Proceedings of the International Conference on New Interfaces for Musical Expression

SynthAssist: Querying an Audio Synthesizer by Vocal
Imitation

Mark Cartwright
Northwestern University
EECS Department
mcartwright@u.northwestern.edu

ABSTRACT

Programming an audio synthesizer can be a difficult task
for many. However, if a user has a general idea of the sound
they are trying to program, they may be able to imitate it
with their voice. This paper presents SynthAssist, a system
for interactively searching the synthesis space of an audio
synthesizer. In this work, we present how to use the sys-
tem for querying a database of audio synthesizer patches
(i.e. settings/parameters) by vocal imitation and user feed-
back. To account for the limitations of the human voice, it
uses both absolute and relative time series representations of
features and relevance feedback on both the feature weights
and time series to refine the query. The method presented
in this paper can be used to search through large databases
of previously existing “factory presets” or program a syn-
thesizer using the data-driven approach to automatic syn-
thesizer programming.

Keywords

synthesizer interface, query-by-example, audio retrieval,
voice controlled interfaces

1. INTRODUCTION

As software-based synthesizers have become more advanced,
their interfaces have become more complex and therefore
harder to use. For example, Apple Inc.’s ES2 synthesizer
has 125 controls, mostly consisting of knobs, buttons, and
sliders. If those controls were simply binary switches, the
control space would consist of 2'?® (i.e. 10%®) possible com-
binations. Controls with more settings (e.g. knobs and slid-
ers) allow even more combinations. Fully exploring such a
large space of options is difficult. Compounding this prob-
lem is the fact that controls often refer to parameters whose
meanings are unknown to most (e.g. the ‘LFO1Asym’ pa-
rameter on Apple’s ES2 synth).

For many musicians, the opacity of the controls, combined
with the large number of possible combinations translates
into an inability to actualize one’s ideas. Even for experi-
enced users, the tedium of these interfaces takes them out of
their creative flow state, hampering productivity. Although
simpler interfaces do exist (e.g. Apple Inc.’s GarageBand),
their simplicity is limiting. They lack the flexibility of the
complex interfaces, resulting in a small timbre palette con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’ 14, June 30 — July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

363

Bryan Pardo
Northwestern University
EECS Department
pardo@northwestern.edu

structed of a small number of factory presets, templates,
and parameters with few creative options. Some manufac-
turers address this problem by having many, many presets
(e.g. Native Instruments Kore Browser). However, search-
ing through a vast number of presets can be a task as daunt-
ing as using a complex synthesizer.

In this work, we present SynthAssist, a system that inter-
actively helps the user find their desired sound (synthesizer
patch) in the space of sounds generated by an audio synthe-
sizer. The goal is to make synthesizers more accessible, let-
ting users focus on high-level goals (e.g. ‘sound brassy’) in-
stead of low-level controls (e.g. “What does the LFO1Asym
knob do?’). The inspiration for SynthAssist was how one
might interact with a professional music producer or sound
designer: imitate the desired outcome vocally (e.g. “make
a sound that goes like <sound effect made vocally>", have
the producer design a few options based on the example,
give them evaluative feedback (e.g “that doesn’t sound as
good as the previous example.”)

With SynthAssist, a user can quickly and easily search
through thousands of synthesizer sounds to find the desired
option. The user first provides one or more soft examples
(queries) that have some, but not all, of the characteris-
tics of the desired sound. The soft examples can either be
vocal imitations of the desired sound or existing recordings
that are similar to the desired sound. Given these examples,
SynthAssist guides the user in an interactive refinement pro-
cess, where the system presents sounds for the user to rate.
Based on these ratings, the system refines its estimate of
the user’s desired concept and learns which audio features
are important to the user so that it can present sounds
that more closely matches the desired concept. While this
method could potentially be used for other audio Query-
By-Example (QBE) applications (e.g. searching through a
sample or sound effects database), it has been particularly
designed for searching synthesizer and musical instrument
sound databases.

2. RELATED WORK
2.1 Synthesizer Interfaces

Research related to the development of intuitive interfaces
to audio synthesizers has been ongoing for several decades,
with numerous approaches having been proposed [1,3,5,9-
11,14,19-22]. Researchers have sought to reduce the dimen-
sionality of the synthesis parameter space by re-mapping
controls to perceptual dimensions [20,21], high-level descrip-
tive dimensions [5, 10, 11], exploratory maps [1, 14], other
timbral spaces (e.g. the voice [6,19]) and more. Researchers
have also developed methods to allow users to explore the
synthesis space using interactive genetic algorithms that
tune the synthesis parameters [3]. While good for explo-
ration, the number of evaluations required to program a
specific desired sound using genetic algorithms is far too

Proceedings of the International Conference on New Interfaces for Musical Expression

