
note~ for Max - An extension for Max/MSP for
Media Arts & music

Thomas Resch
University of Music Basel, FHNW

Leonhardsstrasse 6
4053 Basel Switzerland
admin@noteformax.net

ABSTRACT
note~ for Max consists of four objects for the Software
Max/MSP which allow sequencing in floating point resolution
and provide a Graphical User Interface and a Scripting
Interface for generating events within a timeline. Due to the
complete integration into Max/MSP it is possible to control
almost every type of client like another software, audio and
video or extern hardware by note~ or control note~ itself by
other software and hardware.

Keywords
Max/MSP, composing, timeline, GUI, sequencing, score,
notation.

1. INTRODUCTION
The four objects were developed in the C-programming
language and provide a GUI, a scripting interface, and a
timeline for recording, editing, and playing back control data. A
new data format has been developed, which allows storing
floating point lists of arbitrary length plus text within one event,
an approach Miller Puckette already proposed with his Max
object "explode" in 1990 [1]. Of course, compatibilty to MIDI
is still guaranteed.

2. THE OBJECTS
2.1 The note~ object
The Region Editor is integrated into the main note~ object and
looks like the arrange window of common sequencing software.
Regions are created either with the mouse or by sending the
message newRegion[regionname][track][timstamp][duration]
to note~:

newRegion A_NEW_REGION 0 1. 16.

Using attributes, the behavior and appearance of note~ can be
customized. note~ sends and receives a sync signal, hence it is
possible to synchronize note~ to the Max transport and to Max
for Live or synchronize note~ objects among themselves, which
enables the user to create complex polyrhythmical structures
very easily by using different BPM for every note~ object.
Through the Status Information Outlet, note~ provides
feedback for GUI- and scripting-interaction and therefore its
functionality can be extended by common Max/MSP objects.

By using regionStart and regionEnd Status Information and the
provided sync signal it is possible, for example, to
control/playback audio and video files and place them within
the timeline. In playback mode, note~ sends the event data
from the sequencer data outlet as a list consisting of the track
number, event type (which basically replaces MIDI channel and
controller number), and a floating point list of arbitrary length
plus text. Storing additional data besides the usual four MIDI-
parameters in one event allows for real polyphonic control of
complex instruments. Enabling the attribute outputNextEvent
forces note~ to output not only the current but also the next
event which makes interpolation of every kind between event
parameters possible.

Figure 1. The note~ object

2.2 The note.eventEditor object
Here, events can be created with the mouse or by sending the
message newEvent[regionname][eventtype][timestamp][pitch]
[duration][velocity][.] to note~:

newEvent A_NEW_REGION 0 1. 60.5 1.5 80.7 1. 3. 5.3 6.7
127. 3000. 5000. 139.2 "Many many numbers and a lot of text"

Figure 2. The note.eventEditor object

MIDI-Channels, -Control and -Note Messages are replaced by
freely assignable "event types" which can undertake every kind
of functionality. A double click on an event opens a small text
editor, the parameter editor, where the whole parameter list can
be edited. Every parameter of an event has floating point
resolution. Therefore, it is possible to create microtonal pitches
with a 32 Bit floating point accuracy.1 The data backend is

1 With the recent transition of Max/MSP to 64 Bit floating point

resolution, note~ will also have 64 Bit accuracy in the near future.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’13, May 27-30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

�2�1�0

integrated into the note~ object. Therefore, all messages, even
the event-related ones like newEvent() or selectEvent() have to
be sent to the bound note~ instance. The currently active and
editable event type is displayed opaque while all other event
types appear transparent. By sending the message
groupEvent[regionname][keyword] it is possible to bind events
together for GUI editing:

groupEvent A_NEW_REGION selected

A possible scenario for grouping events could be to
automatically create whole overtone spectra on every mouse
down within the Event Editor. This could be done by sending
note~'s newEvent status information to a buffer where the
spectral data is stored. So every time the user creates an event
with the mouse, the original pitch and velocity is sent to the
buffer and gets multiplied by the stored relative spectrum.
Every overtone generates a newEvent() message with the
keyword select which creates already selected events:

newEvent select [original event type] [original timestamp]
[overtone pitch] [original duration] [overtone velocity]

Then the groupEvent() message is sent. The user is able to
create a couple of hundred events on every mouse down and
has the ability to edit those event groups together with the
mouse.

