
The Planetarium as a Musical Instrument

Dale E. Parson
Kutztown University of PA

15200 Kutztown Road
Kutztown, PA 19530-0730

parson@kutztown.edu

Phillip A. Reed
Kutztown University of PA

15200 Kutztown Road
Kutztown, PA 19530-0730

preed@kutztown.edu

ABSTRACT
With the advent of high resolution digital video projection and
high quality spatial sound systems in modern planetariums, the
planetarium can become the basis for a unique set of virtual
musical instrument capabilities that go well beyond packaged
multimedia shows. The dome, circular speaker and circular
seating arrangements provide means for skilled composers and
performers to create a virtual reality in which attendees are
immersed in the composite instrument.
 This initial foray into designing an audio-visual computer-
based instrument for improvisational performance in a
planetarium builds on prior, successful work in mapping the
rules and state of two-dimensional computer board games to
improvised computer music. The unique visual and audio
geometries of the planetarium present challenges and
opportunities. The game tessellates the dome in mobile, colored
hexagons that emulate both atoms and musical scale intervals in
an expanding universe. Spatial activity in the game maps to
spatial locale and instrument voices in the speakers, in essence
creating a virtual orchestra with a string section, percussion
section, etc. on the dome. Future work includes distribution of
game play via mobile devices to permit attendees to participate
in a performance. This environment is open-ended, with great
educational and aesthetic potential.

Keywords
aleatory music, algorithmic improvisation, computer game,
planetarium

1. INTRODUCTION & RELATED WORK
This project grows out of the intersection of prior work in
mapping two-dimensional computer board games to music
[9,10] and the availability of a modern planetarium with a high-
resolution digital projector, a high-quality surround sound
system, seating for 85 people and very good acoustics [4].
 The predecessor to the current game-as-instrument is a
computer Scrabble® game extended to generate MIDI note and
control information based on game rules and the progressing
state of play [9]. The key musical aspect of that game is its
mapping of statistical regularities in letter distributions in a
game to statistical regularities in musical interval distributions
in the scales being generated on MIDI channels. For example,
in a typical player-configurable scale, common letters such as
‘E’ or ‘A’ map to consonant intervals such as the tonic or fifth
in a channel’s scale, less common letters map to less consonant

intervals, and outlying letters such as ‘Q’ or ‘Z’ map to
chromatic passing tones. Players select game tiles pseudo-
randomly then impose lexical structure on them by creating
words that map to unique sequences of intervals. Other
parameters for mapping placed letters to properties such as
meter, tempo and timbre are under more direct control of a
performing musician via a graphical user interface.
 The inspiration for writing a music-generating game
specifically for the planetarium came at a computer music
seminar in our facility on September 7, 2011 [7]. Dr. Michael
O’Bannon of Atlanta provided excellent improvised video
accompaniment for that event. Both the visual and acoustic
properties of the facility were so good that the idea of adapting
the graphical game-to-music approach to the planetarium
presented itself as a natural next step.
 Several related projects involving generating music from the
rules and states of games have influenced this effort
[1,5,13,15]. Two additional influences are work on creating
audio productions that are portable among planetariums [2],
and an overview of problems for spatial sound from a two-
session morning on the subject at ICMC 2011 [3].
 In the current project we retain and extend the successful
properties of the Scrabble game while replacing the game itself
with one designed for play on a planetarium dome with circular
seating. We abandoned an initial attempt at a word game
because the geometry of a planetarium renders words upside-
down and backward for many viewers. We settled on a game
metaphor more suited to a planetarium, that of an expanding
universe of atoms, where 12 distinct atomic numbers map to 12
distinct intervals in the current scale on a MIDI channel. By
regulating the range and distribution of atomic numbers that
they inject into the expanding universe, players regulate the
degree of consonance / dissonance in the generated music.
More complex musical properties emerge from aggregate game
state as discussed below. We have had two successful ensemble
performances by a faculty member and students to date, one at
the Kutztown University planetarium on March 20, 2012, and
another at a regional computing conference in southern
Pennsylvania on March 30 [6].