© synthAssIST

Audio Recorder

[S EY

Ratings
Add

File Browser
| Add Audio File

Audio Object Information

Label: 15

Audio Object ID: 749
Distance: 48.7191534041
OSC Type: 1

OSCFreq: 2093.0

Amp Env Attack: 0.01
Amp Env Decay: 0.25
Amp Env Sustain: 0.0
Amp Env Release: 0.01
Filter Env Attack: 0.01

ZOOM SLIDER\

TOP RESULTS

1

N

w

[

Filter Env Decay: 0.01
Filter Env Sustain: 1.0
Filter Env Amt: 1.0
Filter Res: 0.1

LFO Dest: 1.0

LFO Amt: 0.5

LFO Freq: 60.0
Distortion Amt: 1.0

RESULT
TO RATE

PREVIOUS

Y

~

)

00000000

RATING

START OVER

Figure 1: Screenshot of the SynthAssist interface.

great to be completed by a human. Another approach is
to have the computer compute the fitness function in an
optimization algorithm [7-9,22]. However, in these “tone
matching” approaches the user must provide an existing au-
dio file of the exact desired sound, a requirement that may
be difficult for the user to satisfy.

Recent work suggests that vocal imitation is a promising
way of communicating audio concepts to software [12] and
that comparing time series representations would be a good
approach to doing so [4]. However, to date, only one very
limited study has used vocal imitation for audio retrieval [2].
There has also been some research into using the voice for
continuous real-time control of a synthesizer [6,19]. How-
ever, in many scenarios, this is not feasible and /or desirable.
In our system, the user’s voice is needed when initially pro-
gramming the synth but is not required when performing
with the synth.

3. THE SYNTHASSIST SYSTEM

In the SynthAssist system, we want to support vocal im-
itation queries. Our approach is similar to the approach
suggested in [4]. The motivation is that while the human
voice has a limited timbral range [19], it is very expres-
sive with respect to how it changes in time. For example,
your voice may not be able to exactly imitate your favorite
Moog bass sound, but you may be able to imitate how the
sound changes over the course of a note (e.g. pitch, loud-
ness, brightness, noisiness, etc.). When comparing sounds
in SynthAssist, we focus on these changes over the course
of a note.

The interaction for a session in SynthAssist is as follows:

1. To communicate their desired audio concept, the user
gives one or more initial input examples by either
recording a new sound (e.g. vocalize an example) or
choosing a prerecorded sound.

2. The user rates how close each example is to the target
sound.

3. Based on the ratings, SynthAssist estimates what the
target sound must be like.

364

4. SynthAssist generates suggestions from the synthe-
sizer that are similar to the estimated target sound.

5. The user rates how close the suggestions are to the
desired target sound.

6. If a suggestion is good enough, return the synthesizer
parameters. Else, repeat Steps 3 through 6.

Figure 1 shows a screenshot of SynthAssist. Each sug-
gestion is represented by one of the colored circles. When
a user clicks on a suggestion, the sound plays. Users rate
how similar suggestions are to their target by moving them
closer to or farther from the center, “hub”, circle. If the sug-
gestion is irrelevant, the user can inform SynthAssist and
remove it from the screen by double clicking on it. The user
plays a synth patch by either single clicking or moving (rat-
ing) a colored circle. Dragging a suggestion to the center of
the circle indicates indicates this is the desired sound and
terminates the interaction. The overall system architecture
is shown in Figure 2.

3.1 Query and Search Key Representation

A query is an example provided to the system to guide the
search for the desired item (a synthesizer sound) from a
database. Each item in the database consists of a sample
(an audio recording), a patch (the set of synthesizer param-
eters required to create the sample), and a search key (an
abstract representation of the sample’s audio features).

All audio (queries and samples in the database) is summed
to mono and RMS-normalized. Features for the search keys
are extracted using a frame size of 1024 and a hop size of
512 at a sample rate of 32 kHz. Focusing on these changes
through time for both queries and search keys, we extract
the time series of a small number of high-level features from
the audio: pitch, loudness, inharmonicity, clarity, spectral
centroid, spectral spread, and spectral kurtosis. Definitions
for all of the features but the clarity measure can be found
in [17]. Similar to autocorrelation height, the clarity mea-
sure is a measure of how “coherent a note sound is” [13].
We then augment this representation by also standardizing
each of these features with themselves to capture the rela-
X — lx

Ox

tive changes through time (e.g. Xstq = where x is

Proceedings of the International Conference on New Interfaces for Musical Expression

extract
features

-
- -
"raamm=®

performed by the user

performed by the machine

refine
query
l A 4
update h ’
feature || S€3C
weights database database

) |

o

0‘ ”
L0 find e
.

O, results ||
*. sound? o -
.

.
.
. .
CIA4
5

YES
v

return
synth
paramaters

Figure 2: System flow of SynthAssist.

the time series and ux and ox are the mean and variance of
X).

