
Extending the Nexus Data Exchange Format (NDEF)
Specification

Lawrence Fyfe
University of Calgary

2500 University Drive NW
Calgary, AB T2N 1N4

Canada
ljfyfe@ucalgary.ca

Adam Tindale
OCAD University

100 McCaul Street
Toronto, ON M5T 1W1

Canada
atindale@faculty.ocadu.ca

Sheelagh Carpendale
University of Calgary

2500 University Drive NW
Calgary, AB T2N 1N4

Canada
sheelagh@ucalgary.ca

ABSTRACT
The Nexus Data Exchange Format (NDEF) is an Open
Sound Control (OSC) namespace specification designed to
make connection and message management tasks easier for
OSC-based networked performance systems. New exten-
sions to the NDEF namespace improve both connection
and message management between OSC client and server
nodes. Connection management between nodes now fea-
tures human-readable labels for connections and a new mes-
sage exchange for pinging connections to determine their
status. Message management now has improved namespace
synchronization via a message count exchange and by the
ability to add, remove, and replace messages on connected
nodes.

Keywords
OSC, namespace, specification, node, message, management,
networking

1. INTRODUCTION
When musicians can spend less time on the configuration
and setup of their networked performance systems, it is ob-
vious that they can then spend more time on their actual
performances. Yet it is often the case that the setup of
computer music performance systems ends up taking time
away from what performers should focus on, rehearsing and
performing their actual music. This can be especially acute
in the setup of laptop orchestras with large numbers of per-
formers or in internet-based network performances, to name
just two scenarios. Even when the technology works flaw-
lessly, both scenarios often require so much time for setup
that rehearsals are either rushed or do not happen at all. In
general, networked performance systems could benefit from
tools that make setup easier.

One way to make the setup of networked performance
systems easier is to lower barriers to communication be-
tween systems. The MIDI protocol specification, since its
introduction, has been both widely used and occasionally
criticized [3]. The limitations of MIDI are beyond the scope
of this paper but it is certainly true that MIDI is still in com-
mon use. One of the reasons that MIDI is still around is
that it is a fixed protocol that can be understood by many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

devices. This kind of fixed protocol is very powerful, al-
lowing for considerable interoperability between devices. In
effect, MIDI provides a lingua franca for music performance
systems.

In contrast, Open Sound Control (OSC) [20] is completely
flexible by design, allowing for a wide variety of uses. This
kind of flexibility is also powerful and allows for messaging
systems that go far beyond the limits of the MIDI proto-
col. However, that same flexibility means that OSC makes
for a poor lingua franca when there are no standard OSC
message sets. One way to work around this is to develop
specified namespaces within OSC. While there is value to
this approach, it tends to take OSC closer to MIDI, losing
some of the flexibility so prized with OSC. Ideally, OSC
should retain its flexibility while simultaneously providing
a simple lingua franca for systems to exchange namespaces.

Balancing flexibility with fixed namespaces, we created
the Nexus Data Exchange Format (NDEF) specification [6],
a namespace that serves as both a means to manage nodes
on network-based performance systems and as a query sys-
tem that enables an exchange of namespaces among nodes.

2. RELATED WORK
Work related to NDEF can be divided into two types: 1)
OSC namespace specifications and 2) OSC query systems.

2.1 Namespace Specifications
Many OSC namespaces have been proposed with each one
attempting to address a particular niche that is important
to the proposers. TUIO [9] is an example of a success-
ful namespace specification for tracking touches and fidu-
cial markers developed for the reacTable [8] project. The
Gesture Description Interchange Format (GDIF) [7] is a
proposal to create an OSC namespace for storing and ex-
changing musical gesture data. SpatDIF [13] has an OSC
namespace (among other formats) for storing and sharing
information about spatial audio scenes. The use of the word
“format” in GDIF and SpatDif provided inspiration for the
naming of NDEF. Both GDIF and SpatDif are part of the
Jamoma [14] project.

This is not an exhaustive list of namespaces but the pre-
vious examples make it clear that defined namespaces are
useful enough in the context of OSC-based systems that
developers take the time to create and use them.

2.2 Query Systems
NDEF is similar to the OSC query system proposal by
Schmeder and Wright [18]. The proposed OSC query sys-
tem allowed an OSC client to query an OSC server’s names-
pace by including a ‘/’ character at the end of a message
pattern. The OSC server then sends back a reply containing
any sub-patterns of the provided pattern. The reply begins

Proceedings of the International Conference on New Interfaces for Musical Expression

343



with the ‘#’ character to distinguish the query system from
standard OSC messages. The following is an example from
the proposal in which the sub-patterns of /foo/bar are re-
quested. The #reply contains the type tag, the pattern,
and the sub-patterns.

