
MTCF: A framework for designing and coding musical
tabletop applications directly in Pure Data

Carles F. Julià
Universitat Pompeu Fabra

138 Roc Boronat
Barcelona, Spain

carles.fernandez@upf.edu

Daniel Gallardo
Universitat Pompeu Fabra

138 Roc Boronat
Barcelona, Spain

daniel.gallardo@upf.edu

Sergi Jordà
Universitat Pompeu Fabra

138 Roc Boronat
Barcelona, Spain

sergi.jorda@upf.edu

ABSTRACT
In the past decade we have seen a growing presence of table-
top systems applied to music, lately with even some prod-
ucts becoming commercially available and being used by
professional musicians in concerts. The development of this
type of applications requires several demanding technical
expertises such as input processing, graphical design, real
time sound generation or interaction design, and because of
this complexity they are usually developed by a multidisci-
plinary group.

In this paper we present the Musical Tabletop Coding
Framework (MTCF) a framework for designing and coding
musical tabletop applications by using the graphical pro-
gramming language for digital sound processing Pure Data
(Pd). With this framework we try to simplify the creation
process of such type of interfaces, by removing the need of
any programming skills other than those of Pd.

Keywords
Pure Data, tabletop, tangible, framework

1. INTRODUCTION
In the past decade we have seen a proliferation of musical
tabletops. Currently, so many ”tangible musical tables” are
being developed that it becomes difficult to track every new
proposal1.

Independently of the relevant differences that can exist
between these systems, scholars tend to agree in the bene-
fits of interacting with large-scale tangible and multi-touch
devices. Their vast screens make them excellent candidates
for collaborative interaction and shared control [2][4], while
favoring at the same time, real-time, multidimensional as
well as explorative interaction, which makes them especially
suited for both novice and expert users [6]. This last author
also states that the visual feedback possibilities of this type
of interfaces, makes them ideal for understanding and mon-
itoring complex mechanisms, such as the several simultane-
ous musical processes that can take place in an interactive
digital system for music performance [5].

1Kaltenbrunner, has a website devoted to Tangible Music,
which includes a quite exhaustive list of devices: http://
modin.yuri.at/tangibles/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’11, 30 May–1 June 2011, Oslo, Norway.
Copyright remains with the author(s).

This growing tabletop popularity, clearly in the musical
domain but also in other fields, has increased the publicly
available information for the rapid development and proto-
typing of these types of interfaces. Online communities of
DIY builders such as the NUIGroup2 collect large knowl-
edge bases of resources and many easy-to-follow tutorials
are publicly available [12]. The development of this type of
hardware solutions has indeed become easier and affordable
than ever, allowing practically anyone to experiment with
tabletop computing.

From the software side, several well-known open-source
solutions do also exist, both for the tracking of multi-touch
fingers, such as the NUIGroup’s Community Core Vision3,
or for the combined tracking of fingers and objects tagged
with fiducial markers, such as reacTIVision [1]. These and
other existing software tools greatly simplify the program-
ming of the input component, essential for this type of in-
terfaces, but this solves only one part of the problem. The
visual feedback or the graphical user interfaces, which do
often also include problems specific to tabletop computing,
such as aligning the projector output with the camera input
or correcting the distortion that results from the use of mir-
rors, still have to be manually programmed. Not to mention
the underlying musical engine, our main reason after all for
developing this type of applications.

Taking into account these considerations, it may be diffi-
cult to acquire the required skills for being capable of pro-
gramming the visual interface and the audio component,
even to find a single programming language or framework
supporting well these two components.

A simple solution to this last problem, as presented in
previous papers such as [4][3], is to divide the project into
two different applications: one focused on the visual feed-
back and another focused on the audio and music process-
ing. However, dividing the tasks will not eliminate the need
for programming still on both sides. The system we present
here has been designed for simplifying these technical diffi-
culties.

