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ABSTRACT 
This paper describes three hardware devices for integrating 
modular synthesizers with computers, each with a different 
approach to the relationship between hardware and software. 
The devices discussed are the USB-Octomod, an 8-channel 
OSC-compatible computer-controlled control-voltage 
generator, the tabulaRasa, a hardware table-lookup oscillator 
synthesis module with corresponding waveform design 
software, and the pucktronix.snake.corral, a dual 8x8 
computer-controlled analog signal routing matrix. The devices 
make use of open-source hardware and software, and are 
designed around affordable micro-controllers and integrated 
circuits. 
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1. INTRODUCTION AND MOTIVATION 
Some of the earliest experiments in real-time computer music 
involved interfacing a computer with separate sound-generating 
hardware [1]. At the time (ca. 1970), computer hardware was 
prohibitively expensive and incapable of real-time synthesis, 
while analog synthesis hardware was responsive and 

comparatively affordable. In more recent years, this situation 
has changed radically. Laptop computers capable of complex 
real-time sound processing can be had for a few hundred 
dollars, while modular analog synthesizers are generally the 
domain of boutique small-run manufacturers [2]. Perhaps in 
response to this, a “do-it-yourself” (DIY) movement has 
emerged, centered around internet forums and mailing-lists [3]. 
The DIYers, some borrowing from the hardware-hacking 
tradition of David Tudor, Nicholas Collins, and others, tend to 
embrace experimentation without much concern for the 
commercial viability of ideas. Many musicians working in this 
area are also fluent in one or more computer music 
programming languages, many of which are freely available 
and/or open-source. It is common practice for electronic 
musicians to perform using only a laptop running custom 
performance software. The basic motivations behind the 
projects described below were to integrate these two areas of 
electroacoustic music-making, and to stimulate further 
exploration in this direction. 
 The USB-Octomod (2010), tabulaRasa (2010 - 2011), and 
pucktronix.snake.corral (2011) were developed concurrently 
with the author’s efforts to establish an affordable and 
expressive DIY hardware performance setup. Budget 
constraints mandated that this was a slow-moving effort, with 
periods of musical experimentation punctuated by soldering 
sessions. The three devices discussed here were all designed to 
meet a particular musical need felt by the author – and unmet 
by commercially available devices. They reflect an attempt to 
provide maximum flexibility with a minimum number of 
components. The devices each take a different approach to 
combining computer music software with DIY hardware. The 
USB-Octomod is an 8-channel control-voltage interface that 
allows a computer to interface with a modular synthesis system. 
The tabulaRasa is a table-lookup oscillator that allows the user 
to design and edit custom waveforms using a PC software 
application. Finally, the pucktronix.snake.corral is a dual 8 x 8 
matrix routing device for analog signals, with a computer 
control interface allowing for arbitrarily complex and rapid 
switching and automation. 

2. RELATED WORKS 
Other control-voltage/computer interfaces exist, including the 
GROOVE system and several MIDI-CV systems, both DIY and 
commercially manufactured [4]. Mark of the Unicorn’s VOLTA 
and Expert Sleepers Silent Way represent another approach, 
each using a DC-coupled audio interface to directly output 
voltages [5, 6]. Potential downsides of these approaches include 
the low resolution of the MIDI protocol, and the requirement to 
dedicate audio output channels to control-voltage generation 
(assuming one already has access to a DC-coupled audio 
interface).   
 Several hardware table-lookup oscillators also exist in 
modular format, with the Synthesis Technology E350 
Morphing Terrarium as a notable example. The E350 is 
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Figure 1. tabulaRasa assembly showing SD card (A), analog 
controls (B - D), power (E), and I/O (F). 



commercially available as a pre-made module, and has the 
ability to “morph” between several waveforms using a 
proprietary algorithm [7]. The module comes with a built-in set 
of 192 non-modifiable waveforms, stored permanently in 
memory. Though the user has an amount of control over the 
blending of the waveforms, the waveforms themselves remain 
fixed and designed acccording to the desires of the 
manufacturers.   
 Finally, there is at least one other computer-controlled 
routing matrix, the 4ms Pedals Bend Matrix [8]. This device 
uses similar hardware components to the 
pucktronix.snake.corral but relies on MIDI and physical 
pushbuttons for control over matrix connection points. 4ms has 
undertaken great efforts toward making the Bend Matrix a 
playable, musical instrument, and the firmware supports 
presets, automation routines, and multiple I/O configurations. 
Unfortunately, if the user desires a more customized 
configuration than provided, he or she has to use MIDI to 
program the device. In addition, the additional hardware 
required for pushbutton control and preset storage adds to the 
overall cost of the device. 