→ /foo/bar/

← #reply (sss) ’/foo/bar/’, ’test1’, ’test2’

An important difference between NDEF and the pro-
posed OSC query system is that NDEF does not require
any changes to basic OSC implementations. Since the ‘#’
character in the OSC query proposal is not part of the OSC
specification [19], the query systems cannot be used by im-
plementations of the basic specification. In contrast, NDEF
is simply a defined namespace using basic OSC messages
that can be implemented by any system that adheres to the
original specification.

In Place et al [15], the authors recommend a scheme to
make OSC into a more object-oriented system with the use
of the ‘:’ character to distinguish object’s member methods
and properties from standard OSC methods. The first two
of the following messages are from the authors’ examples in
which the first message sets the value for the gain and the
second message sets the value for a member :/unit of /gain.
In this system, /gain is an object with both methods and
properties and /unit is a property.

/module/audio/gain 120

/module/audio/gain:/unit midi

Beyond making OSC more object-oriented, the authors
suggest some standard methods, including a /namespace
method for querying the namespace of objects. The follow-
ing message queries the namespace associated with gain:

/module/audio/gain:/namespace

Malloch et al [10] describe a digital orchestra system that
uses /namespace appended (without the ‘:’) to the end of
messages to query both controllers and synthesizers for their
namespaces. Those messages can then be mapped via their
libmapper [11] library which enables mapping as well as
namespace queries.

While the notion of an object-oriented OSC is interesting
and mapping tools are clearly useful, the goal of NDEF is
to address a more specific problem: making the manage-
ment of OSC-based networked performance systems easier.
The limited scope of NDEF makes implementation more
straightforward for people looking to solve this specific prob-
lem.

3. EXTENDING NDEF
Since NDEF is an OSC namespace specification, it can be
extended as new functionality is needed. After providing
some background about the design of NDEF, the follow-
ing subsections describe the new extensions to the specifi-
cation. Note that, in the extended message descriptions,
types shown in parenthesis are optional. Parenthesis are
not used in actual NDEF type tags, as per the basic OSC
specification.

3.1 Background
The NDEF specification [5] fits the Object-oriented Pro-
gramming (OOP) style [17] described by Schmeder, et al
but with no special characters to distinguish objects and
methods. Instead, the terms used in the namespace are ei-
ther simple nouns or verbs, with nouns being objects (OSC

containers) and verbs being (OSC) methods. The root con-
tainer for all NDEF messages is /ndef and there are two
objects under the root, /connection and /message.

The use of the object-oriented style in NDEF is to strongly
emphasize the human readable nature of both OSC gener-
ally and NDEF specifically. The intention behind the cre-
ation of NDEF is to provide a means to help people manage
their performance systems rather than to provide a full zero-
configuration networking [2] system. In other words, NDEF
is for people who want to have both ease of use while still
retaining full control over their performance systems.

3.2 Connection Management
In NDEF, establishing a connection is really about identify-
ing a node. The following NDEF extensions help with both
node identification and with testing connections between
nodes.

3.2.1 Labelling
All NDEF messages provide an IP address and port number
(the “si” in all type tags) that identify the source of the
message. As such, the minimal form of an NDEF message
is:

/ndef/[container]/[method] [IP address] [port]

This helps clients and servers identify each other. How-
ever, IP addresses and port numbers might be harder to re-
member for people looking at that information. Being able
to identify a node with a human-readable name can be help-
ful. This is the basis for the existence of the DNS system
[12]. In most circumstances, using DNS in networked mu-
sic performances is not ideal. To allow for human-readable
names without having to use DNS, NDEF connection mes-
sages now have an optional label string. Labels can be par-
ticularly useful when several nodes are present such as in
laptop orchestras.

A label can be set when a connection is requested by
adding an optional string argument to the request:

/ndef/connection/request,si(s)

The following is an example using the string “laptop1” as
a label for the node at address 192.168.1.1 and port 7000:

/ndef/connection/request, "192.168.1.1" 7000

"laptop1"

Labels can also be set on connection replies:

/ndef/connection/accept,si(s)

Including the label string in the connection /request or
/accept message makes it easy to set labels during node
setup. In other situations, it may be necessary to change
the name of a connection label after a connection has been
established. In order to facilitate that, a new /label com-
mand is part of the specification:

/ndef/connection/label,sis

The last argument in the /label command is the label
string to set on the receiver as with the ”laptop1” example
label described earlier. When a label has been accepted,
the responder can send a /mark message to the requester.
The term mark is used for this message in both the sense
of taking notice and as another word for a label.

/ndef/connection/mark,si(s)

The mark message has an optional string for a label to
return to the requester in case the responding node already
has a label and wants to provide that to the requester. The
handling of label conflicts is implementation dependent to
allow for flexibility.

