
SonNet: A Code Interface for Sonifying
Computer Network Data

KatieAnna E Wolf
Princeton University

Department of Computer Science
kewolf@princeton.edu

Rebecca Fiebrink
Princeton University

Department of Computer Science (also Music)
fiebrink@princeton.edu

ABSTRACT
As any computer user employs the Internet to accomplish
everyday activities, a flow of data packets moves across the
network, forming their own patterns in response to his or
her actions. Artists and sound designers who are interested
in accessing that data to make music must currently possess
low-level knowledge of Internet protocols and spend signifi-
cant effort working with low-level networking code. We have
created SonNet, a new software tool that lowers these prac-
tical barriers to experimenting and composing with network
data. SonNet executes packet-sniffing and network connec-
tion state analysis automatically, and it includes an easy-to-
use ChucK object that can be instantiated, customized, and
queried from a user’s own code. In this paper, we present
the design and implementation of the SonNet system, and
we discuss a pilot evaluation of the system with computer
music composers. We also discuss compositional applica-
tions of SonNet and illustrate the use of the system in an
example composition.

Keywords
Sonification, network data, compositional tools

1. INTRODUCTION
Networked digital communications, including communica-
tion over the Internet, have a rich potential for use in the
real-time control of sound and music. Data flowing over the
Internet as a person browses the Web constitutes a complex,
multi-dimensional information signal. Some aspects of this
signal are under the user’s control and might be used to
intentionally influence sound in an expressive manner; the
signal will also vary according to complex and unpredictable
external processes, leaving open the possibility for serendip-
ity and novelty. The sound installation Ping is one example:
it generated sound based on the Round Trip Time (RTT)
of “call and response” messages initiated by the “ping” net-
work utility [4, 5]. Because each host produced RTTs with
varying latency and jitter, viewers at the exhibit were able
to influence the sound by selecting the remote hosts with
which the system communicated. Other musical works ex-
ploring the use of networks as instruments can be found at
the CROSSFADE1 online exhibit.

1http://crossfade.walkerart.org/index.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

Network music and multimedia systems can also forgo di-
rect user interaction and control over the network data, and
instead rely on latent properties of the network to drive mu-
sic and sound. An example of this approach is Leech [10],
which visually and sonically renders BitTorrent traffic in an
attempt to give audience members insight to music piracy
as it occurs in the real world. Network sonification has
similarly been used by technologists who may not have an
artistic agenda, but who wish to use sound as a convenient
means for network monitoring [2, 8] and supporting situa-
tional awareness [1, 9]. The TresnaNet application enables
a user or performer to manipulate the parameters related
to how the network data is used to generate sound [15].

To build systems like those above, the creator must write
code from scratch, or modify existing extraction code, to
gain access to the low-level networking data. Then addi-
tional code needs to be written to parse and analyze this
data to obtain the information used to drive sound and mu-
sic. To accomplish this requires a significant amount of
coding effort as well as an intimate understanding of net-
working protocols. SonNet lowers the barrier for composers
and developers to create these types of systems by auto-
matically extracting low-level packet data and higher-level
network information and exposing it to the user’s sound-
generating code via a simple code interface. In this regard,
SonNet is similar to other music composition toolkits that
seek to make computational techniques more useful to peo-
ple without a preexisting deep technical background in an
area, and to toolkits that seek to make the process of com-
position more efficient or satisfying by automating or ab-
stracting processes that are not central to music creation.
For instance, the Unsupervised Play toolkit for Max/MSP
provides several machine learning algorithms and utilities,
allowing computer musicians of any background to easily
experiment with machine learning, and to do so without
having to implement or port any learning algorithms them-
selves [14]. MoMu [3] and UrMus [6] are toolkits for musical
interaction design for mobile phones. SMELT [7] provides
lightweight tools in the ChucK programming language [16]
for creating digital musical instruments that are controlled
using built-in laptop inputs. Like SonNet, each of these
toolkits has the effect of making a technique or technology
usable by a wider group of users, and of making system
implementation and experimentation easier for all users.