2. MUSICAL TABLETOP CODING FRAME-
WORK

Musical Tabletop Coding Framework(MTCF) is an open
source framework for the creation of musical tabletop ap-
plications that takes a step forward in simplifying the cre-
ation of tangible tabletop musical and audio applications,
by allowing developers to focus mainly on the audio and
music programming and on designing the interaction at a
conceptual level (because all the interface implementation
will be done automatically).

MTCF provides a standalone program for the visual in-

2http://nuigroup.com
3http://ccv.nuigroup.com/

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

457



terface and the gesture recognition, which communicates
directly with Pd[11], and which enables programmers to
define the objects and their control parameters, as well as
the potential relations and interactions between different
objects, by simply instantiating a series of Pd abstractions.
MTCF can be freely downloaded at github4.

2.1 Description of the system
MTCF has been designed for being used in conjunction with
any type of tabletop surface that supports both the detec-
tion of marked tangible objects and multitouch interaction,
although it does not force both interaction modes. The only
restriction for the hardware is the output protocol used, its
tracking system should complie with the TUIO protocol [9].
Otherwise it does not impose either any restriction on the
size or shape of the surface, allowing to design for rectangu-
lar surfaces as well as for circular ones such as the Reactable.

Our internal test hardware is the one used for the re-
actable [7] and reacTIVision[8] as the tracking software (see
Fig. 1). The generated data from reacTIVision (i.e. posi-
tion and orientation of all the tagged pucks and fingers)
is sent to MTCF using the TUIO protocol. MTCF just
monitors all the incoming TUIO messages and sends them
filtered to Pd by means of the Open Sound Control (OSC)
protocol[13]. From Pd, control messages and waveform data
are also transmitted back to MTCF, that is in charge of per-
manently refreshing the visual display.

reacTIVisionMTCF

videovideo

TUIO

Pure Data

OSC

sound

pr
oj

ec
to

r cam
era

tangibles tagged with fiducials

(visual feedback)

multitouch control

diffuse infrared
illumination

Figure 1: System diagram.

2.2 MTCF: Dealing with the Input data and
with the GUI

MTCF is itself implemented on top of openFrameworks5

(OF), a group of multi-platform libraries written in C++,
specially designed for assisting creative applications pro-
gramming.

MTCF also uses an external OF add-on, ofxTableGestu-
res, which we had previously implemented with the aim of
assisting multi-purpose (i.e. not necessarily musical) table-
top application design. ofxTableGestures does already solve
some of the typical problems that appear in the develop-
ment of generic tabletop applications, such as dealing with
the tracking incoming messages or correcting the graphical
output distortion or alignment. But ofxTableGestures is
meant for OF programmers, which means that for using it,
programming in C++ is still needed. In that sense, MTCF,
built on its turn on top of ofxTableGestures, can be seen as a
specialised and simplified subset of ofxTableGestures: while

4https://github.com/chaosct/
Musical-Tabletop-Coding-Framework/downloads
5http://www.openframeworks.cc/

it does not permit all of ofxTableGestures’ functionalities,
it simplifies enormously the programming tasks by putting
everything on the Pd side. Although no understanding of
how ofxTableGestures works is needed for fully exploiting
MTCF potential, next we will describe some of the basic
ofxTableGestures features in order to give a clearer idea of
the whole architecture.

ofxTableGestures is itself divided in two parts: TUIO in-
put and graphics output. ofxTableGestures’ TUIO input
part processes the messages that arrive to the framework
from any TUIO-compliant application (e.g. reacTIVision).
Once these messages are processed, this component detects
and generates gestural events for the top-level programmer.
ofxTableGestures’s graphics part on its side, helps to create
drawable objects while applying the distortion correction to
everything that is drawn. ofxTableGestures also includes a
self-contained tabletop simulator, which simulates figures
and multiple fingers interaction, allowing testing the appli-
cations without the need of a real table. (see Fig. 2). When
the simulator is enabled, a right panel with a subset of fig-
ures is shown on one side of the screen. These figures are
labelled with the identifier that will be reported by YUIO
messages to the system. In order to maintain the fidelity
between the physical table and the simulator, the figures
used on the simulator match in size and shape with the real
ones in our setup. ofxTableGestures includes six different
figure shapes (circle, square, star, rounded square, pentagon
and dodecahedron), which are defined in a configuration file
that includes the figure shape, the figure identifier and the
figure colour.

