
DIY Hybrid Analog/Digital Modular Synthesis

Greg Surges
UC San Diego – Department of

Music
gsurges@ucsd.edu

ABSTRACT
This paper describes three hardware devices for integrating
modular synthesizers with computers, each with a different
approach to the relationship between hardware and software.
The devices discussed are the USB-Octomod, an 8-channel
OSC-compatible computer-controlled control-voltage
generator, the tabulaRasa, a hardware table-lookup oscillator
synthesis module with corresponding waveform design
software, and the pucktronix.snake.corral, a dual 8x8
computer-controlled analog signal routing matrix. The devices
make use of open-source hardware and software, and are
designed around affordable micro-controllers and integrated
circuits.

Keywords
modular synthesis, interface, diy, open-source

1. INTRODUCTION AND MOTIVATION
Some of the earliest experiments in real-time computer music
involved interfacing a computer with separate sound-generating
hardware [1]. At the time (ca. 1970), computer hardware was
prohibitively expensive and incapable of real-time synthesis,
while analog synthesis hardware was responsive and

comparatively affordable. In more recent years, this situation
has changed radically. Laptop computers capable of complex
real-time sound processing can be had for a few hundred
dollars, while modular analog synthesizers are generally the
domain of boutique small-run manufacturers [2]. Perhaps in
response to this, a “do-it-yourself” (DIY) movement has
emerged, centered around internet forums and mailing-lists [3].
The DIYers, some borrowing from the hardware-hacking
tradition of David Tudor, Nicholas Collins, and others, tend to
embrace experimentation without much concern for the
commercial viability of ideas. Many musicians working in this
area are also fluent in one or more computer music
programming languages, many of which are freely available
and/or open-source. It is common practice for electronic
musicians to perform using only a laptop running custom
performance software. The basic motivations behind the
projects described below were to integrate these two areas of
electroacoustic music-making, and to stimulate further
exploration in this direction.
 The USB-Octomod (2010), tabulaRasa (2010 - 2011), and
pucktronix.snake.corral (2011) were developed concurrently
with the author’s efforts to establish an affordable and
expressive DIY hardware performance setup. Budget
constraints mandated that this was a slow-moving effort, with
periods of musical experimentation punctuated by soldering
sessions. The three devices discussed here were all designed to
meet a particular musical need felt by the author – and unmet
by commercially available devices. They reflect an attempt to
provide maximum flexibility with a minimum number of
components. The devices each take a different approach to
combining computer music software with DIY hardware. The
USB-Octomod is an 8-channel control-voltage interface that
allows a computer to interface with a modular synthesis system.
The tabulaRasa is a table-lookup oscillator that allows the user
to design and edit custom waveforms using a PC software
application. Finally, the pucktronix.snake.corral is a dual 8 x 8
matrix routing device for analog signals, with a computer
control interface allowing for arbitrarily complex and rapid
switching and automation.

2. RELATED WORKS
Other control-voltage/computer interfaces exist, including the
GROOVE system and several MIDI-CV systems, both DIY and
commercially manufactured [4]. Mark of the Unicorn’s VOLTA
and Expert Sleepers Silent Way represent another approach,
each using a DC-coupled audio interface to directly output
voltages [5, 6]. Potential downsides of these approaches include
the low resolution of the MIDI protocol, and the requirement to
dedicate audio output channels to control-voltage generation
(assuming one already has access to a DC-coupled audio
interface).
 Several hardware table-lookup oscillators also exist in
modular format, with the Synthesis Technology E350
Morphing Terrarium as a notable example. The E350 is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’12, May 21-23, 2012, University of Michigan, Ann Arbor.
Copyright remains with the author(s).

Figure 1. tabulaRasa assembly showing SD card (A), analog
controls (B - D), power (E), and I/O (F).

commercially available as a pre-made module, and has the
ability to “morph” between several waveforms using a
proprietary algorithm [7]. The module comes with a built-in set
of 192 non-modifiable waveforms, stored permanently in
memory. Though the user has an amount of control over the
blending of the waveforms, the waveforms themselves remain
fixed and designed acccording to the desires of the
manufacturers.
 Finally, there is at least one other computer-controlled
routing matrix, the 4ms Pedals Bend Matrix [8]. This device
uses similar hardware components to the
pucktronix.snake.corral but relies on MIDI and physical
pushbuttons for control over matrix connection points. 4ms has
undertaken great efforts toward making the Bend Matrix a
playable, musical instrument, and the firmware supports
presets, automation routines, and multiple I/O configurations.
Unfortunately, if the user desires a more customized
configuration than provided, he or she has to use MIDI to
program the device. In addition, the additional hardware
required for pushbutton control and preset storage adds to the
overall cost of the device.