3. THE DEVICES 
3.1 Common Features 
The devices discussed below all use a simple microcontroller as 
their primary electronic component. The USB-Octomod and 
pucktronix.snake.corral use a Teensy 2.0, a breadboard-
compatible microcontroller, compatible with the Arduino 
environment running on OS X, Windows, and Linux [9]. The 
Teensy 2.0 uses an Atmel ATmega32U4 processor, with 32k of 
flash memory, 25 digital I/O pins, and 12 analog input pins. 
The Teensy also has an integrated USB port for both firmware 
uploading and serial communication with a PC. The Teensy 2.0 
was chosen for its small footprint, built-in USB hardware, and 
low price relative to Arduino-branded options. The tabulaRasa 
uses a simplified Arduino configuration. Using an ATmega328, 
along with a crystal and a few other passive components, it is 
possible to create a “breadboarduino” - a device capable of 
running Arduino code that can be incorporated directly into 
another circuit. This method was used in the tabulaRasa 
because no serial communication with the PC was needed after 
programming, and because of the low hardware cost associated 
with such a minimal circuit.  
 The free, open-source Arduino programming language was 
used to develop the microcontroller code for all three projects  
[10]. Arduino provides a library of functions which enable 
simplified access to the ATmega328’s I/O pins and other 
functionality, while allowing more experienced users to use the 
C programming language for lower-level hardware control. The 
popularity of the Arduino among hobbyists and experimenters 
provides the benefit of a large body of freely available example 
code, forum discussions, and tutorials. Both the USB-Octomod 
and tabulaRasa use the Processing language for their PC-side 
interfaces [11]. Processing is primarily intended for 
programming visual and interactive art, but provides libraries 
for GUI design, serial communication, and sound generation. 
Finally, the pucktronix.snake.corral uses a script written in the 
Python programming language to receive data and coordinate 
with the snake.corral hardware via the PC serial port. Efforts 
are made to provide the software as both compiled binaries and 
source code, and modifications or additions are encouraged.  
 The projects, including schematics, code, and compiled 
binaries are all hosted at https://bitbucket.org/pucktronix/  

3.2 USB-Octomod 
The USB-Octomod is an 8-channel control-voltage interface 
employing a minimal hardware part count. The device uses a 

Teensy 2.0 and a pair of 4-channel 10-bit DAC ICs as the 
backbone of the voltage-generation circuitry. Although higher 
resolution DACs are available (at higher cost), experimentation 
suggested that 10 bits was enough, when combined with an RC 
low-pass filter, to produce a wide range of discrete output 
voltages and to allow for smooth sweeps from one value to 
another. The device draws power directly from the USB bus, 
and is designed to provide output voltages in the range of +/- 5 
volts corresponding to a 10-octave range in a typical 
Volt/octave synthesis system. Since the USB-Octomod uses 
external DACs, the user is not required to use a DC-coupled 
audio interface, or dedicate output channels to control-voltages. 
The USB-Octomod uses the OpenSoundControl protocol (OSC) 
to enable a modular software design [12]. A lightweight 
Processing GUI application (the “host”) intercepts OSC 
messages, buffers and converts them, and finally sends them to 
the USB serial port. The “host” also provides the option to 
select a custom OSC port, and allows the user to direct data to a 
specific serial device. Received OSC data is visualized with a 
set of sliders.  

 
 In order to send data to the “host” application, the user 
assembles an OSC message formatted /dac ch1 ch2 ch3 ch4 
ch5 ch6 ch7 ch8 - replacing each of the ch1-8 placeholders 
with an integer value 0 - 1023. After a string of data is received 
by the “host” application, the new value for each channel is 
compared to the most recent previous value. If the value has 
changed, it is converted to a two-byte string specifying the 
channel and value, along with some hardware flags, and sent to 
the Teensy 2.0 via the USB-serial port. The Teensy 2.0 
firmware receives this two-byte value and transmits it to the 
correct DAC chip using the SPI protocol – a hardware serial 
protocol which allows for multiple devices to be controlled on a 
single bus. This process is illustrated in Figure 3. 
 

 
 

   
 

Figure 2. USB-Octomod assembly showing Teensy 2.0. 

Figure 3. USB-Octomod control flow. 