Proceedings of the International Conference on New Interfaces for Musical Expression

344



3.2.2 Pinging
The way that connections are handled via NDEF is con-
ceptually similar to the three-way handshake used in TCP
[1]. However, unlike TCP, after an NDEF connection is es-
tablished, a node may become unavailable while still being
“connected”. Once a connection is established, it is useful
to be able to test that connection. To allow for connection
testing, NDEF now has a /ping command:

/ndef/connection/ping,si

If the node receiving the /ping message is available, it
will send an /echo message to the originating node:

/ndef/connection/echo,si

NDEF ping messaging is similar to the ICMP protocol
[16] used by the ping utility available with most operating
systems. While an ICMP ping is useful for determining
the general availability of a node on the network, it cannot
determine when both OSC messaging and NDEF messaging
are available. A node might be available on the network
without either service running.

The /ping and /echo exchange can be used to determine
both availability and round-trip time (latency) though tim-
ing is entirely implementation dependent. NDEF imple-
mentations also are free to determine how frequently /ping
messages are sent and what sort of time-out mechanism is
in place when /echo messages have not been received.

The /ping and /echo exchange is useful, for example, in
a laptop orchestra. Often it is not always clear that nodes
(laptops) in the orchestra are actually receiving the intended
OSC messages. With the NDEF /ping and /echo, laptops
could be periodically polled to determine whether they are
actually receiving OSC messages, making it easier to iden-
tify nodes that are not receiving messages.

3.3 Message Management
Using NDEF, nodes can exchange messages in their OSC
namespace, allowing namespaces to be synchronized.

3.3.1 Counting
When exchanging messages between nodes, it can be use-
ful to know the number of messages that should be ex-
changed. By getting the number of messages, a node can
know whether it has all of the messages contained in an-
other node. NDEF now has a /count command for getting
the number of messages from a remote node:

/ndef/message/count,si

The receiving node can then send a /tally message with
the number of messages it contains. The last integer argu-
ment in /tally is the message count.

/ndef/message/tally,sii

With a /count and /tally exchange, a node can check the
message count from another node to validate the number
of messages it has received from a message request and to
resend the request if necessary.

3.3.2 Editing
A set of new message editing extensions allow nodes to go
beyond the exchanging of namespaces. The new extensions
enable nodes to add, remove and replace the messages of
other nodes, allowing for namespace synchronization. By
synchronizing namespaces with the extended NDEF, the
task of having OSC clients and servers share a common
namespace is made easier.

The new /add message allows a node to add a message
to another node.

/ndef/message/add,sis

The following example adds a new message called“/foo/bar”
to the receiving node’s namesapce:

/ndef/message/add, "192.168.1.1" 7000 "/foo/bar"

Each /add contains a single message but multiple /add
messages can build an entire namespace on another node.

Messages can also be removed from a node with the new
/remove message:

/ndef/message/remove,sis

This message removes“/foo/bar”from the receiving node:

/ndef/message/remove, "192.168.1.1" 7000

"/foo/bar"

The new add and remove extensions having the following
basic structure:

/ndef/message/[method] [IP address] [port] [OSC

message]

The OSC message argument should include the address
pattern and the type tag, formatted as a standard OSC
message. Arguments should not be included.

A message can be replaced with another message using
/replace:

/ndef/message/replace,siss

The following /replace command replaces“/foo/bar”with
“/bar/foo”:

/ndef/message/replace, "192.168.1.1" 7000

"/foo/bar" "/bar/foo"

The replace extension has four arguments with the last
two arguments being the old message string and the new
message string that will replace it. The general structure of
replace messages:

/ndef/message/replace [IP address] [port] [old

message] [new message]

Of the three new messages, the /replace message is the
most powerful since the fact that it replaces a message
means that the mapping that used the old message could
still be valid with the new message. By retaining the map-
ping, the OSC client could simply send the new message
without having to know the details of the mapping on the
server.

The /add, /remove, and /replace messages are not just
meant to be sent to OSC servers that contain mappings.
They can also be sent from OSC servers to clients used for
control. This allows for two-way namespace synchroniza-
tion.

3.4 Acknowledging Requests
Most of the methods associated with the two containers,
/connection and /message, come in pairs, a requesting method
and an acknowledging method. The names used for each
pair reflect their purpose as well as delineating their status
as a request or an acknowledgement. Table 1 summarizes
the pairs.

None of the editing messages has an equivalent acknowl-
edging message. Instead, when a requester makes edits to
messages on a receiving node, the requester can simply make
a new message request to determine whether the new mes-
sages have been accepted by the receiving node.

Proceedings of the International Conference on New Interfaces for Musical Expression

345



Container Requesting Acknowledging
/connection /request /accept

/ping /echo

/label /mark

/message /request /reply

/count /tally

Table 1: A summary of requesting and acknowledg-
ing methods.