2. VISUAL ASPECTS OF THE GAME
Our ensemble performances have consisted of two students
playing the game via wireless networking and one of the
authors manipulating musical mapping parameters. Game play
consists of injection of atoms into the universe and
manipulation of statistical properties of their elements. In
addition to conventional graphical controls for atom injection
and music translation, performers use live coding in the Jython
dialect of the Python programming language [8] to automate
portions of play.
 Figure 1 shows a screen shot of an early universe, before
expansion, in which players have injected a variety of the 12
element types. An atom appears as a hexagon – we chose this
geometry in order to accomplish symmetric tiling of the dome,
naming the game HexAtom. Each distinct element type maps to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’12, May 21-23, 2012, University of Michigan, Ann Arbor.
Copyright remains with the author(s).

a unique color. Multiple atoms occupying a single location
appear to nest. Atoms currently being sounded by the music
translator appear as filled hexagons, while unsounding atoms
are hollow. Consequently, atoms blink on and off in time to
their sounding (excitation). Musical tempo drives the rate of
atom movement and flashing.

Figure 1. An early universe – The Big Bang

 The most basic move by a player is injection of atoms into a
location in the universe. Atomic parameters under player
control include number of atoms injected at one time,
distribution of their element types, location, direction of travel,
and speed. There is a (typically) non-zero probability that an
atom reaching the edge of the universe will cause its expansion
towards a player-defined limit. Atoms can also disappear at the
edge, deflect off of the edge or each other, fuse into heavier
atomic types, fission into multiple smaller atomic types, and
clump into geometric ensembles due to simulated gravity.
Associated with each of the 12 element types is a set of
probabilities for universe expansion, atom deflection, fusion,
fission, and gravitational properties. In addition to injecting
atoms, players can manipulate these distinct probabilities in
order to guide evolution of the expanding universe. Players can
use both manual interaction and live coding scripts to inject
atoms, to configure their injection properties, and to configure
probabilities of element properties. With evolution of the
universe driven by the changes in state of individual atoms
interacting with their immediate neighbors, the game is a form
of cellular automaton [12].

Figure 2. A young universe in the midst of expansion

 Figure 2 is a photograph of the March 20 game, at a stage
when the universe was relatively young. Improvisational
dynamics vary, and in this performance the players began with
only element type 0 (mapped to the tonic) in a universe that
was three atoms wide. Our “Big Bang” was a consonant,
medium-tempo affair. Figure 1 shows a more harmonically
complex Big Bang, with a larger range of element types (as

seen by the range of colors) moving and sounding at a faster
tempo. By the time our more conservative March 20 universe
had progressed to the state of Figure 2, both atomic fusion and
player actions had increased the range of element types and
corresponding harmonic complexity to a moderate mix, with
most generated notes lying within the scale of each MIDI
channel being played.

