
Stompboxes: Kicking the Habit

Gregory Burlet
Distributed Digital Music

Archives and Libraries Lab
CIRMMT, McGill University

Montréal, QC, Canada
gregory.burlet@mail.mcgill.ca

Marcelo M. Wanderley
Input Devices and Music

Interaction Lab
CIRMMT, McGill University

Montréal, QC, Canada
marcelo.wanderley@mcgill.ca

Ichiro Fujinaga
Distributed Digital Music

Archives and Libraries Lab
CIRMMT, McGill University

Montréal, QC, Canada
ich@music.mcgill.ca

ABSTRACT
Sensor-based gesture recognition is investigated as a pos-
sible solution to the problem of managing an overwhelm-
ing number of audio effects in live guitar performances. A
realtime gesture recognition system, which automatically
toggles digital audio effects according to gestural informa-
tion captured by an accelerometer attached to the body of
a guitar, is presented. To supplement the several prede-
fined gestures provided by the recognition system, person-
alized gestures may be trained by the user. Upon successful
recognition of a gesture, the corresponding audio effects are
applied to the guitar signal and visual feedback is provided
to the user. An evaluation of the system yielded 86% ac-
curacy for user-independent recognition and 99% accuracy
for user-dependent recognition, on average.
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1. INTRODUCTION
Audio effects in the form of stompboxes—small pedals, typ-
ically housing a single audio effect, which are designed to
be toggled by a musician’s foot—have become prominent
in the sonic arsenals of electric guitarists. Stompboxes are
designed to be “daisy-chained” together, such that multiple
audio effects may be applied to an input signal in series.

Many musical works employ a battery of different au-
dio effects, which a guitarist must toggle at the correct
times. Consequently, effect-driven music poses a new set of
challenges to guitarists in the context of live performances.
Managing an array of audio effects creates unnecessary or
even physically unmanageable overhead [6] that detracts
from other important aspects of live performance, such as
audience interaction. For example, when a piece being per-
formed dictates a change in audio effects, the guitarist must
return to his or her array of stompboxes and concentrate
on activating the correct combination of pedals. Although
multi-effect pedals aim to alleviate this issue by allowing
multiple audio effects to be activated by depressing a sin-
gle pedal, one must still physically depress the pedal corre-
sponding to the desired combination of effects to activate. Is
it that guitarists have become complacent with the amount
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of overhead required to manage an array of audio effects, or
is it that a better solution does not exist?

Sensor-based gesture recognition is investigated as a po-
tential solution to this problem. Using direct gesture ac-
quisition [16], an accelerometer is attached to the body of
an electric guitar to measure the three-dimensional acceler-
ation of gestures performed by a guitarist. Pattern recogni-
tion techniques are used to trigger the application of digital
audio effects to the guitar signal in response to the gestural
information captured by the accelerometer. The robustness
of gestural control and methods for restoring the tactile and
visual feedback of audio effect activation, which is lost when
using gesture recognition in lieu of depressing a series of
stompboxes, are investigated.

In the remaining sections of this paper, a review of rel-
evant research is presented. An overview of the developed
gesture recognition system is provided. The implemented
pattern recognition algorithm is described in detail, followed
by a discussion of the importance of recognition feedback.
Finally, two experiments are performed to evaluate the im-
plemented gesture recognition system.

2. PREVIOUS WORK
Differentiating between the type of input signals processed
by gesture recognition systems, Mäntyjärvi et al. [8] define
“discrete gesture commands” to be gestures with a user-
defined start and stop time, while “continuous gesture com-
mands” involve a continuous series of gestures with no ex-
plicit segmentation. This paper will focus on the complex
task of continuous gesture recognition.

The first step in the automatic recognition of continuous
gesture commands is temporal segmentation [9]. Specifying
the start and stop times of a gesture may be manually per-
formed by pressing a button on the gesture capturing device
while performing a gesture [11]. Techniques for automatic
gesture segmentation include locating abrupt changes in sig-
nal magnitude [5] or using a sliding-window representation
of the input signal [14].