3. THE DEVICES
3.1 Common Features
The devices discussed below all use a simple microcontroller as
their primary electronic component. The USB-Octomod and
pucktronix.snake.corral use a Teensy 2.0, a breadboard-
compatible microcontroller, compatible with the Arduino
environment running on OS X, Windows, and Linux [9]. The
Teensy 2.0 uses an Atmel ATmega32U4 processor, with 32k of
flash memory, 25 digital I/O pins, and 12 analog input pins.
The Teensy also has an integrated USB port for both firmware
uploading and serial communication with a PC. The Teensy 2.0
was chosen for its small footprint, built-in USB hardware, and
low price relative to Arduino-branded options. The tabulaRasa
uses a simplified Arduino configuration. Using an ATmega328,
along with a crystal and a few other passive components, it is
possible to create a “breadboarduino” - a device capable of
running Arduino code that can be incorporated directly into
another circuit. This method was used in the tabulaRasa
because no serial communication with the PC was needed after
programming, and because of the low hardware cost associated
with such a minimal circuit.
 The free, open-source Arduino programming language was
used to develop the microcontroller code for all three projects
[10]. Arduino provides a library of functions which enable
simplified access to the ATmega328’s I/O pins and other
functionality, while allowing more experienced users to use the
C programming language for lower-level hardware control. The
popularity of the Arduino among hobbyists and experimenters
provides the benefit of a large body of freely available example
code, forum discussions, and tutorials. Both the USB-Octomod
and tabulaRasa use the Processing language for their PC-side
interfaces [11]. Processing is primarily intended for
programming visual and interactive art, but provides libraries
for GUI design, serial communication, and sound generation.
Finally, the pucktronix.snake.corral uses a script written in the
Python programming language to receive data and coordinate
with the snake.corral hardware via the PC serial port. Efforts
are made to provide the software as both compiled binaries and
source code, and modifications or additions are encouraged.
 The projects, including schematics, code, and compiled
binaries are all hosted at https://bitbucket.org/pucktronix/

3.2 USB-Octomod
The USB-Octomod is an 8-channel control-voltage interface
employing a minimal hardware part count. The device uses a

Teensy 2.0 and a pair of 4-channel 10-bit DAC ICs as the
backbone of the voltage-generation circuitry. Although higher
resolution DACs are available (at higher cost), experimentation
suggested that 10 bits was enough, when combined with an RC
low-pass filter, to produce a wide range of discrete output
voltages and to allow for smooth sweeps from one value to
another. The device draws power directly from the USB bus,
and is designed to provide output voltages in the range of +/- 5
volts corresponding to a 10-octave range in a typical
Volt/octave synthesis system. Since the USB-Octomod uses
external DACs, the user is not required to use a DC-coupled
audio interface, or dedicate output channels to control-voltages.
The USB-Octomod uses the OpenSoundControl protocol (OSC)
to enable a modular software design [12]. A lightweight
Processing GUI application (the “host”) intercepts OSC
messages, buffers and converts them, and finally sends them to
the USB serial port. The “host” also provides the option to
select a custom OSC port, and allows the user to direct data to a
specific serial device. Received OSC data is visualized with a
set of sliders.

 In order to send data to the “host” application, the user
assembles an OSC message formatted /dac ch1 ch2 ch3 ch4
ch5 ch6 ch7 ch8 - replacing each of the ch1-8 placeholders
with an integer value 0 - 1023. After a string of data is received
by the “host” application, the new value for each channel is
compared to the most recent previous value. If the value has
changed, it is converted to a two-byte string specifying the
channel and value, along with some hardware flags, and sent to
the Teensy 2.0 via the USB-serial port. The Teensy 2.0
firmware receives this two-byte value and transmits it to the
correct DAC chip using the SPI protocol – a hardware serial
protocol which allows for multiple devices to be controlled on a
single bus. This process is illustrated in Figure 3.

Figure 2. USB-Octomod assembly showing Teensy 2.0.

Figure 3. USB-Octomod control flow.

 The separation of data generation from transmission is an
important feature of the device. By decoupling the “host”
software, which handles the technicalities of serial
communication, from the user-supplied OSC generation
algorithm, the device allows a musician to use his/her preferred
software environment for the musically relevant OSC
generation tasks. Users have developed Max and PD patches,
templates for the iPad touchOSC application, and ChucK
programs all designed to generate data and send it to the “host”
application.
 The USB-Octomod can be thought of as 8 extremely versatile
modulation sources. Each output can be driven by any number
of unique processes, generated in real-time or pre-composed. A
recent experiment by the author coupled the outputs to a
custom cellular automata-driven sequencer, the
pucktronix.golgi.apparatus. The 8 output channels of the USB-
Octomod were mapped to 8 regions of the CA “world,” and
output values/voltages were controlled by the number of active
cells in each region.