Figure 3. An aging universe evolving towards element 0

 Figure 3 is a screen shot of an aging universe. Increased
spatial separation of atoms lowers the probability of fusion –
atoms must occupy a single location in order to fuse – thus
increasing the relative probability of fission. Evolution tends
toward a large number of element-0 atoms that typically map to
the tonic. It is possible for players to counteract this tendency
by increasing probabilities for fusion, decreasing probabilities
for fission (in the limit to 0), and injecting a larger proportion
of heavier element types into small regions of space. Increasing
element probabilities that control gravitational clumping can
create opportunities for fusion by keeping atoms closer
together.
 A typical player activity at the stage of Figure 3 is injection
of atoms in unidirectional streams that are maintained by
gravity, injection of atoms in geometric forms via live coding
scripts using geometric formulae, and emergent geometric
properties. The feel of play at this stage is reminiscent of
Impressionist painting, where underlying precise geometric
forms are smeared and blurred by atomic motion and evolution.
One attendee at the March 20 event commented that in a later
stage the game took on the appearance of fireflies in a summer
night, with small atoms blinking on and off as their notes
sounded. During testing one of the authors injected a series of
streams of element 0 atoms in the six cardinal directions of the
hexagonal layout that used gravity to draw all other atoms into
their lines, forming an abstract six-petal flower. We have not
yet been able to repeat this configuration.
 We typically bring a performance to its end by increasing the
elemental probabilities for fission and decreasing those for
fusion while increasing the rate of atomic evolution, leading to
a large decaying universe that devolves to the tonic and then
fades away. In our second public performance we took an
alternative approach of shrinking the universe back to a three-
atom diameter, increasing element types and tempo to give a
rapid restatement of the Big Bang before reversing the
probabilities to cause rapid decay and fade out. The game has a
wide range of probabilistic behaviors to be explored and
mastered.
 The overall perspective of the game-as-composition is one of
composition as a superposition of possible states. A musical
score is not a fixed set of musical objects with a probability of
100%. It is a variable set of musical objects with configurable
probabilities. Changing probabilities via live coding is a major
dimension of performance. Preparation for a performance

includes writing small, custom scripts in the extension language
that players can set in motion as they perform.

3. MUSICAL ASPECTS OF THE GAME
3.1 Atom to MIDI Mapping
The music mapper is an enhanced version of the Scrabble MIDI
mapper. Instead of traversing a Scrabble game board as a maze,
the virtual composer traverses the simulated universe of Figures
1 through 3, collecting lists of atoms, their element types and
locations. The question of whether element 0 maps to the tonic,
element 1 to the fifth, and so on in a MIDI channel’s current
scale, is left up to the scale currently in use on that channel. A
composer defines element-to-interval mappings for each named
scale (Aeolian, Mixolydian, Minor Blues, etc.) in a scale
definition file, and a performer decides what scale and other
parameters to use for each MIDI channel in play, setting these
per-channel parameters via a Python command line or a
graphical user interface.

Figure 4. Mapping parameters, one set per MIDI channel
 Figure 4 illustrates the per-channel parameters used to map
game state to MIDI messages. Several mapping parameters
relate directly to the game. Tempo relates to the speed of
universe expansion, tonic sets a channel’s tonic note, and scale
is a named scale for element-to-note interval offset from tonic
as previously discussed. A patch is the number for the MIDI
channel’s synthesizer voice, and accents is an integer vector
that gives the relative strength of each successive note played,
with 0 denoting a rest. The accent pattern defines the meter for
a MIDI channel. Other parameters affect the number of
simultaneous notes played, sustain, and other musical
properties.
 The MIDI generator applies these mapping parameters by
traversing lists of atoms and their locations received from the
game via a network connection. Atomic number maps directly
to interval in a scale. Many parameters determine how atoms
are translated, e.g., the number of individual atoms to translate
per sixteenth note (the notes parameter) and their relative

importance to MIDI velocity and meter (accents). Each MIDI
channel gets its own set of mapping parameters. As the music
mapper generates notes from game data, it feeds note data back
to the game in a data feedback loop, causing visual atoms that
are sounding to light up with a fill pattern. Filled atoms in
Figures 1 through 3 represent atoms being sounded.
 Using differing-length accent patterns with shared prefixes
generates polyrhythms. Using related but differing scales on
different channels generates polychords and harmonic
ambiguity. Extraction of melody by a performer from a
generated sequence of notes takes the form of mapping only a
small, repeating sequence of atoms to MIDI notes. There
promise to be new modes of interaction that we have yet to
establish for shaping the music mapped from the game.
 The availability of live coding via the Python interpreter
opens up avenues for new modes of play. A performer can
enter Python command lines and script invocations that affect
MIDI translation parameters in an expanded top section of
Figure 4. Game players have a similar Python coding user
interface. Atom injection and probability manipulation of the
game can be semi-automated via live coding. Also, all of the
mapping parameters of the MIDI mapper are available for
semi-automated update on each MIDI channel by performers
via performance time live coding. Rather than simple scalar and
vector values for each channel, live coding provides a means
for supplying scalar and vector functions with periodic,
aperiodic, or chaotic behavior with respect to the values they
return to the MIDI mapper. Mastering this live coding aspect of
the game / instrument takes practice and attention.