Figure 2: Simulator screen shoot.

MTCF receives data from the TUIO application, pro-
cesses it, displays the graphic feedback and sends the fil-
tered data to Pd via OSCMessages. At this stage, MTCF
only draws the figure shapes and the fingers’ visual feed-
back, all in their correct positions. The remaining graphics
(such as the waveforms and the relations between the fig-
ures) are drawn in a second step, according to the additional
information that is send back via OSC messages from Pd
to MTCF. This will be addressed in the next section.

By default, MTCF pucks only convey three basic param-
eters: X position, Y position and rotary angle. Additional
parameters can be enabled from Pd for any specific object.
This optional additional information includes parameters
resulting from the relations between pairs of pucks (dis-
tance and angle between them) as well as parameters re-
sulting from the finger interaction onto given pucks, which

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

458



can have two extra widgets (Object bar and finger slider)
that can be activated from Pd, as shown in Fig. 3. These
parameters are displayed as two semicircular lines surround-
ing the puck, keeping the orientation towards the centre of
the table.

Figure 3: Tangibles with different feedbacks and
controllers.

Objects’ bars convey a value between 0 and 1 that can be
changed by rotating the tangible. The finger slider, repre-
sented by a thinner line with a dot that can be moved using
a finger, also ranges between 0 and 1. In the next section
we will concentrate on the Pd side of MTCF.

2.3 Using MTCF from Pure Data
MTCF was designed to be used along with Pd, as this has
become one of the most popular languages for realtime au-
dio processing and programming. The main idea of this
framework was to allow expert Pd users to interface their
patches using a tangible tabletop setup. For this, MTCF
provides nine Pd abstractions that transparently communi-
cate with MTCF, and that are used to define the objects,
the relations between them, and the data the programmer
wants to capture from the tabletop interface. Not all of
these abstractions have to be always used, as this will de-
pend on the affordances of our musical application interface.

Object 10

objDistance 20 28

connectWave 11 12

drawWave

BGchanger

Fingers

finger

FCchanger

basicTangibleTabletop localhost

Figure 4: MTCF Pd Abstractions.

Only one abstraction is mandatory and responsible for
all OSC communication between the Pd patch and MTCF:
[basicTangibleTabletop]. Its single argument is the ad-
dress of the computer running MTCF. This will typically
be localhost, although changing this address can be useful
in some situations, such as in testing several projects (on
different laptops) wit only one tabletop (only running the
visual part). One and only one instance of this object must
exist in the Pd program.

2.3.1 Defining Objects and Parameters
Some additional abstractions will allow us to define what
physical pucks will be used on the application. Instantiating
[Object n] will tell the system to include the object with
the id code n.

As described in the previous section, a slider plus a [0, 1]
rotatory parameter can be activated around any puck. The
(de)activation of these extra controllers is done in Pd, by
sending messages to their associated [Object]. Only when
these elements are active Pd will receive this additional in-
formation.

Outlets in [Object] output the presence of the puck (Bool-
ean), its position, orientation, and if activated, its slider and

rotary parameter values.
Inspired by the Reactable paradigm, which allows the cre-

ation of audio processing chains by connecting different ob-
jects (such as generators and filters), MTCF also permits
to use the relations between different pucks and can make
them explicit. However, unlike the Reactable, MTCF is not
limited to the creation of modular, subtractive synthesis
processing chains; any object can relate to any other object
independently of their nature. This allows for example to
easily create and fully control a tangible Frequency Modula-
tion synthesiser, by assigning each carrier or each modulator
oscillator to a different physical object; or a Karplus-Strong
plucked string synthesiserby controlling the extremes of a
virtual string with two separate physical objects.