3.3 tabulaRasa
The tabulaRasa generates audio signals using a table-lookup
oscillator algorithm, and is designed to integrate directly into a
modular synthesis system without necessitating that a PC be
present during performance. The device also requires either a
+/- 12V or +/- 15V power source (modular synthesis standards
used in many popular module formats), as there is no USB
connection present. An Atmega328 microcontroller reads
waveform data from an SD memory card held in a socket
mounted to the circuit board, and uses a modified version of
Adrian Freed’s table-lookup oscillator code to generate a PWM
signal at one of the digital output pins [13]. This signal is
converted to a continuous waveform by an external first-order
RC lowpass filter. Due to the limited memory on the
ATmega328, waveforms are stored as 256-byte arrays. The SD
card is used as storage, and two waveforms are read into RAM
at a time. Modifications to the basic table-lookup algorithm
allow for interpolation (blend) between the two waveforms in
RAM, allowing for continuous timbral variation. Six of the
ATmega328’s analog inputs are used for controlling synthesis
parameters in real-time. Each of the following parameters has
both a potentiometer and control-voltage input: oscillator
frequency (V/octave), amount of interpolation between
waveform pairs, and selection of which waveform pair is
currently stored in RAM.
 The tabulaRasa Atmega328 firmware consists of two main
functional components: a main loop and the PWM interrupt
routine. The main loop runs periodically and polls the ADC
input for frequency, interpolation, and waveform select
controls. The frequency input is polled on each iteration of the
main loop, allowing for higher frequency modulation rates,
while the other inputs are sampled once every 50 iterations. The
blended waveform determined by the interpolation and
waveform select controls is also computed at this point. The
PWM interrupt routine writes the current output sample to the
Atmega328's PWM register, then updates the output sample
value and increments the phase of the table-lookup oscillator.
The PWM interrupt routine is deliberately kept simple, and
most calculations are handled in the main loop.
 The tabulaRasa software presents a GUI which allows the
user to design breakpoint-based waveforms in several ways,
apply various interpolations between breakpoints, and write the
results to an SD card. Waveforms are written as contiguous
256-byte blocks. The software also provides a real-time audio
preview of the waveform, and allows the created waveforms to
be saved into any of 64 slots. The slots are organized into 32
pairs, which correspond to the interpolation pairs mentioned in

describing the hardware. The ability to design and load
arbitrary waveforms gives the device a large amount of sonic
flexibility lacking in devices with a fixed bank of wavetables
stored in permanent memory.
 Waveforms can be designed by directly manipulating the
breakpoints, adjusting the relative amplitudes of harmonically-
related sinusoids, or by loading an arbitrary .wav file. Large
.wav files are down-sampled to 256 points, with no
interpolation, and stored. Files can be loaded one at a time, or
by loading a set of files in a folder into contiguous slots.

 The musical effects of the tabulaRasa range from complex
rhythmic glitching at sub-audio rates, through rich, evolving 8-
bit waveforms, and finally to hard-aliased digital noise. The
interpolation controls allow for continuous changes in spectra,
and allow timbral shaping without an additional filter.

3.4 pucktronix.snake.corral
The pucktronix.snake.corral is a computer-controlled dual 8 x 8
analog signal routing matrix. Two independent matrices are
presented, each with 8 inputs and 8 outputs. Within each
matrix, any input (or summed combination of inputs) can be
routed to any output. The device can switch and route any type
of analog signal within the range of +/- 5V. The main electronic
components of the pucktronix.snake.corral are a Teensy 2.0
and a pair of Zarlink MT8816 analog switching matrix ICs. The
MT8816 is a bidirectional 8 x 16 crosspoint switch with
minimal signal bleed. The pucktronix.snake.corral is powered
from the USB bus.
 The pucktronix.snake.corral decouples the control and
transmission components of the software. Like the USB-
Octomod, the device communicates with a PC through a light-
weight software application - here, a script written in the
Python programming language. Instead of demanding that the
user employ a particular programming language or
compositional environment, the script listens for OSC messages
and converts them into serial data which is communicated to
the hardware. The OSC protocol contains four pieces of data: a
sub-address selecting which of the two MT8816 ICs is being
addressed, the x-address of the switch being addressed, the y-
address of the switch being addressed, and the state
(open/closed) of that switch. A typical message might look like
/matrix/one x y state. Presets can also be specified as plain-
text, and recalled via OSC.
 A Max/MSP patch which allows the user to define and switch
between presets and/or apply various algorithmic rhythmic
effects to the switching matrices has also been developed and is
pictured in Figure 5. A given switch can be toggled in a
periodic, random, random n-tuplet, or sinusoidally fluctuating
pattern. As the various switches in a patch shift in phase,

Figure 4. tabulaRasa waveform design software interface.

particular hardware configurations emerge while others recede
in prominence. The patch also provides preset management and
has a randomization function. Both the Python script and Max
patch are part of the source distribution.

