
Tangle: a Flexible Framework for Performance With
Advanced Robotic Musical Instruments

Paul Mathews
Victoria University of

Wellington
School of ECS

Wellington, New Zealand
pfcmathews@gmail.com

Ness Morris
California Institute of the Arts

24700 McBean Parkway
Valencia, California

karplusstrong@gmail.com

Jim Murphy
Victoria University of

Wellington
New Zealand School of Music

Wellington, New Zealand
jim.w.murphy@gmail.com

Ajay Kapur
California Institute of the Arts

24700 McBean Parkway
Valencia, California
ajay@karmetik.com

Dale A. Carnegie
Victoria University of

Wellington
School of ECS

Wellington, New Zealand
dale.carnegie@ecs.vuw.ac.nz

ABSTRACT
Networked musical performance – using networks of com-
puters for live performance of electronic music – has evolved
over a number of decades but has tended to rely upon cus-
tomized and highly specialized software designed specifically
for particular artistic goals. This paper presents Tangle, a
flexible software framework designed to provide a basis for
performance on any number of distinct instruments. The
network includes features to simplify the control of robotic
instruments, such as automated latency compensation and
self-testing, while being simple to extend in order to im-
plement device-specific logic and failsafes. Tangle has been
tested on two diverse systems incorporating a number of
unique and complex mechatronic instruments.

Keywords
network, performance, robotic instruments, shared instru-
ments

1. INTRODUCTION
Tangle builds on the foundation provided by The Machine
Orchestra (TMO) [8] and software developed for it [12],
attempting to address issues of portability and flexibility
in these systems. It is currently being successfully used to
control two very different groups of instruments at separate
institutions – Victoria University of Wellington, New Zealand
and the California Institute of the Arts, Los Angeles.

Tangle differs from the now-classic laptop orchestra con-
figuration [11] in that it focuses on the control of remote
instruments and arbitrary performer-instrument links as op-
posed to the direct 1:1 performer-instrument ratio found in
most laptop orchestras. A key focus is enabling the con-
trol of arbitrary robotic instruments, for which we provide
a latency calibration mechanism and the ability to easily
implement device-specific logic and failsafes where necessary.

The primary goal of the network is to provide a robust

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

back-end upon which any kind of interactive system can be
built.1 Its function is to simplify and enable working with
groups of musical robots and instruments rather than having
an intrinsic artistic purpose per se, and it is as valuable to a
solitary performer as to a group of many.

Before presenting our network and the details of the vari-
ous mechanisms it provides to enhance usefulness and adapt-
ability, we will first briefly examine the history of musical
networks with a focus on those created to share control
of instruments. We will look at special adaptations neces-
sary for the control of sophisticated robotic instruments and
then proceed to examine the way in which Tangle provides
greatly enhanced facilities for unified control of a range of
heterogeneous devices.

2. BACKGROUND
Networked musical performance has evolved considerably
since its early appearances in the mid 20th century to suit a
range of specific needs. Some of the first examples are perfor-
mances given by John Bischoff, Rich Gold and Jim Horton
in 1978 on three separate “microcomputers” in which each
performer controlled part of another’s synthesis algorithm
[3].

In the 1980s and 1990s, the Hub built on this idea [6]
by undertaking a number of innovative performances which
included the use of MIDI to send peer-to-peer control data,
sonifying poems posted to the internet and some exploratory
attempts at geographically separated performance using the
internet. Many works for the Hub focused on indeterminacy
and emergent behaviors very much in the vein of electronic
performances and works by “John Cage, David Tudor, Gor-
don Mumma, Pauline Oliveros and many others” [6].

The main focus these works has been to use network
technology to enable new kinds of performer-performer in-
teraction. Weinberg notes that this is likely an evolution
of traditional instrumental performance practice in which
musicians are dependent on one another continuously for
feedback [15].

Weinberg also considers John Cage to have been among
the first to attempt the use of electronics to enable novel
interactions in this sphere with pieces such as Imaginary
Landscape No. 4 (1951) and Cartridge Music (1960). While
the technology has developed significantly, the approach

1A comprehensive taxonomy of social interactions within
musical networks can be found in [15].

Proceedings of the International Conference on New Interfaces for Musical Expression

187



commonly taken by networked music is still to focus on
structuring the interaction between performers.

3. OBJECTIVES
Tangle differs from related technologies in that it attempts
only to enable, not to limit composers and is agnostic to
inter-user interaction. Our focus is instead on providing a
building block which can be used for any artistic pursuit, as
opposed to previous efforts where the creation of the network
was a large part of the endeavour and the network itself
provided important constraints guiding the expression.