In the following sections, we present the design and imple-
mentation of the SonNet code interface, an evaluation and
discussion of our current implementation, and an overview
of some compositional applications of SonNet.

2. DESIGN
We designed our system to make computer network data
easily accessible for composers. In this section we discuss
the network data, the design details of our system to make

�5�0�3



that data accessible, and descriptions of the data our system
makes available, divided into three abstraction levels.

2.1 Network Data
Our tool supports the sonification of data communicated
over the Internet using the User Datagram Protocol (UDP)
and Transport Control Protocol (TCP). As applications
communicate with each other on the Internet, packets are
sent over different protocols. For TCP and UDP each packet
contains both a message “payload” (i.e., the data being sent
from one application to another over the network) as well as
other data fields, including information on where the packet
came from and where it is going. Each TCP packet also con-
tains fields with information about the connection on which
the packet is sent, including information about the ordering
of the packet on a connection, and data that signals changes
in the connection as it is established, torn down, or reset.

2.2 Design Details
The raw packet-level data described above is typically ob-
tained with a packet sniffer. As the data flows across a
network, a packet sniffer captures each packet and decodes
it to display the values of each of its fields. Without Son-
Net, a user desiring to use packet-level information in music
performance or composition typically has to implement a
packet sniffer or build on a third-party tool to access the
packet information, and write code to track and analyze
packet-level data over time to determine higher-level infor-
mation about the connections on which packets are sent.
Additionally, users have to implement the mechanisms for
using this data to control sound. Although it is possible to
build on a third-party packet-sniffing application or library
such as Wireshark2 or Carnivore3, users still must write
code to modify these tools to send the network informa-
tion to a music environment in real-time (e.g., by sending
OSC messages), and users still must have a low-level un-
derstanding of network protocols in order to navigate these
tools and correctly compute network state information from
the packet-level data.

SonNet simplifies the process of creating compositions
and sonifications from network data. With SonNet, users no
longer need to write code to access the low-level networking
data or write code to track network state information from
packet data; they must only write the system for generating
sound and music. The SonNet application alerts an event
handler in the user’s code each time a new packet is sent
or received on the network; SonNet also tracks packet-level
data and higher-level network properties in real-time, and
the user’s application can query SonNet for this information
at any time. For further information on the implementation
of SonNet, see Section 3.

2.3 Levels of Abstraction
SonNet tracks network data at several levels of complexity
and abstraction, from packet-level information to network
connection state information. Figure 1 shows SonNet’s ap-
proach to organizing all available data about network prop-
erties into three levels of abstraction, where subsequently
higher-level properties are computed from lower-level prop-
erties, beginning with the raw packet information in the first
level. Table 1 lists the SonNet variables used to represent
packet and network properties, along with their descriptions
and corresponding abstraction levels. In the following sec-
tions, we define each level of abstraction and describe the
information that SonNet makes available at each level.

2http://www.wireshark.org/
3http://r-s-g.org/carnivore/

Levels of Abstraction

Level 1

Level 2

Level 3

ack num seq num ip protocol

flags

Packet Data

Single Packet Analysis

Accumulated Packet Analysis

my ip src ip dst ip dst port time

packet direction

con ip

con port

total 
packets

time since 
last packet

packet rate

connection state
avg packet 

rate

my port

src port

Figure 1: This figure displays the properties in each
of the three levels of abstraction; the arrows show how
fields at the lower levels are used to determine those at
higher levels.

Variable Network Information Level
src_ip source IP address 1
dst_ip destination IP address 1
my_ip IP address of user’s device 1
src_port source port in TCP header 1
dst_port destination port in TCP header 1
flags TCP control flags 1
time time stamp on packet 1
ip_protocol type of packet 1
seq_num sequence number 1
ack_num acknowledgment number 1
direction direction of the packet 2
con_ip IP address of connecting device 2
con_port port number of connection 2
my_port port number of user’s device 2
time_since time since last packet 2
total_packets total count of packets 3
state current state of the connection 3
packet_rate number of packets per period 3
avg_packet_rate running average of packets 3

Table 1: Variables available in the code interface, their
relation to network packets, and their abstraction level.