3.2 Spatialization in a Planetarium
We studied a number of approaches to spatialization in non-
planetarium environments, including those that often fail [3].
Guidelines from the latter study have to do with precedence
effect due to varying time-of-arrival of a sound at a listener,
asymmetry of multi-loudspeaker localization and panning,
directional hearing and the role of head movement, and
interrelationship of spatial hearing with auditory fusion and
stream segregation. Attempting complex or subtle spatial audio
effects at a planetarium is even more problematic. Concentric
circular seating eliminates the possibility of using reference
listener body orientation and location. There are no standards
for speaker arrangement or relative speaker levels in a
planetarium [2], which by its circular nature does not conform
to the Surround 5.1 standard.
 For the March 20 premiere performance we mapped the
spatial properties of the game to the spatial location of the
surround sound system. Each of the five speakers around the
base of the planetarium dome projected a different set of
synthesizer voices representing sections of a virtual orchestra,
e.g., the string section, the percussion section, the wind section,
the pad section, and the reed section. As mobile atoms
traversed a section of the dome in the neighborhood of a
speaker, they triggered note generation in the MIDI channels
feeding the synthesizers driving that speaker. The game’s
metaphor is thus extended to include the universe-as-virtual-
orchestra on the planetarium dome. With pronounced
synthesizer voices this approach is effective. We did not
attempt to create spatial effects within the concentric audience,
but rather to emulate the spatial effects of an orchestra on a
planetarium dome, visualized and manipulated as an expanding
virtual universe populated by moving sonic atoms.

4. CONCLUSIONS AND FUTURE WORK
Initial ensemble performances in March 2012 have satisfied the
performers and earned positive comments from attendees. This
software instrument is a testament to the concept of taking

collections of events that are individually pseudo-random, but
that exhibit collective statistical regularities, and mapping those
regularities to statistical regularities in improvised computer
music. HexAtom goes further than Scrabble-to-MIDI in
exposing underlying probabilities to the performers, and in
supporting live coding for performance-time creation of novel
statistical functions. HexAtom is a more complicated
instrument that we look forward to getting good at playing.
 The primary long-term musical goal for this work is creation
of a comprehensive stochastic model for composing and
performing improvised computer music, where the musical
score is a hierarchical organization of probabilistic musical
events. There is a tradition of stochastic musical analysis and
stochastic musical performance that the present work looks to
extend [14,15]. Experience with music-generating games has
shown that performance is every bit as work-intensive and
concentration-intensive as performing on a more conventional
instrument. Rather than focus a human performer’s actions and
attention on creating individual notes or sounds, however, this
style of performance is somewhat more like conducting, in that
the primary activity is guiding the activities of musicians, in
this case virtual musicians playing on their respective MIDI
channels. A large component of composition is planning
transitions in scales, tonic, accent patterns, and other
configuration parameters of the per-channel MIDI mappers to
fit the envisioned piece. Performance includes playing the game
and migrating the configuration parameters, more or less
according to plan. It also includes manipulating downstream
timbre using other hardware and software tools to complement
the output of the music generator. In a sense a music-generating
game supplies partially prepared musical material that can be
refined within the game, for example by selecting a substring of
a stochastically generated note sequence as a melody, as well as
by tools, such as synthesizers and effects units, that use the
game’s generated note sequence.
 This process-based approach contrasts with Reich’s assertion
in “Music as a Gradual Process” [11], which states, “The
distinctive thing about musical processes is that they determine
all the note-to-note details and the overall form simultaneously.
One can’t improvise in a musical process—the concepts are
mutually exclusive.” While Reich’s assertion is correct for
deterministic musical processes, it is incorrect for stochastic
musical processes that place aspects of probabilistic musical
event creation under a performer’s control. A stochastic
musical process can determine the overall form while
determining details only to the granularity of a statistical
distribution of note-to-note events. Statistical distributions are
not random. They shape the note-to-note events in the
aggregate, but they do not shape them deterministically at the
level of individual events. Giving performers some degree of
control over the probabilities, whether implicitly via game rules
such as imposing order on pseudo-randomly selected tiles in
Scrabble, or explicitly via manipulating probabilities of note
fission, fusion, etc. in HexAtom, gives performers a means for
improvising within the framework of a stochastic musical
process. Thoroughly exploring this approach to composition
and performance is the primary goal of the present work.