The goal of Tangle is to enable consistent and predictable
control of diverse groups of instruments. As the focus is
on enabling any number of artistic pursuits it follows that
the system must be capable of controlling arbitrarily com-
plex sets of instruments. Inevitably, complex and expressive
instruments require complex control to maximize their ca-
pabilities. This is especially noticeable when considering
systems such as MechBass [9] and Swivel 2.0 [10] which
eschew the relatively simple solenoid actuation of many of
their predecessors in favor of the greater degrees of control
easily afforded by stepper motor or servo control.

These systems enable fine grained control over the pro-
duced sound in exchange for complexity of the mechanism.
For example, for Swivel to play a note, first a string must
be chosen, then the appropriate position for the pivot servo
must be calculated to achieve the correct pitch, the desired
pressure to clamp to the string must be chosen, and then
the force with which to pick the string needs to be decided
upon as well as the time until the string is damped and with
what pressure.

The number of decisions required to cause Swivel to play
a single note illustrate the complexity that comes with en-
hancing the expressive power of an instrument. Further, this
shows the degree of heterogeneity to which the network must
be able to adapt. Hence a primary design goal: maintain
extensibility and adaptability while presenting a consistent
and predictable interface to users.

4. IMPLEMENTATION

SERVER

CLIENT

ChucK ClientMIDI generator
Inter-application

MIDI

OSC

CLIENT

Instrument

Instrument
MIDI

Robot

Figure 1: Overview of the network

The framework is implemented in ChucK [14] which pro-
vides easy to use implementations of common musical control
protocols in an approachable syntax for both experienced
programmers and novices. Network communication is per-
formed through Open Sound Control (OSC) messages sent
via User Datagram Protocol (UDP).

The system uses a server-client topology similar to The Ma-
chine Orchestra [8, 12] (see figure 1). The network addresses
just one of Wanderley and Orio’s seven interaction contexts:
“note-level control or musical instrument manipulation,” [13]

as this is all that is necessary to control instruments. Where
the note-level control comes from and what is done with the
result is left entirely up to the user.

This topology connects an arbitrary number of musicians
to an arbitrary number of instruments. It does not limit con-
nectivity; at any time any user may communicate with any
instrument. Indeed through the use of OSC’s pattern match-
ing in conjunction with the unified interface presented, one
user can simultaneously control multiple instruments. The
effect of this topology is to turn the set of instruments into
one shared meta-instrument and thereby enable synchronous
multi-user interaction. This is important in enabling a TMO
style of instrument sharing in which all members of the
ensemble have equal access [12] but it is amenable to an
overlay of stricter structures.

To date the system has only been used to set up local
networks, but the benefit of OSC over UDP is that it enables
effortless scaling to wide area networks and so provides at-
tendant remote performance opportunities. Using Barbosa’s
classifications [1] it fits either as a “Local Inter-Connected
Network” or a “Remote Music Performance System” depend-
ing on precisely how it is used.

4.1 Client
The client software acts as a translator, turning MIDI into
OSC and sending the OSC across to the server. For conve-
nience it consists of a single file of ChucK code, configured
through arguments using an accessible key=value syntax.

On starting up, the Client notifies the server of its ex-
istence and receives, by way of confirmation, a list of the
instruments connected to the server, the messages they have
available and any information about the instrument. This
handshaking ensures that the client software always has an
up to date list of instruments connected to the server which
enhances the network’s adaptability by allowing seamless
addition of instruments.

Open Directory

Files
Remaining?

Is Directory?

yes

Determine Type
no

Initialize
Successfully?

Add to List

yes

Server Ready

Issue Error

no

yes

no

Figure 2: Server process for instrument discovery.

Proceedings of the International Conference on New Interfaces for Musical Expression

188



4.2 Server
The server is designed in such a way that it is easy to
configure for new instruments and simple to organize for
arbitrary groups of existing instruments. Primarily this
is done through polymorphism and inheritance; the server
keeps a list of top-level Instrument objects which handle
the OSC setup and the sending of information about each
instrument to the client (name, messages it is listening for
and notes about what they do). The output to the physical
instrument is handled by specific subclasses. Currently
this includes a generic MIDI instrument which reads in
information from a configuration file and several specific
subclasses of this which contain additional logic. These are
described further in section 4.3.2.

On starting up, the server attempts to determine what in-
struments are connected by a process that combines reading
files in a directory and attempting to connect to instruments
to determine their availability. This process is illustrated in
figure 2.