Level 1
Level 1 contains the information carried by an individual
packet. A unique IP address is assigned to each device that
participates in a computer network using IP for commu-
nication [11]. The Level 1 data contains the source and
destination IP addresses of the current packet, the source
and destination port numbers associated with that packet,
and the IP address of the user’s device (my_ip). The type
of IP protocol is also given as either TCP or UDP. For TCP
packets, TCP control flags are used to control the state of a
connection. The flag data is a Level 1 abstraction, however
by analyzing these flags over multiple packets on the same
connection, the state of a connection (a Level 3 abstraction
discussed later) can be determined. Finally, the sequence
number keeps track of how much data has been sent over
the connection, and the acknowledgement number is used
to inform the sending device that the data was received
successfully. For more details about packet-level data, we
direct the reader to the Request for Comments (RFC) pages
for IP (RFC 791) [12] and TCP (RFC 793) [13].

Level 2
Level 2 contains information computed by analyzing the
single-packet information in Level 1. Because packet-level
source and destination IP addresses do not explicitly convey

�5�0�4



Internet

Data Source Data Extraction Sound OutputPacket Analysis

OSC

Packet Sniffer User's Code

Data Mapping

SonNet

SonNet Object

Figure 2: Packet information is taken from the Internet via the Carnivore Processing Library. A Processing sketch
sends the packet information using the OSC protocol to the code interface written in ChucK. The program listens
for OSC messages, stores and analyzes the packet data, and then sonifies it using the composer-defined mappings.

the packet’s direction in relation to the user’s device (incom-
ing or outgoing), SonNet compares the IP address of the
user’s device to the source and destination IP addresses in
the packet and stores the direction in the packet_direction
variable. The same analysis determines the IP address and
port of the connecting device (conn_ip and conn_port), and
the port on the user’s device (my_port). Level 2 also com-
putes the time since the last packet.

Level 3
Level 3 aggregates information over multiple packets. Son-
Net uses its prior packet history and the flags of the current
packet to compute the state of each new packet’s connec-
tion (being set up, established, being torn down). Level 3
also updates a running count of the total number of pack-
ets and tracks the rate at which packets are flowing on the
network. Two rates are updated when a packet arrives:
packet_rate is the rate over a user-defined period (the de-
fault period is one second), and avg_packet_rate is a run-
ning average of the number of packets per period over a
window of time (the default window size is five seconds).

3. IMPLEMENTATION
SonNet is an open-source and cross-platform application
implemented using the Carnivore Processing library3 and
the audio programming language ChucK [16]. An overview
of the SonNet system is depicted in Figure 2. Carnivore
is based on Jpcap, a Java native interface for the libpcap
standard sniffing library. Each time a packet is sent or re-
ceived, the sniffer sends the data to the ChucK component
of SonNet using the Open Sound Control (OSC) protocol
[17]. The ChucK component populates the Level 1 vari-
ables with the packet data, and analyzes those variables to
update variables at the higher abstraction levels.

Users can easily write music or sonification code in ChucK
by instantiating and running a SonNet object in their own
code, listening for the SonNet ChucK event that is broad-
cast each time a packet is sent or received, and using mem-
ber variables of the SonNet object to access any of the net-
work properties in Figure 1. The instantiation and configu-
ration of the SonNet object requires the user to write only
five lines of ChucK code, so the practical barrier to access-
ing network data is greatly reduced. Users working in other
environments can easily interface with ChucK via OSC.

The user may easily customize a few properties of Son-
Net. By default, SonNet only tracks TCP packets and only
processes packets sent via port 80 on the connecting device
(where all HTTP traffic is directed). However, the user can
opt to include UDP using SonNet’s include_udp flag, and
to include traffic on all ports using the include_ports flag.
Additionally, the period and window sizes used for tracking
packet rate in Level 3 can be modified.

The SonNet code and a demonstration video are found on
the SonNet website: http://sonnet.cs.princeton.edu.