 The separation of data generation from transmission is an 
important feature of the device. By decoupling the “host” 
software, which handles the technicalities of serial 
communication, from the user-supplied OSC generation 
algorithm, the device allows a musician to use his/her preferred 
software environment for the musically relevant OSC 
generation tasks. Users have developed Max and PD patches, 
templates for the iPad touchOSC application, and ChucK 
programs all designed to generate data and send it to the “host” 
application.  
 The USB-Octomod can be thought of as 8 extremely versatile 
modulation sources. Each output can be driven by any number 
of unique processes, generated in real-time or pre-composed. A 
recent experiment by the author coupled the outputs to a 
custom cellular automata-driven sequencer, the 
pucktronix.golgi.apparatus. The 8 output channels of the USB-
Octomod were mapped to 8 regions of the CA “world,” and 
output values/voltages were controlled by the number of active 
cells in each region.  

3.3 tabulaRasa 
The tabulaRasa generates audio signals using a table-lookup 
oscillator algorithm, and is designed to integrate directly into a 
modular synthesis system without necessitating that a PC be 
present during performance. The device also requires either a 
+/- 12V or +/- 15V power source (modular synthesis standards 
used in many popular module formats), as there is no USB 
connection present. An Atmega328 microcontroller reads 
waveform data from an SD memory card held in a socket 
mounted to the circuit board, and uses a modified version of 
Adrian Freed’s table-lookup oscillator code to generate a PWM 
signal at one of the digital output pins [13]. This signal is 
converted to a continuous waveform by an external first-order 
RC lowpass filter. Due to the limited memory on the 
ATmega328, waveforms are stored as 256-byte arrays. The SD 
card is used as storage, and two waveforms are read into RAM 
at a time. Modifications to the basic table-lookup algorithm 
allow for interpolation (blend) between the two waveforms in 
RAM, allowing for continuous timbral variation. Six of the 
ATmega328’s analog inputs are used for controlling synthesis 
parameters in real-time. Each of the following parameters has 
both a potentiometer and control-voltage input: oscillator 
frequency (V/octave), amount of interpolation between 
waveform pairs, and selection of which waveform pair is 
currently stored in RAM.  
 The tabulaRasa Atmega328 firmware consists of two main 
functional components: a main loop and the PWM interrupt 
routine. The main loop runs periodically and polls the ADC 
input for frequency, interpolation, and waveform select 
controls. The frequency input is polled on each iteration of the 
main loop, allowing for higher frequency modulation rates, 
while the other inputs are sampled once every 50 iterations. The 
blended waveform determined by the interpolation and 
waveform select controls is also computed at this point. The 
PWM interrupt routine writes the current output sample to the 
Atmega328's PWM register, then updates the output sample 
value and increments the phase of the table-lookup oscillator. 
The PWM interrupt routine is deliberately kept simple, and 
most calculations are handled in the main loop.  
 The tabulaRasa software presents a GUI which allows the 
user to design breakpoint-based waveforms in several ways, 
apply various interpolations between breakpoints, and write the 
results to an SD card. Waveforms are written as contiguous 
256-byte blocks. The software also provides a real-time audio 
preview of the waveform, and allows the created waveforms to 
be saved into any of 64 slots. The slots are organized into 32 
pairs, which correspond to the interpolation pairs mentioned in 

describing the hardware. The ability to design and load 
arbitrary waveforms gives the device a large amount of sonic 
flexibility lacking in devices with a fixed bank of wavetables 
stored in permanent memory.  
 Waveforms can be designed by directly manipulating the 
breakpoints, adjusting the relative amplitudes of harmonically-
related sinusoids, or by loading an arbitrary .wav file. Large 
.wav files are down-sampled to 256 points, with no 
interpolation, and stored. Files can be loaded one at a time, or 
by loading a set of files in a folder into contiguous slots. 

 
 The musical effects of the tabulaRasa range from complex 
rhythmic glitching at sub-audio rates, through rich, evolving 8-
bit waveforms, and finally to hard-aliased digital noise. The 
interpolation controls allow for continuous changes in spectra, 
and allow timbral shaping without an additional filter.  