Therefore we represent each query and search key as 14
time series, one per feature: 7 “absolute features” and 7
“relative features”. While many QBE systems characterize
these time series as either distributions (e.g. modeling them
with a Gaussian Mixture Model) or extract statistics and
features (e.g. mean, variance, slope, modulation), we re-
tain the time series representation to capture the temporal
evolution of each sound. We represent each query or search
key as a matrix where each feature time series is a row of
length N, where N is the number of feature frames, e.g.
X = [X17 e ,X14}T c R14XN.

3.2 Rank Calculation

To search the database we calculate the distance from the
query to each search key. However, the query and the keys
may not be of the same length. Therefore, we use a distance
measure based on dynamic time warping (DTW) [15] and
treat each feature time series independently. We calculate
distance using the following equation:

14

Dxyy =Y w,DTW (xi,y:)
i=1

where ¢ is the index of the 14 features, X and Y are the

query and search key matrices, x; and y; are the time series

of the i*® feature for the query and key, w; is the weight-

ing coefficient of the i*® feature, and DTW (x;,y;) is the

dynamic time warping distance between x; and y;.

After calculating distance for each key, the system re-
turns two sets of results: top results and rating results. The
first set, top results, consists of the 8 nearest neighbors in
increasing order of the distance function in Equation 1. Ini-
tially, the weighting coefficients, w, are all equal, but after
the first search round, they are refined as specified in Sec-
tion 3.3. Therefore, the top results may change each round
(where a round is steps 3 to 6 in Section 3). This set of
results appears on the right hand side of the interface as
the array of grey circles as shown in Figure 1.

Since the top results may consist of many similar items,
rating all of them may not give us much useful information.
Therefore, the second set of results, rating results, consists
of the examples we want the user to rate. This includes
the nearest key that has not been rated yet and also the

(1)

365

keys which are nearest in each of the 14 feature dimensions
(i.e. the keys that were closest while just considering each
feature distance, DTW (X;,y:), independently). This is a
computationally efficient way of increasing the diversity of
the results while also maintaining relevance. However, to
avoid crowding the screen with too many results, we ran-
domly select 7 of these 14 keys for a total of 8 keys in rating
results each round. The rating results appear as the small
colored circles radiating out of the “target hub” in Figure 1.

3.3 User Feedback and Query Refinement

Once presented with the two sets of results (see Section 3.2),
the user can listen to both sets and can potentially select
their desired synth example, returning the parameters of
the synth. If their desired synth example is not in the re-
sults however, the user can give feedback to the system to
improve the search. To give feedback, the user marks which
of the rating results are irrelevant (by double clicking to re-
move the results) and rates each remaining relevant result
by moving it closer to the center (more relevant) or far-
ther from the center (less relevant). All relevant results are
added to the relevant set, Z. The relevant set includes all
the relevant examples for the current search session and the
initial examples provided by the user.

Our initial estimate of the target concept is given by the
query example. We then refine our target concept by creat-
ing a weighted average of the feature time series of relevant
examples, weighting examples based on the user-provided
ratings. In combining these, we are dealing with time series
that may be of different lengths, since different synthesizer
parameter settings can result in sounds of different lengths.

Dynamic time warping [15] can help us out in this sce-
nario. We adopt Prioritized Shape Averaging (PSA) pre-
sented in [16] to create a weighted average of the time series.
To average many time series, this method first performs ag-
glomerative clustering (a type of hierarchical clustering that
results in a binary tree) on the time series, using DTW as
the distance function. It then aligns (using DTW) and aver-
ages pairs of time series from the bottom of the tree on up,
weighted according to the user-provided rating. For further
details on PSA, we refer the reader to [16].

Again, we treat each feature independently, and we use
the PSA method to average the relevant time series for each
feature. The resulting weighted average is our new estimate

Proceedings of the International Conference on New Interfaces for Musical Expression

of the target concept, called the refined query X.

In addition to refining our query, we also refine our dis-
tance measure in response to the user’s relevance feedback.
Recall that each of the examples presented to the user for
rating is the closest one to the query along one of the 14
feature dimensions. To refine the weight w; applied to each
of the 14 features we use a simple inverse standard devia-
tion relevance feedback mechanism, similar to those in the
MARS and MindReader (when constrained to weight each
feature dimension independently) systems [18]. However,
since we are dealing with time series, we calculate distance
in the weighted variance function using DTW rather than
the difference function. The calculation is as follows:

1

|Z] 2

iz > sk DTW (yi,%:)°
k=1 5k k=1

! @)

W; =

where w; is the weight of the ith feature, si is the user’s
similarity rating, y¥ is the time series of the i*" feature of
the k*® relevant example, and X; is the time series of the i*®
feature of the refined query.