4. EVALUATION AND DISCUSSION
For an initial evaluation of the SonNet interface, we ran a
pilot test with four computer music composers and students.
Their level of exposure to computer networks varied from
none to having taken an advanced graduate level course.
Their level of ChucK programming experience also ranged
from beginner to expert. Our main objective was to de-
termine whether composers could use SonNet effectively to
create a musical piece. We sat down individually with each
participant, described the SonNet code interface, watched
as they experimented with the system, and then asked the
users about their interaction with SonNet.

While the composers had different backgrounds in com-
puter networking, they all found the network data interest-
ing, and they felt the SonNet interface made this data easily
accessible. The two more advanced ChucK users were ex-
cited to explore the sonification possibilities, and in a short
time, they were able to come up with unique mappings from
the network data to sound. One particular user, who will
be referred to as the expert user, spent an additional three
hours working with the system to develop short sonification
sketches, which we discuss in Section 5. The two partici-
pants with limited ChucK knowledge found it more difficult
to develop the sonification, and they requested additional
example code to illustrate sound creation in ChucK.

All users expressed interest in having additional infras-
tructure to assist in understanding how the network prop-
erties could be used. The expert user, who had a mini-
mal amount of computer network experience, wrote his own
ChucK code to print out the values of SonNet variables in
order to understand their behavior as he browsed specific
sites. In order to help streamline the understanding of the
variable fields, he proposed developing a visual interface to
display the state of all variables of a packet, which he could
monitor to understand how network properties changed as
he browed different websites. Additionally, several com-
posers suggested adding new variables to SonNet, includ-
ing the amount of data contained in the packet, the packet
header size, and the time-to-live and header checksum fields.

Based on users’ feedback, our next steps will be to add
additional data fields to SonNet, to add simple visualiza-
tion of network information within the Processing interface,
and to enable richer OSC mechanisms for query and notifi-
cations for improved integration with arbitrary sonification
platforms (e.g., Max/MSP). This includes implementing the
Level 2 and 3 packet analyses within the Processing sketch.
We also plan to employ the next iteration of the system in
an undergraduate course in order to evaluate the usefulness
of SonNet in teaching students about computer networking.

�5�0�5



5. COMPOSITIONAL APPLICATIONS
In this section we discuss SonNet-based compositions by the
expert pilot study user and this paper’s first author, each of
which takes a different approach to the musical use of net-
work data. Demonstrations of these compositions appear in
a video on the SonNet website.

The expert user created three musical sketches that can
be used to sonify any website, giving a performer the abil-
ity to browse the web and explore the sonification changes
from one site to the next. Here we describe the user’s third
sketch, Varying Rhythmic, which is built upon concepts the
composer developed in his first two sketches, and which uti-
lizes a musical technique called isorhythm (arranging fixed
pattern of pitches with a repeating rhythmic pattern). For
each packet, the 5 TCP flags and the 4 numbers the source
and destination IP addresses create a 5-note rhythm and
a 4-chord sequence. Stepping through this isorhythmic se-
quence, the beat rests if the flag is 0 and plays a chord if it
is 1. The two pitches of the chord depend on one IP address
number field from each of the source and destination IP ad-
dresses. As packets are sent and received, repetitions in the
IP address and flags variables create melodies that repeat
as a performer communicates with the same web domain.
Other packet information influences sound properties such
as the decay time of sound envelopes, the pitch ranges of the
IP address sonification, the rate the notes are being played,
and the number of times the rhythm repeats.

This sketch demonstrates how the expert user was able
to use his compositional skills to develop interesting soni-
fications of the network data. The expert user intends to
continue developing these sketches into full compositions or
performance pieces, but this is not the only way he plans to
use SonNet for composition. His sketches generate interest-
ing chord sequences, which he plans to use as inspiration in
his acoustic compositions.