The second step in the gesture recognition problem is
gesture classification. For this task, left-to-right hidden
Markov models (HMMs) are predominantly used in the lit-
erature [9]. The underlying Markov chain represents the
transitions between states of a gesture, where the left-to-
right orientation enforces forward movement through the
gesture. Using HMMs, Bevilacqua et al. [2] developed a
gesture following system, which continuously outputs the
likelihood of each trained gesture as the input signal is an-
alyzed. This system was later extended to use hierarchical
HMMs [4].

Dynamic time warping (DTW) algorithms have also been
applied to the gesture recognition problem to measure the
congruency of a performed gesture to a set of reference ges-
tures which may vary in speed of execution. To process con-
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Figure 1: Hardware configuration and data flow
of the gesture recognition system. Solid lines rep-
resent wired connections. Dashed lines represent
wireless connections.

tinuous gesture commands in realtime, Bettens and Todor-
off [1] proposed a “multi-grid” DTW algorithm, which uses
multiple shifted DTW grids that each posit a starting point
of the performed gesture.

Another technique used for continuous gesture recogni-
tion is template matching. Thiebaut et al. [14] proposed
the use of two metrics to compare the accelerometer samples
of a reference gesture and a performed gesture: Euclidean
distance and cosine similarity. A performed gesture is recog-
nized when the distance or similarity to a reference gesture
crosses a predefined threshold parameter.

3. SYSTEM OVERVIEW
A system has been developed to recognize, in realtime, the
continuous gesture commands of a guitarist; it is not re-
quired for the musician to inform the system of the start and
stop times of performed gestures. Moreover, a collection of
digital audio effects have been developed in the Max/MSP
visual programming language [10], which are activated in
response to performed gestures and applied to the input
guitar signal. The described system requires the configura-
tion of both hardware and software, outlined in this section.

3.1 Hardware
The hardware configuration and data flow of the prototype
gesture recognition system is illustrated in Figure 1. A Tas-
cam US-144MKII audio interface digitizes the input guitar
signal. An iPhone 4 is attached to the body of an electric
guitar and the TouchOSC iPhone application1 is used to ac-
cess the acceleration signal of the device in the x, y, and z
planes at a sampling rate of approximately 32Hz. Although
the iPhone 4 also has a gyroscope sensor, which addition-
ally measures the yaw, pitch, and roll of the device, only
the digitized accelerometer signal is accessible through the
TouchOSC application. Any choice of audio interface and
accelerometer, provided it captures a three-dimensional ac-
celeration signal at a reasonable sampling rate, is sufficient.

3.2 Software
Implemented in Max/MSP is a collection of digital audio
effects which extend the Max 5 Guitar Processor Tutorial.2

The following audio effects have been implemented: equal-
izer, compressor, distortion, whammy, phasor, reverb, gran-
ular synthesis, looping delay, and modulating digital delay.
The aforementioned audio effects are connected in series
to mimic the functionality of an array of physical stomp-

1http://hexler.net/software/touchosc
2http://cycling74.com/2008/07/28/
max-5-guitar-processor-part-1

Figure 2: Graphical user interface (GUI) for the
gesture recognition system (left). A GUI widget
provides visual feedback to the guitarist upon suc-
cessful gesture recognition (right).

boxes. Optionally, the parameters of each audio effect may
be continuously modified by the x, y, or z component of the
incoming iPhone accelerometer signal.

Effect presets may be created to store and recall the pa-
rameters of multiple audio effects. Effect presets may be
manually activated from the iPhone TouchOSC interface, or
activated by the gesture recognition system. Using the ges-
ture recognition system, a Max/MSP interface allows gui-
tarists to enter the sequence of effect presets required to
perform a musical work. When a trained gesture is recog-
nized, the effect preset required to perform the next section
of the piece is automatically activated and the appropriate
audio effects are applied to the input guitar signal.

The gesture recognition software is implemented as a
Max/MSP patch, which uses the FTM library of complex
data structures for Max [12] and the Gabor library of
Max/MSP externals for digital signal processing functions
[13]. A custom interface has been designed for TouchOSC,
which enables accelerometer and interface data to be wire-
lessly transmitted between the iPhone and the Max/MSP
patch over a UDP connection using the Open Sound Control
(OSC) protocol [17].