On the counterpart, MTCF does not yet permit dynamic
patching [10], so it is not capable of producing a fully func-
tional Reactable clone, neither was this its main objective.
In MTCF, the connections between the pucks have to be
made explicitly by the programmer in the Pd program-
ming phase. This is attained by using [objDistance m n],
which continuously updates about the status of this connec-
tion, and (if existent) about the angle and distance between
objects m and n. The programmer can also specify whether
she wants this distance parameter to be drawn on the table
by sending a Boolean value into the [objDistance] inlet.

2.3.2 Drawing Waves
Also inspired by the Reactable, MTCF can easily show the
”sound waves” going from one object to another. This can
be achieved by using the [connectWave] object. This ab-
straction takes two parameters that indicate the two object
numbers between which the wave should be drawn. As in-
dicated before, this waveform does not necessarily indicate
the sound coming from one object into the other, but can
rather represent the sound resulting from the interaction
between two combined objects, or from any other sound
thread from the Pd patch.

An audio inlet and an outlet are used to take the wave-
form and to act as a gate, allowing the audio to pass, only
if the two pucks (and therefore the waveform) are on the
surface. This ensures that no unintended sound will be pro-
cessed neither shown when its control objects are removed.
Additionally, a control inlet lets the patch to activate and
deactivate this connection.

This way of drawing waveforms has some consequences:
first, waveforms are drawn by default between pucks, dif-
ficulting the drawing of waveforms between two arbitrary
points, or from one object to the centre, as Reactable does.
This can be overcome by using a simpler Pd abstraction,
[drawWave], which has exactly this very purpose: drawing
waves between two points.

The second but very important consequence is that the
audio connection between two physical pucks is a Pd ob-
ject itself. Instead of having Pd audio connections between
[Object] abstractions, the programmer must therefore use
[connectWave] abstractions, which simply send the wave-
form information to MTCF for drawing it. This can be
confusing, specially when chaining multiple physical pucks
imitating an audio processing chain, since the programmer
must then consider all the possible combinations (Fig. 5).

2.3.3 Extra features
For more advanced interaction, additional abstractions are
also provided. [Fingers] gives full information of the posi-
tion of all fingers detected on the table, while [finger] can
be used to extract individual fingers information (see Fig.
6). These abstractions can be used to control less obvious
parameters.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

459



noise~

dac~
dac~

bp~ 400 10

* 10000

* 10
== 0

- 0.1

- 0.1
Object 4

objDistance 1 4

objDistance 4 3

connectWave 1 3

connectWave 1 4

connectWave 4 3

1 4 3
(optional)

source filter sink

connection 1->3
in case there is
no object 4

connection 4->3

connection 1->4

Figure 5: A processing chain example. Puck 1 is
a noise generator, puck 4 is a filter, and puck 3 is
an audio sink (i.e. the speakers). The programmer
must consider the connections both when puck 4 is
present (1 → 4 → 3) and when it is not (1 → 3).

Fingers

0 0finger

0 0finger

0 0finger

Figure 6: A Pd structure to receive information of
the several fingers on the surface.

Two additional abstractions can be used for visual pur-
poses: [BGchanger] and [FCchanger] respectively allow
changing the background colour of the tabletop and the
colour of the fingers’ trailing shadows. Changing colours,
for example according to audio features, can create very
compelling effects.

3. CONCLUSIONS
The experience we have gained until now from using MTCF
on two short half-day workshops, indicate that MTCF is
not only a very valuable tool for the quick development
and prototyping of musical tabletop applications, but also
an interesting system for empowering discussion and brain-
storming over some concepts of software synthesis control
and interaction.