The first author of this paper explored a different ap-
proach to web browsing sonification. A website “instal-
lation” designed by the author is populated with hyper-
links to specially-chosen other sites. SonNet distinguishes
among traffic between the user’s machine and any of those
sites, and each site’s data is mapped to sound in a unique
way. This website installation was inspired by, and revolves
around, Sergei Prokofiev’s Peter and the Wolf, Op. 67.
When a user visits the installation with the SonNet Peter
and the Wolf application running in the background, click-
ing on images of the various characters in the story brings
the user to different sites, and the data from each site ren-
ders the musical theme associated with that character. The
synthesis of each theme is modified according to properties
of the network connection between the user’s computer and
the character’s website. For instance, a bowed-string phys-
ical modeling synthesis algorithm represents Peter, and the
position of the “bow” is driven by the state of the connec-
tion. The SonNet website contains links to the Peter and
the Wolf website and to download the sonification code.

6. CONCLUSIONS
While current creative applications using network data re-
quire the composer to have an intimate knowledge of net-
work information, and to write code to tap into that infor-
mation, SonNet allows users direct access to the data via a
code interface. Through an initial pilot study, users found
the code interface easy to understand and the data easily
accessible. One expert user even spent additional time with
the system developing sonification sketches, which he is in-
terested in developing and utilizing in the future for both
digital and acoustic compositions. Our future work includes

adding more data fields to SonNet, creating a visualization
of the network data, moving packet analysis into Processing,
and enabling richer OSC mechanisms to improve integration
with other sonification platforms. These changes will make
network data even more easily accessible to a wider range of
users, allowing them to explore an area of musical creation
that may have otherwise been inaccessible.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-
tional Science Foundation Graduate Research Fellowship
Program. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

8. REFERENCES
[1] M. Ballora, N. A. Giacobe, and D. L. Hall. Songs of

cyberspace: An update on sonification of network
traffic to support situational awareness. In SPIE Proc.
on Multisensor, Multisource Information Fusion:
Architectures, Algorithms, and Applications, 2011.

[2] M. Barra, T. Cillo, A. D. Santis, U. F. Petrillo,
A. Negro, V. Scarano, T. Matlock, and P. P. Maglio.
Personal webmelody: Customized sonification of web
servers. In Proc. ICAD, 2001.

[3] N. J. Bryan, J. Herrera, J. Oh, and G. Wang. MoMu:
A mobile music toolkit. In Proc. NIME, 2010.

[4] C. Chafe and R. Leistikow. Levels of temporal
resolution in sonification of network performance. In
Proc. ICAD, 2001.

[5] C. Chafe and G. Niemeyer. Ping. In 010101: Art in
Technologial Times, exhibition catalog, pages 54–55,
San Franciso Museum of Modern Art, 2001.

[6] G. Essl. Urmus: An environment for mobile
instrument design and performance. In Proc. ICMC,
2010.

[7] R. Fiebrink, G. Wang, and P. Cook. Don’t forget the
laptop: Using native input capabilities for expressive
musical control. In Proc. NIME, 2007.

[8] R. Giot and Y. Courbe. Intention: Interactive
network sonfication. In Proc. ICAD, 2012.

[9] F. Kilander and P. Lönnqvist. A whisper in the
woods: An ambient soundscape for peripheral
awareness of remote processes. In Proc. ICAD, 2002.

[10] C. McKinney and A. Renaud. Leech: Bittorrent and
music piracy sonification. In Proc. SMC, 2011.

[11] L. L. Peterson and B. S. Davie. Computer Networks,
Fourth Edition: A Systems Approach. Morgan
Kaufmann Publishers Inc., 2007.

[12] J. Postel. Internet Protocol. RFC 791 (Standard),
Sept. 1981. Updated by RFCs 1349, 2474.

[13] J. Postel. Transmission Control Protocol. RFC 793
(Standard), Sept. 1981. Updated by RFCs 1122, 3168,
6093, 6528.

[14] B. D. Smith and G. E. Garnett. Unsupervised play:
Machine learning toolkit for Max. In Proc. NIME,
2012.

[15] P. Ustarroz. Tresnanet: Musical generation based on
network protocols. In Proc. NIME, 2011.

[16] G. Wang and P. R. Cook. ChucK: A concurrent,
on-the-fly audio programming language. In Proc.
ICMC, 2003.

[17] M. Wright, A. Freed, and A. Momeni. Open Sound
Control: State of the art 2003. In Proc. NIME, 2003.

�5�0�6