4. GESTURE RECOGNITION
The gesture recognition system is controlled through an in-
terface (see Figure 2), which allows the guitarist to train
gestures, modify parameters of the gesture recognition al-
gorithm, and alternate between training and recognition
mode. Visual feedback is provided to the guitarist when
a gesture is successfully recognized. This section will de-
scribe the signal preprocessing, training, recognition, and
feedback phases of the gesture recognition system.

4.1 Signal Preprocessing
The three-dimensional accelerometer signal

A[n] = (x[n], y[n], z[n]) (1)

is optionally preprocessed by an offset correction or signal
resampling function before being stored as a training in-
stance or used for recognition. Offset correction considers
the values of the x, y, and z components of the accelerome-
ter signal and removes the offset from zero to create a new
origin for future samples. The signal may also be upsam-
pled or downsampled to account for the sampling rate of the
accelerometer hardware in use. Features are not extracted
from the accelerometer signal.

4.2 Training
Excluding sign language, gesture recognition does not have
a standardized vocabulary [7]. Especially in the case of ges-
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tures intended for artistic purposes, it is desirable for musi-
cians to define personalized gestures to use in the recogni-
tion process. User-dependent gesture recognition promotes
the use of gestures that are natural to the guitarist and
conform with their performance style.

To recognize personalized gestures, the system requires
the user to first form a gesture dictionary by recording
one training instance for each desired gesture. Training
mode is toggled by clicking the learn button on the ges-
ture recognition interface (Figure 2). The training process
involves clicking the record button, performing the gesture,
and clicking the record button again to define the start and
stop times of the gesture command. The user must then
select one gesture from the gesture dictionary to be used in
the recognition process, which determines the presence or
absence of this gesture in the incoming accelerometer signal.

4.3 Recognition
The first step of the gesture recognition algorithm is signal
segmentation. A sliding-window representation of the ac-
celerometer signal is used to segment the continuous gesture
commands into analysis frames. Formally, analysis frames
are created by multiplying time-delayed versions of a rect-
angular window function

w[n] =

{
1 if n ∈ {0, 1, . . . , N − 1}
0 else

(2)

with each component of the three-dimensional accelerom-
eter signal (1). The length of the window N ∈ N+ cor-
responds to the number of samples comprising the user-
selected reference gesture from the gesture dictionary. In
practice, three delay lines of length N—one for each dimen-
sion of the accelerometer signal—are used to represent the
current analysis frame. Each delay line is updated as new
samples are received from the accelerometer.

The second step of the gesture recognition algorithm is
binary gesture classification on the current analysis frame—
either the user-selected reference gesture has been performed
or not. The gesture classification algorithm uses template
matching to compare a vector representation of the current
analysis frame Ga ∈ R3N to a vector representation of the
single reference gesture Gr ∈ R3N using the technique of
cosine similarity [14]

S = cos(θ) =
Gr ·Ga

||Gr|| ||Ga||
, (3)

which measures the cosine of the angle between two feature-
space vectors. When the performed gesture and the ref-
erence gesture are similar, the angle between the vectors
is small and the cosine of this angle is close to one, since
cos(0) = 1. A user-defined threshold parameter γ ∈ {R :
0 ≤ γ ≤ 1} determines the gesture recognition sensitiv-
ity, such that a gesture is recognized when S ≥ γ. To ac-
commodate computers with varying computational power,
a user-defined hop size parameter H ∈ N+ determines the
frequency in which analysis frames are presented to the ges-
ture classification algorithm. By default H = 1: with each
new accelerometer sample, the gesture classification algo-
rithm processes the current analysis frame.

4.4 Feedback
Stompboxes provide tactile, visual,3 and auditory feedback
to the performer. By alternatively using gesture recogni-
tion to switch audio effects, the same problem as open-air
controllers is encountered: the tactile and visual feedback

3Stompboxes typically have an LED that indicates audio
effect activation.

Figure 3: Three gestures used in the experiments
evaluating the gesture recognition system.

Table 1: Recall metric for the user-independent and
user-dependent gesture recognition experiments.

User-independent User-dependent
Gesture 1 94% 97%
Gesture 2 99% 100%
Gesture 3 84% 100%

Average 86% 99%

channels are lost [15]. Effort is made to restore these lost
feedback channels. To restore visual feedback, a GUI widget
flashes on both the Max/MSP and iPhone interface when
a gesture is successfully recognized. Effort was made to
provide vibrotactile feedback by vibrating the iPhone when
a gesture is successfully recognized; however, the propaga-
tion of the vibration through the body of the guitar to the
musician was too dampened to serve as reliable feedback.