3.5 Implementation
The JunctionBox [4] interaction toolkit features the first full
implementation of NDEF. Since JunctionBox is open source
software, developers wanting to implement NDEF can use
the JunctionBox code as a template.

4. CONCLUSIONS
Extending the capabilities of the NDEF specification makes
it more useful for the setup of OSC-based networked per-
formance systems. The following setup-related issues have
been specifically addressed in the new NDEF extensions:

• The specification now includes the ability to label con-
nections with a human-readable string.

• New ping messages allow a node to be pinged about
the status of both OSC and NDEF.

• Nodes can now be queried about the number of mes-
sage that they contain, allowing nodes to determine
whether they have exchanged all messages and to send
a new request if the message counts do not match.

• Message management among nodes is made easier by
the inclusion of new editing messages that enable nodes
to add, remove and replace messages on other nodes,
allowing for namespace synchronization.

5. ACKNOWLEDGEMENTS
We would like to thank the University of Calgary, OCAD
University, NSERC, GRAND, SurfNet, AITF, and SMART
Technologies for research support.

6. REFERENCES
[1] V. Cerf, Y. Dalal, and C. Sunshine. Specification of

internet transmission control program.
http://tools.ietf.org/html/rfc675, 1974.

[2] S. Cheshire. Zero configuration networking (zeroconf).
http://www.zeroconf.org/, 2013.

[3] F. Richard Moore. The Dysfunctions of MIDI.
Computer Music Journal, 12(1):19–28, 1988.

[4] L. Fyfe. JunctionBox. http://innovis.cpsc.
ucalgary.ca/Software/JunctionBox, 2014.

[5] L. Fyfe. The Nexus Data Exchange Format
Specification. http://innovis.cpsc.ucalgary.ca/
Research/NDEFSpecification, 2014.

[6] L. Fyfe, A. Tindale, and S. Carpendale. Node and
Message Management with the JunctionBox

Interaction Toolkit. In Proceedings of the Conference
on New Interfaces for Musical Expression, pages
520–521, 2012.

[7] A. R. Jensenius, T. Kvifte, and R. I. Godøy. Towards
a Gesture Description Interchange Format. In
Proceedings of the Conference on New Interfaces for
Musical Expression, pages 176–179. IRCAM–Centre
Pompidou, 2006.

[8] S. Jordà, M. Kaltenbrunner, G. Geiger, and
R. Bencina. The reacTable*. In Proceedings of the
International Computer Music Conference, pages
579–582, 2005.

[9] M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. TUIO - A Protocol for Table Based
Tangible User Interfaces. In Proceedings of the 6th
International Workshop on Gesture in
Human-Computer Interaction and Simulation,
Vannes, France, 2005.

[10] J. Malloch, S. Sinclair, and M. M. Wanderley. From
Controller to Sound: Tools for Collaborative
Development of Digital Musical Instruments. In
Proceedings of the International Computer Music
Conference, 2007.

[11] J. Malloch, S. Sinclair, and M. M. Wanderley.
Libmapper (A Library for Connecting Things). In
Proceedings of the International Conference on
Human Factors in Computing Systems, pages
3087–3090, 2013.

[12] P. Mockapetris. Domain Names - Concepts and
Facilities. http://tools.ietf.org/html/rfc1034,
1987.

[13] N. Peters, T. Lossius, and J. C. Schacher. SpatDIF:
Principles, Specification, and Examples. In
Proceedings of the 9th Sound and Music Computing
Conference, pages 500–505, 2012.

[14] T. Place and T. Lossius. Jamoma: A Modular
Standard for Structuring Patches in Max. In
Proceedings of the International Computer Music
Conference, 2006.

[15] T. Place, T. Lossius, A. R. Jensenius, N. Peters, and
P. Baltazar. Addressing Classes by Differentiating
Values and Properties in OSC. In Proceedings of the
Conference on New Interfaces for Musical Expression,
2008.

[16] J. Postel. Internet Control Message Protocol.
http://tools.ietf.org/html/rfc792, 1981.

[17] A. Schmeder, A. Freed, and D. Wessel. Best Practices
for Open Sound Control. In Linux Audio Conference,
2010.

[18] A. W. Schmeder and M. Wright. A Query System for
Open Sound Control. In OpenSoundControl
Conference, 2004.

[19] M. Wright. The Open Sound Control 1.0
Specification.
http://opensoundcontrol.org/spec-1_0, 2002.

[20] M. Wright. Open Sound Control: an enabling
technology for musical networking. Organised Sound,
10(3):193–200, 2005.

Proceedings of the International Conference on New Interfaces for Musical Expression

346