What this entails is that the server scans through all the
files in a specific directory (ignoring subdirectories) and reads
the first line. If the line is equivalent to type=something it
will use the key something to look up which instrument to
instantiate. Once it has an instance it calls the instrument’s
initialization method, which operates on the remainder of
the file. This enables instruments to be configured in a
simple text file. If the instrument successfully parses the
configurations and connects to its output, the initialization
method returns successfully and the instrument is ready to
use. If it encounters a failure, such as if the specified device
can not be found, a warning will be emitted but the server
will continue searching for instruments and those that do
initialize successfully will still be useable.

4.3 Additional Features
The system includes a series of features designed to assist in
control of heterogeneous groups of instruments, especially
those that may be physically actuated. These include a
latency compensation mechanism and the ability to extend
the network to introduce arbitrary per-instrument logic. We
discuss these further below and provide examples of when
this has been indispensable.

Send note,
Start timing

Onset detected

Store time

Max. time waited

Discard

For each instrument, for a series of notes

Average valid values
per instrument

Find maximum latency

Subtract measured latency
from maximum

Set delay to result

For each instrument

Figure 3: Latency calibration process

Figure 4: Test setup for latency compensation.

4.3.1 Latency Compensation
At any time, a client can request that the server run in
latency-compensated mode. The OSC message to trigger
this requires, as an argument, a list of names of instruments.
Upon receiving this request the server iterates through the
list and attempts to measure the delay between when it
sends a note message to the instrument and when it detects
an onset in the system default audio stream. When testing
multiple instruments, it is currently simplest to mix the var-
ious microphone or direct signals to similar levels externally
and pass a mix to the server as it processing instruments
sequentially.

The server determines the maximum delay time across
all measured instruments and inserts the appropriate delay
between receiving a message and passing it to the instrument
so they will sound at the same time. This is calculated as

d(i) = tmax − ti

where d(i) is the appropriate delay for a given instrument i
and tmax and ti are the maximum and per instrument mea-
surements respectively. If the instrument was not measured,
ti will simply be 0.

The onset detection method uses both the spectral flux and
the root mean square (RMS) level of the magnitude spectrum.
Spectral flux (or spectral difference) is for our purposes the
Euclidean distance between successive magnitude spectra.
The combination of these two methods ensures robustness at
determining both pitched and non-pitched onsets [2]. The
peak picking was performed with thresholds for each value,
which are currently set manually. In our testing, using two
rotary solenoid drum beater (figure 4), the system overcame
50ms of delay inserted into one beater to cause the two to
strike with no perceptible time difference.2

While a great number of onset detection algorithms have
been published [2, 4, 5] and implementation of a more com-
plex algorithm does have the potential to improve results,
our approach is simple and effective. Time domain resolution
is limited to the period of the Discrete Fourier Transform
used, although precise frequency data is not strictly neces-
sary so a small transform period is acceptable, increasing
time-domain resolution and decreasing processing time.

The drawback of adding delay to increase inter-instrument
synchronization is that it also delays the sounding result of
all user input to any instrument. In a performance context

2a video demonstration can be found at: https://vimeo.
com/85770432

Proceedings of the International Conference on New Interfaces for Musical Expression

189

https://vimeo.com/85770432
https://vimeo.com/85770432


this could be undesirable if the intent is to directly control
single instruments. For systems with a less direct mapping
between performer and instrument or where synchronicity
is paramount, this automated calibration presents a useful
tool.

4.3.2 Per-Instrument Extensibility
The class hierarchy within the server is structured such
that, if desired, instruments can be added to the system by
creating a subclass which overrides the server-instrument
communication. In this way it is simple to add specific
logic and failsafes or to adapt the system to a whole new
communication protocol.

Incoming MIDI
Note On Find strings in range Start at first

possible string

Fretter closest
so far?

Update closest

yes
Strings

unchecked?

Advance current
string

yes
no

Calculate mid-point
of both ranges

tie

Choose closest
mid to note

Output on closest
string’s channel

no

Figure 5: String choosing process for MechBass.

An example of when this ability proved useful was demon-
strated with MechBass, a mechatronic bass guitar [9] which
uses a separate MIDI channel for each string and can take
a long time to move to a note position. This instrument is
challenging to compose for, as it requires the composer to
be aware of the range and current position of each string
and to sequence each as separate tracks. In order to en-
able easier use two new classes were added to the hierarchy:
an abstract class descending from the basic MIDI Instru-
ment which implements several string choice algorithms and
a descendant of this class which specializes its parent for
MechBass. The algorithm uses the current state of the four
strings and chooses a string for output based on whichever
is nearer to the desired note.