5. EVALUATION
To evaluate the gesture recognition system, two experiments
were conducted on ten right-handed test subjects, half of
which considered themselves a guitarist. For each experi-
ment, offset correction was performed on the accelerome-
ter signal as the test subject held the guitar naturally in
the home position. No accelerometer signal resampling was
performed and the hop size parameter was H = 1.

The first experiment measures the recall of the gesture
recognition system under the condition that the reference
gestures are trained by a different user (user-independent
recognition). Prior to conducting the experiment, the ges-
tures illustrated in Figure 3 were demonstrated for each test
subject. The first gesture involves raising the neck of the
guitar, such that it is parallel with the guitarist, and back
to the home position; the second gesture involves rotating
the guitar 90 degrees, such that the fretboard is facing up-
wards, and back to the home position; and the third gesture
requires the guitarist to lower the neck of the guitar before
returning to the home position. The subject was asked to
test the first gesture three times. In these trial runs, the
recognition threshold γ was adapted accordingly. The sub-
ject was then asked to perform the gesture ten times and
this process was repeated for the remaining two gestures.
The results of this experiment are presented in Table 1.

The second experiment measures the recall of the gesture
recognition system under the condition that the reference
gestures are trained by the test subject (user-dependent
recognition). The subject was asked to train the same three
gestures as in the first experiment (the record button was
clicked for them). The experiment then continued in an
identical manner as the first experiment. The results are
presented in Table 1.

�4�3



According to Mäntyjärvi et al. [8], nearly perfect accu-
racy is required to ensure that the user does not abandon
the gesture recognition system. Although a training dataset
containing the gestures illustrated in Figure 3 is provided
with the system, the results suggest that guitarists should
train personalized gestures for use with the implemented
recognition system.

6. CONCLUSION
Sensor-based gesture recognition is investigated as a pos-
sible solution to the problem of managing a large array
of audio effect stompboxes in the context of a live guitar
performance. An open-source collection of digital audio ef-
fects and a gesture recognition system have been developed
in Max/MSP.4 The system allows guitarists to define the
structure of audio effects occurring in a piece of music and
to train personalized gestures for recognition. When a ges-
ture is successfully recognized, the appropriate audio effects
are automatically applied to the guitar signal and visual
feedback is provided to the guitarist.

An evaluation of the gesture recognition system on ten
test subjects yielded 86% recall for user-independent recog-
nition and 99% recall for user-dependent recognition. These
results suggest that gesture recognition is a viable alterna-
tive to manually activating audio effects during a live guitar
performance. With the development of this system we hope
that guitarists will consider kicking aside their stompboxes
and usher in the power of gestural control. We hypothe-
size that the use of realtime gesture recognition to toggle
audio effects, versus the traditional method of depressing a
sequence of stompboxes, will increase guitarists’ stage mo-
bility and opportunity for audience interaction.

Work is currently being done to extend the gesture recog-
nition system to extract features from the accelerometer
signal using the time and frequency-domain features pro-
posed by Dargie [3]. We also plan to extend the binary ges-
ture classification algorithm to differentiate between mul-
tiple trained gestures and to allow multiple training in-
stances for each gesture. With multiple training instances,
the recognition threshold parameter γ could be estimated
from the training data. For the continuous control of audio
effects, we plan to investigate alternative mappings between
the accelerometer signal and effect parameters to take into
consideration the natural and expressive gestures of a gui-
tarist while performing. Furthermore, the use of a vibrotac-
tile belt will also be investigated to restore tactile feedback.
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2004. Enabling fast and effortless customisation in
accelerometer based gesture interaction. In
Proceedings of the International Conference on Mobile
and Ubiquitous Multimedia, College Park, MD, 25–31.

[9] Mitra, S., and T. Acharya. 2007. Gesture recognition:
A survey. IEEE Transactions on Systems, Man, and
Cybernetics 37 (3): 311–24.

[10] Puckette, M. 2002. Max at seventeen. Computer
Music Journal 26 (4): 31–43.
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