantages that we have had to work around.  

1) There is no explicit support for triggering. In 
Max/MSP/Jitter it is trivial to create a trigger. With the 
Wekinator you must go through a secondary router in order 
to create a trigger.  

2) The Wekinator’s OSC output messages aren’t 
customizable in format. We therefore rely on a third-party 
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routing software (OSCulator) to translate them into the 
correct format for Ableton.  

3) There isn’t an easy way to “turn off” the output of 
selected Wekinator models. The easiest way to program 
Ableton for control by an external OSC process is to click on 
the parameter to control (e.g., volume) and move the 
controller (and only that controller). However, because 
Wekinator’s models all continuously output values 
simultaneously, OSCulator was also used for this function. 

In order to streamline our workflow, we are working with the 
creator of Wekinator to improve the software by allowing 
triggering and greater control over its OSC output behavior. 

5.3 Other control strategies in Monster  
We don’t use Wekinator for all of the controller data in 
Monster. We a keyboard to send traditional MIDI in order to 
play synth pads, and we use a LEMUR to send OSC directly to 
Ableton, using sliders to control the volume of the singers, 
electronic sound and cello and buttons to launch the song, and 
to trigger samples. For one-to-one mappings, such as the 
horizontal bow position mapping to distortion on the synth pad 
we bypass the Wekinator and simply use the OSC data from K-
Apps.  
6. CONCLUSION  
We have summarized our use of machine learning techniques in 
driving sound and graphics in our live interactive performance, 
Monster. Our use of these techniques builds on a large 
foundation of prior work that has demonstrated the feasibility 
of applying machine learning to gesture analysis and mapping 
creation. Through the use of the Wekinator software, we have 
been able to put these techniques into practice in our own work.  
 Although the use of the Wekinator software has required us 
to create several extra software modules for feature extraction, 
the most significant impact machine learning has had on our 
work is the reduction in the need to write code and the 
expansion of control possibilities available to us. As a result, 
more of our development and composition time has been 
devoted to exploration of these possibilities, and our attention 

has been more focused on cultivating the creative and artistic 
qualities of our work. 
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