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ABSTRACT
We present an instrument that explores an algorithmic sound
spatialization system developed with the SuperCollider pro-
gramming language. We consider the implementation of
spatial multidimensional panning through the simultaneous
use of polygonal shaped horizontal and vertical loudspeaker
array. This framework uses chaotic dynamical systems to
generate discrete data series from the orbit of any specific
system, which in this case is the logistic equation. The or-
bits will create the path of the general panning structure
form vectors of Rn, containing entries from data series of
different orbits from a specific dynamical system. Such vec-
tors, called system vectors and create ordered paths between
those points or system vectors. Finally, interpolating that
result with a fixed sample value, we obtain specific and in-
dependent multidimensional panning trajectories for each
speaker array and for any number of sound sources.
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1. INTRODUCTION
We describe a general framework environmentIn our mul-
tidimensional sound spatialization by means of chaotic dy-
namical systems MSSCDyS . There have been several works
which deal with chaotic dynamical systems applied to sound
synthesis: Agostino DiScipio, Rick Bidlack, Eduardo Reck
Miranda and Nils Peters are just a few examples of authors
who have developed research on this topic. However, the
field of spatialization has not been as widely explored in
that way to seek new means of expression.

We first present, the generalized structure of the main ideas
which includes: generating polygonal speakers arrays, chaotic
dynamical systems mapping and panning path creation by
Splines1. We conclude with a presentation of an example in
this environment.

1https://github.com/crucialfelix/splines
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2. SPEAKER MULTIDIMENSIONAL ARRAY
Symmetrical polygonal objects can be constructed using
complex numbers. The images of the n-th roots of unity
in the complex plane are the vertices of a regular n-polygon
inscribed in the unit circle. Given z ∈ C a complex num-
ber, and n ∈ N, the polynomial zn = 1 has exactly n roots
and when this roots are plotted in the Argand diagram -the
planar representation of the complex numbers- it generates
a regular polygon of n sides centered at the origin. The
complex numbers ω that satisfy the previous equation are
called nth unity roots.

Let z = r(cosθ + isinθ) = reiθ be a complex number in
it’s polar form. Using De Moivre’s formula, we can easily
compute such nth roots:

(cosθ + isinθ)k = (coskθ + isinkθ)

Each root can then be plotted to the Argand diagram and
form a regular n-polygon inside the complex unit circle. For
example, z8 = 1 rises eight roots of the unity:
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which can be visualized as follows:

Figure 1: 8th roots of unity.

Using this representation, it is easy to create multidimen-
sional arrays of any numbers of speakers where we situate
the listener at the center of the array, i.e at the origin of the
polygon inscribed in the circle.

We will start working with a horizontal speaker array con-
sidering one listener. The shape of the room can easily be
adjusted to be inside this unit circle, moreover, the shape
that arises when the listeners are seated in the room can
be adjusted for that purposes. For example, if the room
has a standard rectangular shape (remember we are only
considering now, the horizontal plane), we can shape the
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listening area to a delimited spot of available seats. In the
next figure, the available sitting area is represented by the
rhombus which lies inside the rectangle surrounded by an
array of six speakers.

Figure 2: Six-speaker array

We refer to this available seating space for audience as
the listening space and we encourage experimenting with
different configurations for this; circles, ellipses, rectangles,
rhombus, triangles, etc, The main reason is that of the re-
verberation and absorption properties of the audience as a
mass mixed with the inherent sonic properties of each hall.
If the circular shape of the array does not fit the general
shape of the room or the listening space, it can be easily
deformed into an ellipse by an anamorphic process for mak-
ing possible that adjustment.

Figure 3: Horizontal speaker array.

This way we can ground the discussion of different con-
figurations of both: the multidimensional speaker array and

the shape of the audience inside the room. Further research
will need to take into account, of course, psychoacoustic as-
pects and information that can influence the listener’s per-
ception of the final compositional result.

Once the horizontal array is set up, we need to focus on the
vertical speaker array. We propose to repeat the last de-
scribed process, i.e. generate an array of n-speakers placed
in the vertex of the polygon generated by the nth complex
roots of unity. The difference here lies in the fact that we
shall only use the half part of the circumference as an hemi-
sphere array of speakers placed over the listener.

To be more specific, we denote Sn = {si : i = 1, n} the
n-dimensional array of speakers consisting of n speakers
placed at the vertex of the polygon obtained by finding the
nth complex roots of zn = 1, z ∈ C.

Since we are working in a 3D environment, the horizon-
tal speaker array will lie in the x-y plane, and we shall refer
to it as Ŝnx,y. Now, consider a Sn placed over the x-z plane,
due to the very nature of a regular concert hall we shall only
use the positive semicircumference of the z axis; this x-z ar-
ray will be denoted as Skx,z, where k = m/2 for m to be the
desired number of vertices in the complete circumference.
For instance, with an array defined by a S5

x,z, and a listener
placed exactly at the origin, the listener will perceive one
speaker exactly behind -which could be indeed, the same
speaker of Snx,y-, then another one placed at an angle of π/4
behind, the third one would be exactly up of the listener,
the fourth one will be at an angle of π/4 in front, and the
last one would be exactly in front as shown in figure 4.

Figure 4: Vertical speaker array

Now we can build our primary and most basic spatial set
up of speakers, consisting of a complete circumference in
the x-y plane and a semicircumference in the z-x plane as
S = {Skx,z,Snx,y}.

Would it be possible to have others speakers arrays which
do not necessarily lie exactly along the x,y or the x,z plane?
Given any Snx,y we can rotate it for the desired angle θx,y
respect to the x-y plane and then we translate it up in the z
axis until the speaker placed at the lowest position gets the
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zero high in z - and this process can be done in the inverse
order-. For example, we can create a six speaker array S6

x,y

from which we would like to get a kind of unusual spatial-
ization placing the left part of the circumference above a
certain high in such a way that if a listener is placed at the
center, the left speaker will be 5 fts raised over the floor and
the right speaker will be exactly at floor level. In this case,
we can translate S6

x,y exactly as it is, 5 fts up along the z
axis. Then we need to calculate the angle of the rotation

which will be θ = arcsin
5

r
where r is the radius of the cir-

cumference. This allows us to place any array of speakers
at any position, orientation or heigh for any purpose and
spatial configuration.

We will refer to this more general set up as Sk(x, y, z, θx,z, θx,y)
where θx,z, θx,y are the angles between the speaker array,
the xz plane and the xy plane respectively.
Let Ski (x, y, z, θx,z(i), θx,y(i)), i = 1, s be s semicircumfer-
ences with two common vertexs among the x axis as is
shown in the figures 5 and 6.

Figure 5: Two-dimensional sonic generating space

If a symmetric distribution is desired, we only have to

place every array separated by an angle of
π

s+ 1
between

them inside the x-z plane. This configurations may differ in
individual speaker placement for each Ski (x, y, z, θx,z(i), θx,y(i))
so the sound trajectories appear more complex and inter-
esting the source and perception levels. We refer to this
general pre designed configuration of s number of speakers
arrays as the Sonic Generating Space.

3. ORBIT GENERATING FROM LOGISTIC
EQUATION

Recalling the discrete version of the logistic equation:

xn = rxn−1(1− xn−1) (1)

or in the functional form:

f(x) = rx(1− x)

Figure 6: Four-dimensional sonic generating space

This models into a simple dynamical system that presents
chaotic behavior under certain conditions.

Defining the whole orbit to be the set O(x) = {fk(x) :
−∞ < k <∞}2, it is immediately seen that O(x) is a data
series that reflects the performance of the equation given
some initial conditions on the dependent variable x and the
so called control parameter r. We rewrite the elements of
the orbit in this fashion:

O(x) = {xi : i = 1, n, xi = f i(x)}

As long as the control parameter varies from certain range,
it is possible to observe the change in performance of that
system, from stable to chaotic. This is shown in the bifur-
cation diagram.

We designed, first an algorithm to evaluate the logistic
equation for any set of initial conditions and any suitable
range of values. Then we wrote an algorithm for applying
the four basic euclidean isometries3 to the orbits generated
by the logistic equation, this allow us to expand our possi-
bilities of getting more orbits with one single evaluation of
our dynamical system.

The bifurcation diagram is a very useful tool because we
can know in advance which type of behaviour the system
will have according to changes in the control parameter.
One of the features of our instrument is the freedom to
explore a range from static, stable to chaotic trajectories.
2This set is the collection of each one of the results of the
iteration of f , for example, if f(x) = x2 then f(f(x)) =
f2(x) = (x2)2, f(f(f(x))) = f3(x) = (x4)2, and so
on. This generates the so called forward orbit O(x) =

{x, x2, x4, x8, .., x2
k

, .. : k ≥ 0}. The term forward refers
to the fact that only non negative exponents for iterations
are considered, i.e, we are tracking the development of the
function as it goes forward in time. Sometimes the forward
orbit is denoted as O+, since we will be dealing in this work
only with forward orbits, we will use the symbol O(x) for
that general purpose.
3This isometries are horizontal and vertical reflection and
translation.
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Figure 7: Bifurcation diagram

4. CREATING SMOOTH PATHS
Once we have a specific way to generate orbits from the lo-
gistic equation, we define the number s of desired speakers
arrays Sri (x, y, z, θx,z(i), θx,y(i)), i = 1, s and the configura-
tion of all them as described in the last section. Then we
generate an specific orbit for each one of these arrays. How-
ever, it should be noticed that at this point we have only
considered one single sound source travelling around the
listener through the sonic generating space in our general
framework. This is of course a reduction of a more general
situation. Suppose we have m number of sound sources to
be spatializated in our composition. We will have then kl
number of orbits for each sound source, where l = 1,m and
this number may vary from one source to another since we
can choose not to use the whole sonic generating space for
each one of the sources, i.e. we can choose to use any num-
ber of speaker arrays for specific sources. We get the kl
orbits from the logistic equation for each source, then treat
them as sequences and finally create a set which will include
all of them:

Oj = {Oji (x) : i = 1, l}

The last set includes all the orbits of the jth sound source
and each orbit is represented as:

Oji (x) = {xij}
n
j=1

We then define a suitable vector y ∈ Rn from elements of Oj .
Considering each of these vectors as k dimensional points
to be joined with the method of Splines in SuperCollider,
we will get a sequence of n points in Rk. The first vector
for the jth sound source will be:

yj1 = (xj11 , x
j
21
, . . . , xj1k )

and so on for the other n− 1 vectors. This is how we define
the system vectors.

Next we connect these points or system vectors among them-
selves using the method of splines for creating smooth paths
as transitions between the elements previously described.
The interpolated version with a fixed sample of this se-
quence give us kl trajectories of the general system for each
source. We use these trajectories as actual panning paths
among speakers of each array. We can make interpolated
trajectories to obtain vertical value range from 0 to 1, so
that we divide the interval [0, 1] in exactly r(i, n) pieces
where r(i, n) is the number of speakers of the ith array of
the nth source. Assigning horizontal axis to time we get
a clear path of the panning of each array of each source

through time. In the next example, a simple three dimen-
sional sonic generating space is created by three speakers
arrays with different number of speakers each one.

Let S3
2 (x, z), S4

2 (x, y, z, θx,z =
π

4
) and S4

3 (x, y, z, θx,z =
3π

4
)

be the first,second and third arrays with one,four and four
speakers respectively for each one, placed symmetrically at

angle of
π

4
each one of the other respect to the x-z plane.

Suppose we have two sources we want to spatialize. We
then generate six orbits of 40 iterations from the logistic
equation and assign each one of them to each source so that
O1

1(x),O1
2(x),O1

3(x) represent the three orbits for the source
one and in the same way, O2

1(x),O2
2(x),O2

3(x) are the or-
bits for the source two. Next we form the system vectors
for each source. We begin with source one:

y11 = (x111 , x
1
21 , x

1
31)

where x111 ∈ O
1
1(x), x121 ∈ O

1
2(x) and x131 ∈ O

1
3(x). Going

on like that we get a sequence of system vectors for the
source one:

{y1i }40i=1

The process for the second source is exactly the same. We
apply the Spline quark from SuperCollider in order to join
these points and once interpolation is done, we have three
trajectories which can be interpreted as the resulting path
from chaotic orbits. Since each trajectory represents each
one of the speakers arrays, we divide the interval [0, 1] in to
one, tow and three equal segments. For the first array, 0 will
represent the first speaker and 1 the second speaker and the
trajectory will give us a precise representation in time of the
sound movement through this configuration. In the second
array, 0 will represent the first speaker,1/4 the second, 1/2
the third and 1 the fourth one, and the trajectory will again
represent the sound spatial position over time. This very
same method will apply for the third array and for each one
of the arrays of the second source. Below we show the spline
graphic and the interpolated trajectories in a GUI for this
example.

Another useful approach would be to make a planar pro-
jection of the whole array system, representing it as a ma-
trix A ∈ M∇×∫ where r is the max number of speakers
of the arrays and s is the total number of arrays. In this
way, each entry or individual speaker aij can be actually
considered as a function representing sound amplitude over
time: aij = (t, fij(t, s)) where (t, fij(t, s)) is an ordered pair
that reflects the activity of the speaker aij respect to the
sth sound source. In this way we are able to directly map
splined chaotic trajectories to an amplitude function over
time for each one of the individual speakers. This approach
might look more laborious but it gives a more precise con-
trol and flexibility when the composer needs some special
details about sound trajectories.

5. CONCLUSIONS
This work presents a general framework method for develop-
ing a spatialization systems focused on electroacoustic and
acousmatic music performance and creation. Although we
used the logistic equation as orbit generator, any dynamical
system could be explored. Our contribution is intended to
be at the very root of the compositional process giving to
the creator a tool for exploring new ways for spatial sound
placement over time for a wide range of speakers arrange-
ments. The advantage of using controlled chaotic dynamical
systems like the logistic equation, lies on the fact that the
composer can freely and consciously choose between sta-
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ble or irregular behaviour for the orbits that will generate
his/her panning trajectories. Besides, with the use of isome-
tries, it is possible to generate different related orbits with
one single evaluation of the system. The use of the spline
method in SuperCollider allows the possibility of joining and
relating those values from orbits into a well defined and co-
herent general system including synthesis parameters in the
same way we created panning trajectories.
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