 Using the pucktronix.snake.corral, a modest number of
synthesis modules can be used to create interesting rhythmic
and timbral variety. The ability to rapidly switch or reconfigure
a large number of signal connections enables a level of
rhythmic complexity which is difficult to obtain through other
means. Sharp cuts between disparate types of musical material
are made possible, and patches can be stored and immediately
recalled during performance. In the author's performances, this
has introduced a new dimension of control over changes in the
musical texture, which was previously impossible without
physically modifying the synthesizer patch.

4. FURTHER WORK AND EVALUATION
The utility of the USB-Octomod could easily be extended by
the addition of analog inputs. A situation in which a computer
receives and transforms voltages from an analog synthesizer in
real-time, acting as an extremely flexible processing module,
could be extremely musically rewarding. Further exploration of
the device in combination with GUI or alternate control
methods is also necessary.
 The tabulaRasa could be improved by replacing the
ATmega328 with a chip capable of running at a higher clock
rate. The current implementation is quite susceptible to
aliasing. A chip with a larger amount of RAM would also
enable a 2D crossfade between 4 waveforms - something
initially planned for the tabulaRasa but discarded due to
memory constraints.
 The pucktronix.snake.corral might benefit from a more
flexible range of input voltages. Currently, voltages greater
than +/- 5V are clipped. This protects the internal circuitry of
the MT8816 chips, but could be changed. From a musical
standpoint, having a variable gain at each switch-point would
allow for more variety and control over routing configurations.
This would enable crossfades from one patch to another, and
allow for the exploration of intermediate states.
 The relative success of these projects suggests that further
experimentation with affordable microcontrollers in musical
applications would be fruitful. While basic chips like the
ATmega328 are perhaps not powerful enough for real-time
DSP, others, like the dsPIC family, seem to merit exploration in

this area [14]. Additionally, the processors used here are more
than powerful enough for control-based applications running at
lower rates, while also managing analog input from a variety of
sensor devices.
 Aside from issues of technological feasibility, the emergence
of the Arduino and associated projects, along with the DIY and
open-source software movements, have created a fertile
environment for experimentation. Computer musicians,
hardware hackers, and composers can design, rapidly
prototype, and fabricate previously non-existent or
commercially unviable hardware devices. By blending
computer music techniques with hardware electronic music
construction, unique hybrid devices can be produced. The
hardware needs of the artist are no longer subject to the whims
of commercial manufacturers. Instead of bending a pre-made
device to the specific needs of individual musical practice, we
(artists and musicians) can now create exactly the device
needed for a given piece, performance, or purpose. It remains to
be seen how much further the Arduino and other such
electronic platforms can be pushed, but there is no doubt more
exploration to be done.

5. REFERENCES
[1] Mathews, M., and Moore, F. R. GROOVE - A Program

to Compose, Store, and Edit Functions of Time. In
Communications of the ACM, 13, 12 (Dec. 1970), 715-
721.

[2] Wisconsin Audio Research and Design, 2011. Wiard.
http://www.wiard.com

[3] Muff’s Modules & More, 2011.
http://www.muffwiggler.com

[4] PAiA Corporation USA, 2009. 9700K MIDI2CV8
Electronics Kit.
http://http://www.paia.com/proddetail.asp?prod=9700K
&cat=12

[5] MOTU, Inc., 2011. MOTU.com - What is Volta?
http://www.motu.com/products/software/volta

[6] Expert Sleepers, 2011. Expert Sleepers - Silent Way.
http://www.motu.com/products/software/volta

[7] Synthesis Technology, 2010. E350 Morphing Terrarium.
http://synthtech.com/euro/e350/e350_insert.pdf

[8] 4ms Pedals, 2011. 4ms Pedals: Bend Matrix.
http://www.4mspedals.com/bendmatrix.php

[9] PJRC Electronic Projects, 2011. Teensy USB
Development Board. http://pjrc.com/teensy/index.html

[10] Arduino, 2011. Arduino. http://www.arduino.cc/

[11] Processing.org, 2011. Processing.
http://www.processing.org/

[12] The Center for New Music and Audio Technology, UC
Berkeley, 2011. Introduction to OSC.
http://opensoundcontrol.org/introduction-osc

[13] Freed, Adrian, 2009. Arduino Sketch for High
Frequency Precision Sine Wave Tone Sound Synthesis.
http://adrianfreed.com/content/arduino-sketch-high-
frequency-precision-sine-wave-tone-sound-synthesis

[14] Microchip Technology, Inc., 2011. 16-bit PIC
Microcontrollers & dsPIC Digital Signal Controllers.
http://www.microchip.com/stellent/idcplg?IdcService=S
S_GET_PAGE&nodeId=75

Figure 5. pucktronix.snake.corral matrix switch prototype
and software.