We are also aware that there are many issues that can
still be improved. While Pd experts quickly understand
the framework’s mechanisms and take full profit from it
producing interesting results in very short times, a few ad-
vanced users missed some higher level control possibilities.
At its current stage, MTCF is clearly very oriented towards
real-time sound synthesis and processing control, lacking of
higher level and more structural controls that could com-
municate with Pd entities such as data arrays or sequences.
In a near future, we therefore plan to include more graph-
ical interface features, probably making a more extensive
use of multi-touch interaction, in order to be able to con-
trol time-oriented and structured data such as envelopes or
sequences of events.

4. ACKNOWLEDGMENTS
This work has been partially supported by TEC2010-11599-
E (Ministerio de Ciencia e Innovación, Gobierno de España)
and by Microsoft Research Cambridge.

5. REFERENCES
[1] R. Bencina, M. Kaltenbrunner, and S. Jordà.

Improved topological fiducial tracking in the
reactivision system. In Computer Vision and Pattern
Recognition-Workshops, 2005. CVPR Workshops.
IEEE Computer Society Conference on, page 99. Ieee,
2005.

[2] Y. Fernaeus, J. Tholander, and M. Jonsson. Beyond
representations: towards an action-centric perspective
on tangible interaction. International Journal of Arts
and Technology, 1(3):249–267, 2008.

[3] L. Fyfe, S. Lynch, C. Hull, and S. Carpendale.
Surfacemusic: Mapping virtual touch-based
instruments to physical models. In Proceedings of the
2010 conference on New interfaces for musical
expression, pages 360–363. Sydney, Australia, June
2010.

[4] J. Hochenbaum, O. Vallis, D. Diakopulos, J. Murphy,
and A. Kapuy. Designing expressive musical interfaces
for tabletop surfaces. In Proceedings of the 2010
conference on New interfaces for musical expression,
pages 315–318. Sydney, Australia, June 2010.

[5] S. Jordà. Sonigraphical instruments: from fmol to the
reactable. In Proceedings of the 2003 conference on
New interfaces for musical expression, NIME ’03,
pages 70–76, Singapore, Singapore, 2003. National
University of Singapore.

[6] S. Jordà. On stage: the reactable and other musical
tangibles go real. International Journal of Arts and
Technology, 1:268–287, 2008.

[7] S. Jordà, G. Geiger, M. Alonso, and
M. Kaltenbrunner. The reacTable: exploring the
synergy between live music performance and tabletop
tangible interfaces. In Proceedings of the 1st
international Conference on Tangible and Embedded
interaction, pages 139–146. ACM, 2007.

[8] M. Kaltenbrunner and R. Bencina. reacTIVision: a
computer-vision framework for table-based tangible
interaction. In Proceedings of the 1st international
conference on Tangible and embedded interaction,
pages 69–74. ACM, 2007.

[9] M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. Tuio-a protocol for table based tangible
user interfaces. In Proceedings of the 6th International
Workshop on Gesture in Human-Computer
Interaction and Simulation (GW 2005), Vannes,
France, 2005.

[10] M. Kaltenbrunner, G. Geiger, and S. Jordà. Dynamic
patches for live musical performance. In Proceedings
of the 2004 conference on New interfaces for musical
expression, NIME ’04, pages 19–22, Singapore,
Singapore, 2004. National University of Singapore.

[11] M. Puckette. Pure Data: another integrated computer
music environment. Proceedings of the Second
Intercollege Computer Music Concerts, pages 37–41,
1996.

[12] J. Schöning, P. Brandl, F. Daiber, F. Echtler,
O. Hilliges, J. Hook, M. Löchtefeld, N. Motamedi,
L. Muller, P. Olivier, et al. Multi-touch surfaces: A
technical guide. Technical Reports of the Technical
University of Munich, 2008.

[13] M. Wright and A. Freed. Open sound control: A new
protocol for communicating with sound synthesizers.
In Proceedings of the 1997 International Computer
Music Conference, pages 101–104, 1997.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

460