3.4 pucktronix.snake.corral 
The pucktronix.snake.corral is a computer-controlled dual 8 x 8 
analog signal routing matrix. Two independent matrices are 
presented, each with 8 inputs and 8 outputs. Within each 
matrix, any input (or summed combination of inputs) can be 
routed to any output. The device can switch and route any type 
of analog signal within the range of +/- 5V. The main electronic 
components of the pucktronix.snake.corral are a Teensy 2.0 
and a pair of Zarlink MT8816 analog switching matrix ICs. The 
MT8816 is a bidirectional 8 x 16 crosspoint switch with 
minimal signal bleed. The pucktronix.snake.corral is powered 
from the USB bus.  
 The pucktronix.snake.corral decouples the control and 
transmission components of the software. Like the USB-
Octomod, the device communicates with a PC through a light-
weight software application - here, a script written in the 
Python programming language. Instead of demanding that the 
user employ a particular programming language or 
compositional environment, the script listens for OSC messages 
and converts them into serial data which is communicated to 
the hardware. The OSC protocol contains four pieces of data: a 
sub-address selecting which of the two MT8816 ICs is being 
addressed, the x-address of the switch being addressed, the y-
address of the switch being addressed, and the state 
(open/closed) of that switch. A typical message might look like 
/matrix/one x y state. Presets can also be specified as plain-
text, and recalled via OSC.  
 A Max/MSP patch which allows the user to define and switch 
between presets and/or apply various algorithmic rhythmic 
effects to the switching matrices has also been developed and is 
pictured in Figure 5. A given switch can be toggled in a 
periodic, random, random n-tuplet, or sinusoidally fluctuating 
pattern. As the various switches in a patch shift in phase, 

Figure 4. tabulaRasa waveform design software interface. 



particular hardware configurations emerge while others recede 
in prominence. The patch also provides preset management and 
has a randomization function. Both the Python script and Max 
patch are part of the source distribution.  
 

 

 
 
 Using the pucktronix.snake.corral, a modest number of 
synthesis modules can be used to create interesting rhythmic 
and timbral variety. The ability to rapidly switch or reconfigure 
a large number of signal connections enables a level of 
rhythmic complexity which is difficult to obtain through other 
means. Sharp cuts between disparate types of musical material 
are made possible, and patches can be stored and immediately 
recalled during performance. In the author's performances, this 
has introduced a new dimension of control over changes in the 
musical texture, which was previously impossible without 
physically modifying the synthesizer patch.  
 

4. FURTHER WORK AND EVALUATION 
The utility of the USB-Octomod could easily be extended by 
the addition of analog inputs. A situation in which a computer 
receives and transforms voltages from an analog synthesizer in 
real-time, acting as an extremely flexible processing module, 
could be extremely musically rewarding. Further exploration of 
the device in combination with GUI or alternate control 
methods is also necessary.  
 The tabulaRasa could be improved by replacing the 
ATmega328 with a chip capable of running at a higher clock 
rate. The current implementation is quite susceptible to 
aliasing. A chip with a larger amount of RAM would also 
enable a 2D crossfade between 4 waveforms - something 
initially planned for the tabulaRasa but discarded due to 
memory constraints. 
 The pucktronix.snake.corral might benefit from a more 
flexible range of input voltages. Currently, voltages greater 
than +/- 5V are clipped. This protects the internal circuitry of 
the MT8816 chips, but could be changed. From a musical 
standpoint, having a variable gain at each switch-point would 
allow for more variety and control over routing configurations. 
This would enable crossfades from one patch to another, and 
allow for the exploration of intermediate states.  
 The relative success of these projects suggests that further 
experimentation with affordable microcontrollers in musical 
applications would be fruitful. While basic chips like the 
ATmega328 are perhaps not powerful enough for real-time 
DSP, others, like the dsPIC family, seem to merit exploration in 

this area [14]. Additionally, the processors used here are more 
than powerful enough for control-based applications running at 
lower rates, while also managing analog input from a variety of 
sensor devices.  
 Aside from issues of technological feasibility, the emergence 
of the Arduino and associated projects, along with the DIY and 
open-source software movements, have created a fertile 
environment for experimentation. Computer musicians, 
hardware hackers, and composers can design, rapidly 
prototype, and fabricate previously non-existent or 
commercially unviable hardware devices. By blending 
computer music techniques with hardware electronic music 
construction, unique hybrid devices can be produced. The 
hardware needs of the artist are no longer subject to the whims 
of commercial manufacturers. Instead of bending a pre-made 
device to the specific needs of individual musical practice, we 
(artists and musicians) can now create exactly the device 
needed for a given piece, performance, or purpose. It remains to 
be seen how much further the Arduino and other such 
electronic platforms can be pushed, but there is no doubt more 
exploration to be done.  
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Figure 5. pucktronix.snake.corral matrix switch prototype 
and software. 