 Exploring additional shapes, games and processes for
tessellating a planetarium dome and generating music, and
finding additional ways to utilize a planetarium’s visual and
auditory environment as a musical instrument, is another path
for future work. We also plan to migrate game play from
laptops to programmable mobile devices distributed among the
audience. Each mobile device will act as a controller, feeding
commands to the game-playing computer via a wireless
network. Luckily, we can explore the stochastic composition
path and the planetarium-as-instrument path simultaneously.

5. REFERENCES
[1] Codeorgan website, http://www.codeorgan.com/, January

2012.
[2] Gaston, et. al., “Methods for Sharing Audio Among

Planetariums,” 2008 Fulldome Summit, Chicago, Illinois,
July 3, 2008, http://whiteoakinstitute.org/IPS2008.pdf.

[3] Kendall and Cabrera, “Why Things Don’t Work: What
you need to know about spatial audio,” Proceedings of
International Computer Music Conference 2011,
Huddersfield, UK, August 2011, p. 37-40.

[4] Kutztown University’s Grim Planetarium,
http://www.kutztown.edu/planetarium/, April 2012.

[5] M. Liuni and D. Morelli, “Playing music: an installation
based on Xenakis' musical games,” Proceedings of the
Working Conference on Advanced Visual Interfaces,
Venezia, Italy, May, 2006.

[6] PA Computing and Information Science Educators
Conference, March 29-30, 2012, http://www.pacise.org/.

[7] Parson, et. al, September 2011 Computer Music Seminar,
Grim Planetarium, Kutztown University,
https://www.facebook.com/media/set/?set=a.10150793380
120117.730472.579770116&type=3&l=7118b6f81e.

[8] Parson, Schwesinger and Steele, “Using Jython to
Prototype and Extend Java-based Systems,” Proceedings
of the 26th Annual Spring Conference of the Pennsylvania
Computer and Information Science Educators,
Shippensburg University, Shippensburg, PA, April 2011,
http://faculty.kutztown.edu/parson/pubs/JythonPACISE20
11.pdf .

[9] D. Parson, “Algorithmic Musical Improvisation from 2D
Board Games,” Proceedings of International Computer
Music Conference 2010, New York City and Stony Brook,
NY, June 2010.

[10] D. Parson, “Chess-based Composition and Improvisation
for Non-Musicians,” Proceedings of New Interfaces for
Musical Expression 2009, Pittsburgh, PA, June 4-6, 2009.

[11] Steve Reich, Writings on Music 1965-2000, Chapter 1:
Early Works. Oxford University Press, 2002.

[12] Joel L. Schiff, Cellular Automata: A Discrete View of the
World. Hoboken, NJ: John Wiley & Sons, 2008.

[13] S. Smallwood and G. Wang, “Chuck Chuck Rocket,”
PLOrk in the Round, May 2, 2006,
http://plork.cs.princeton.edu/listen/green/.

[14] D. Temperley, Music and Probability, Cambridge, MA,
MIT Press, 2007.

[15] I. Xenakis, Formalized Music: Thought and Mathematics
in Composition, Second Edition, Pendragon Press, 2001.