Kritaanjli [7] also required additional logic. This robotic
harmonium uses a DC motor to pump the bellows to provide
airflow and make sound. This can only be done safely
when at least one key is depressed or the instrument risks
damage. This is an awkward condition to deal with, but was
straightforward to solve with a specific subclass on the server
side which keeps track of the number of notes depressed,
turning off the bellows motor if no keys are pressed.

5. CONCLUSIONS
Tangle provides an adaptable and extensible framework
for networked control of diverse and arbitrarily complex
instruments and robots. It incorporates useful tools for
composition and performance without limiting users to a
given paradigm. Adding and removing instruments is simple
and easy, as is extending the system to safely and effectively
control sophisticated and expressive instruments. Future
goals include expanding the output capabilities to encompass
non-MIDI devices as well as exploring grid configurations
where the instruments are distributed amongst peers.

Tangle is an essential step towards moving networked mu-
sic forward from the device-specific, project-specific networks
that have previously been the norm towards a flexible and
general tool that can be used in any number of situations
and to enable any number of novel artistic practices.

References
[1] Á. Barbosa. “Displaced Soundscapes: A Survey of Net-

work Systems for Music and Sonic Art Creation”. In:
Leonardo Music Journal 13 (2003), pp. 53–59.

[2] J. P. Bello et al. “A Tutorial on Onset Detection in
Music Signals”. In: Speech and Audio Processing, IEEE
transactions on 13.5 (2005), pp. 1035–1047.

[3] J. Bischoff, R. Gold, and J. Horton. “Music for an
Interactive Network of Microcomputers”. In: Computer
Music Journal 2.3 (Dec. 1, 1978), pp. 24–29. issn: 0148-
9267. doi: 10.2307/3679453.

[4] N. Collins. “A Comparison of Sound Onset Detection
Algorithms with Emphasis on Psychoacoustically Mo-
tivated Detection Functions”. In: Audio Engineering
Society Convention 118. 2005.

[5] S. Dixon. “Onset detection revisited”. In: Proc. of the
Int. Conf. on Digital Audio Effects (DAFx-06). 2006,
pp. 133–137.

[6] S. Gresham-Lancaster. “The Aesthetics and History of
the Hub: The Effects of Changing Technology on Net-
work Computer Music”. In: Leonardo Music Journal
8 (1998), pp. 39–44. issn: 0961-1215. doi: 10.2307/
1513398.

[7] A. Kapur, J. Murphy, and D. Carnegie. “Kritaanjli:
A Robotic Harmonium for Performance, Pedogogy
and Research”. In: Proceedings of the International
Conference on New interfaces for Musical Expression.
Michigan, May 21, 2012.

[8] A. Kapur et al. “The Machine Orchestra: An Ensemble
of Human Laptop Performers and Robotic Musical
Instruments”. In: Computer Music Journal 35.4 (2011),
pp. 49–63. issn: 1531-5169.

[9] J. McVay et al. “MechBass: A Systems Overview of a
New Four-Stringed Robotic Bass Guitar”. In: Proceed-
ings of the 2012 Electronics New Zealand Conference.
Dunedin, New Zealand, 2012.

[10] J. Murphy et al. “Designing and Building Expres-
sive Robotic Guitars”. In: Proceedings of the 2013
Conference on New Interfaces for Musical Expression
(NIME), Daejeon, Korea. 2013.

[11] D. Trueman et al. “PLOrk: the Princeton laptop or-
chestra, year 1”. In: Proceedings of the international
computer music conference. 2006, pp. 443–450.

[12] O. Vallis et al. “Building on the Foundations of Net-
work Music: Exploring interaction contexts and shared
robotic instruments”. In: Organised Sound 17.1 (2012),
pp. 62–72. doi: 10.1017/S1355771811000525.

[13] M. M. Wanderley and N. Orio. “Evaluation of input
devices for musical expression: Borrowing tools from
hci”. In: Computer Music Journal 26.3 (2002), pp. 62–
76.

[14] G. Wang. “The Chuck Audio Programming Language.
”a Strongly-timed and On-the-fly Environ/Mentality””.
Princeton, NJ, USA: Princeton University, 2008.

[15] G. Weinberg. “Interconnected Musical Networks: To-
ward a Theoretical Framework”. In: Computer Music
Journal 29.2 (July 1, 2005), pp. 23–39. issn: 0148-9267.

Proceedings of the International Conference on New Interfaces for Musical Expression

190

http://dx.doi.org/10.2307/3679453
http://dx.doi.org/10.2307/1513398
http://dx.doi.org/10.2307/1513398
http://dx.doi.org/10.1017/S1355771811000525