4. FUTURE WORK

Currently, the system can only search synthesizer parame-
ter combinations that have been added to the database. In
our initial tests, we used 10,000 samples from a 15 param-
eter synthesizer. For more complex synthesizers, an ade-
quate sampling may not be possible due to space require-
ments. We plan to extend this work to also search the full
parameter space, while maintaining the current interaction
paradigm. We also plan on running a user study that eval-
uates this software both as an audio retrieval tool and as a
creativity support tool.

5. CONCLUSION

In this work, we presented system for searching the space
of a synthesizer by querying a database of audio synthe-
sizer patches using “soft-examples” (i.e. examples that have
some but not all of the characteristics of the desired sound)
such as vocal imitations as input. To allow for such “soft-
examples” and account for the limitations of the human
voice, the system leverages the information in how percep-
tual audio features of the sounds change over time, using
both absolute and relative time series representations of fea-
tures and a weighted dynamic time warping as the distance
function. The query and the feature weights are interac-
tively refined through user-provided relevance feedback on
the search results. Using this system, a user simply needs
to know what they are looking for, give it an initial example
(e.g. using their voice to imitate the target), and be able to
rate how similar example sounds are to their target sound.

6. ACKNOWLEDGEMENTS

This work was supported by NSF Grant Nos. 11S-1116384
and DGE-0824162.

7. REFERENCES

[1] R. Bencina. The metasurface: applying natural
neighbour interpolation to two-to-many mapping. In
Proc. of NIME, 2005.

D. S. Blancas and J. Janer. Sound retrieval from voice
imitation queries in collaborative databases. In Proc.
of AES 53rd Int’l Conference, London, UK, 2014.

P. Dahlstedt. Evolution in creative sound design.
Evolutionary Computer Music, pages 79-99, 2007.

2]

366

[4] P. Esling and C. Agon. Multiobjective time series
matching for audio classification and retrieval. IEEE
Transactions on Speech Audio and Language
Processing, 21(10):2057-2072, 2013.

R. Ethington and B. Punch. Seawave: A system for
musical timbre description. Computer Music Journal,
18(1):30-39, 1994.

S. Fasciani and L. Wyse. A voice interface for sound
generators: adaptive and automatic mapping of
gestures to sound. In Proc. of NIME, 2012.

R. Garcia. Growing sound synthesizers using
evolutionary methods. In Proc. of Workshop on
Artificial Life Models for Musical Applications, 2001.
S. Heise, M. Hlatky, and J. Loviscach. Aurally and
visually enhanced audio search with soundtorch. In
Proc. of International Conference Extended Abstracts
on Human factors in Computing Systems, 2009.

A. Horner, J. Beauchamp, and L. Haken. Machine
tongues xvi: Genetic algorithms and their application
to fm matching synthesis. Computer Music Journal,
17(4):17-29, 1993.

C.-Z. A. Huang, D. Duvenaud, K. C. Arnold,

B. Partridge, J. W. Oberholtzer, and K. Z. Gajos.
Active learning of intuitive control knobs for
synthesizers using gaussian processes. In Proc. of Int’l
Conference on Intelligent User Interfaces, Haifa,
Israel, 2014.

C. G. Johnson and A. Gounaropoulos. Timbre
interfaces using adjectives and adverbs. In Proc. of
NIME, 2006.

G. Lemaitre and D. Rocchesso. On the effectiveness of
vocal imitations and verbal descriptions of sounds.
The Journal of the Acoustical Society of America,
135(2):862-873, 2014.

P. McLeod and G. Wyvill. A smarter way to find
pitch. In Proc. of Int’l Computer Music Conference,
2005.

A. Momeni and D. Wessel. Characterizing and
controlling musical material intuitively with geometric
models. In Proc. of NIME, 2003.

M. Miiller. Dynamic time warping. In Information
Retrieval for Music and Motion, pages 69—84.
Springer Berlin Heidelberg, 2007.

V. Niennattrakul and C. A. Ratanamahatana. Shape
averaging under time warping. In Proc. of Int’l
Conference on Electrical Engineering/FElectronics,
Computer, Telecommunications and Information
Technology, 2009.

G. Peeters. A large set of audio features for sound
description (similarity and classification) in the
cuidado project. Technical report, IRCAM, 2003.

Y. Rui and T. Huang. Optimizing learning in image
retrieval. In Proc. of IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages
236—243 vol.1, 2000.

D. Stowell. Making music through real-time voice
timbre analysis: machine learning and timbral control.
PhD thesis, Queen Mary University of London, 2010.
R. Vertegaal and E. Bonis. Isee: An intuitive sound
editing environment. Computer Music Journal,
18(2):21-29, 1994.

D. L. Wessel. Timbre space as a musical control
structure. Computer Music Journal, 3(2):45-52, 1979.
M. J. Yee-King. Automatic sound synthesizer
programming: techniques and applications. PhD
thesis, University of Sussex, 2011.

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