2.3 The note.score object
The note.score object provides classic western music notation,
extended for the needs of contemporary music including
microtonality and nested triplets. The score layout is accessible
either through a context menu or also by sending messages, for
example:

selectEvent A_NEW_REGION dsharp || pitch >= 80.
setAccidental A_NEW_REGION selected flat
splitEvent A_NEW_REGION selected 3

These messages will select all notes with either the pitch dsharp
or a pitch greater then 80 (in MIDI Pitch), then replace all
sharps of these selected notes with flats and finally split all
notes into three, meaning for example that a quarter note will
become a triplet.

Figure 3. The note.score object

Complex rhythmical structures can also be created by sending a
newEvent() message with additional split information:

newEvent A_NEW_REGION 0 1. 60.5 1. "3(1 3 2(1 3))" 80.

The 1. before the quotation mark represents the overall
duration, a quarter note, which is then split into a triplet, where
the first note stays as it is, the second one is split into three and

the last one split into two notes. The first note of these two
stays as it is and the second one is split again into another three
notes. Another application of adding split information to the
newEvent() message would be to create many events at once by
splitting a very long duration:

newEvent A_NEW_REGION 0 1. 60.5 400. "1200" 80.

In this case the duration 400. is split by 1200 which would
create 1200 events with the duration 0.25, therefore 1200 1/16
notes.

Figure 4. Nested triplets in note.score

2.4 The note.time object
The note.time object translates from seconds to beats2,
BarBeats3, hh:mm:ss and vice versa.

Figure 5. The note.time object

3. SCRIPTING
All of note~'s functionality is accessible through Max-
Messages in a database-like syntax:

selectEvent A_NEW_REGION all
editEvent A_NEW_REGION selected pitch += 0.5 4
deleteEvent A_NEW_REGION selected
deleteRegion A_NEW_REGION

This series of function calls selects all events of the region
"A_NEW_REGION", then adds 0.5 to every pitch of every
selected event, then deletes all selected events, and finally
deletes the region itself.

4. DATA FORMAT
A note~ score is saved as a .txt file in plain text and consists of
Max-Messages which are readable by humans. Therefore
translation and parsing of note~ scores is easily done also
outside a note~/MaxMSP environment. It is also possible to
save a note~ score automatically with the Max Patcher
containing the note~ object.

5. CONCLUSION
From the beginning of note~'s development, an emphasis has
been placed on achieving an aesthetic neutrality, meaning that

2 One beat represents a quarter note, independent from time signature
3 BarBeats describe time in the form bar x beat y, dependent from time

signature
4 0.5 corresponds to a quarter tone

�2�1�1

note~ should not influence the artist's style of composing.
Therefore, the arrangement and Event Editor view of note~
have been designed to be as familiar and user-friendly as
possible in order to prevent an artistic affection. note~ allows
the creation of complex scores for (contemporary) music and
Media Arts in addition to realtime data generation,
manipulation and playback in concert- and installation-
situations. By saving its data in plain text, note~ enables
reconstruction outside Max/MSP and note~, thereby fulfilling
an important basic requirement for longterm archiving[2].
Although there is already software out there which allows
linear graphical editing (every commercial sequencer),
manipulating events and creating and displaying complex
rhythmical structures (Open Music, Super Collider), whenever
several of those disciplines shall be combined, in most cases
there is no other possibility but to export or rather degrade data
to the MIDI format in order to continue working with another
application. This might either limit the working process from
the beginning due to the anticipation of data loss or there will
be data loss. note~ tries to resolve this issue by providing a lot
of functionality of the above mentioned disciplines and of

course by integrating itself into the Max/MSP programming
environment and therefore allowing the user to add and extend
all functionality note~ itself lacks.

6. ACKNOWLEDGMENTS
Thanks to Prof. Erik Oña, PhD and Dr. Michael Kunkel for
their support and supervision of the project.

7. REFERENCES
[1] Miller Puckette, ICMC Proceedings 1990, pp. 346-352,

ISBN:1-58113-345-6, 1990.
[2] Raymond A. Lorie, JCDL'01 Proceedings, pp. 346-352,

ISBN:1-58113-345-6, 2001.

8. Appendices
For detailed information about Max/MSP please refer to
www.cycling74.com.

At www.noteformax.net note~ is freely available as download
including documentation, reference and video tutorials.

�2�1�2

