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ABSTRACT

Motion sensing technologies enable musical interfaces where
a performer moves their body “in the air” without manip-
ulating or contacting a physical object. These interfaces
work well when the movement and sound are smooth and
continuous, but it has proven difficult to design a system
which triggers discrete sounds with precision that allows
for complex rhythmic performance.

We conducted a study where participants perform “air-
drumming” gestures in time to rhythmic sounds. These
movements are recorded, and the timing of various move-
ment features with respect to the onset of audio events is
analyzed. A novel algorithm for detecting sudden changes
in direction is used to find the end of the strike gesture.
We find that these occur on average after the audio onset
and that this timing varies with the tempo of the move-
ment. Sharp peaks in magnitude acceleration occur before
the audio onset and do not vary with tempo. These re-
sults suggest that detecting peaks in acceleration will lead
to more naturally responsive air gesture instruments.
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1. INTRODUCTION
1.1 Air-controlled Instruments

We typically think of a musical instrument as an artifact
under manipulation by a human for the purposes of mak-
ing musical sound. In most acoustic instruments the energy
for producing sound is provided by human movement in di-
rect contact with the instrument: striking a drum, bowing
or plucking a string, blowing air through a flute. In in-
struments where the acoustic energy is not provided by the
player, such as a pipe organ or the majority of electronic
and digital instruments, control of the instrument relies on
manipulation of a key, slider, rotary knob, etc.

With the advent of electronic sensing it became possible
to control an instrument with gestures “in the air.” Early ex-
amples include the Theremin, which is controlled by empty-
hand movements in space, and the Radio Baton [8] and
Buchla Lightening, which sense the movement of hand-held
batons.
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The recent proliferation of affordable motion sensing tech-
nologies (e.g. the Microsoft Kinect) has led to a surge in
“air-controlled” new musical interfaces where a performer
moves their body without manipulating or contacting a
physical object. These interfaces seem to work well when
the movement and control of sound are smooth and contin-
uous. However, in our experience and observations it has
proven difficult to heuristically design a system which will
trigger discrete sounds with a precision that would allow for
a complex rhythmic performance. In such systems the rela-
tionship between a gesture and the timing of the resulting
sound often feels wrong to the performer.

1.2 Air-Gestures

We define air-gestures as purposeful movements a performer
makes with their body in free space in order to control a
sound-generating instrument that is designed to have an im-
mediate response. Discrete air-gestures are meant to trigger
a sonic event at a precise time, and are contrasted with con-
tinuous air gestures in which some movement quality (e.g.
the height of the hand) is continuously mapped to some
sonic variable (e.g. a filter cutoff frequency.)

In popular usage air-drumming refers to miming the ges-
tures of a percussionist in time to another musician’s (usu-
ally prerecorded) performance. For the sake of this research
we expand this to include gestures in which a performer
mimics the striking of an imaginary surface in order to trig-
ger a sound with a sudden attack. Air-drumming is not the
only type of discrete air-gesture. For example, jerky move-
ments, such as in the dance style known as “popping and
locking” might also be used to trigger sounds.

1.3 Motivation and overview

The goal of this research is to improve the design of air-
controlled instruments so that discrete air-gestures can be
reliably triggered with timing that feels natural to the per-
former. To this end, we conducted a study of air-drumming,
in which participants gesture in time to simple rhythmic
sounds.

We record participants’ movements in a motion capture
system, and analyze this data to address the following ques-
tion: What aspect of the air-drummer’s movement corre-
sponds to the sound? In other words, we assume that when
a person makes a discrete air-gesture, they do something
with their body to create an internal sense of a discrete
event, and that they intend this event to correspond to the
sonic event of a drum sound. We want to know what this
“something” is, and to characterize its timing with respect
to the sonic event.

We examine two candidate movement events: a hit is
the moment where the hand suddenly changes direction at
the end of a strike gesture, and acceleration peaks, which
occur before the hit as the hand decelerates. We analyze
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the timing of these events with respect to the onset time of
their corresponding audio events.

Our air-drummers mime in time to a musical performance,
but we assume that the correspondence between gesture and
sound would be the same if they were triggering the sounds
themselves. Thus we expect the results of our analysis to
reliably describe sound-generating discrete air-gestures and
be useful in improving the timing of air-instruments. In or-
der to test this assumption we compared movements in time
to prerecorded sounds with movements in time to percussive
sounds made vocally by the participants themselves.

1.4 Related Work
1.4.1 Discrete air-gesture performance systems

The Radio Baton [8] senses the spatial location of two hand-
held wands. To trigger discrete sound onsets it uses a spatial
height threshold which corresponds to the height at which
the baton contacts the surface of the sensor, giving the user
tactile feedback. So we say that while the Radio Baton
senses continuous air-gestures, the discrete events which it
enables are not air-gestures.

A number of systems which trigger percussion sounds
from air-gestures have been implemented as part of real-
time performance systems. Havel and Cathrine [4] track
sensors on the ends of drum sticks and use a velocity thresh-
old to trigger sounds. They also note that peak velocity
amplitude is correlated to the time between strikes.

Kanke et al. [6] use data from acceleration and gyro sen-
sors in drum sticks to differentiate between striking a real
percussion instrument and an air-instrument. Strikes are
registered when the acceleration exceeds a threshold.

1.4.2  Studies of discrete air-gestures

A few studies of discrete air-gestures have been conducted.
Patola et al. [7] studied participants striking a virtual drum
surface in time to a metronome click, and compared the use
of a physical stick held in the hand with a virtual stick.
Drum sounds were triggered when the tip of the stick first
intersected a virtual horizontal drum surface at a specific
location. Amongst their findings was that drum hits lagged
behind metronome clicks by 20 ms, which they attribute to
the “perceptual attack time” of the clap sound they were
using.

Collicutt et al. [1] compared drumming on a real drum,
on an electronic drum pad, with the Radio Baton, and with
the Buchla Lightening II. In all cases they track the height
of the hand (even though their participants held sticks),
and use vertical minima to determine when strikes occurred.
However, they note that this did not work for a subject
whose strikes corresponded to smaller minima before the
actual minimum. (We also find in our study that strikes do
not always correspond to minima.) They found that using
the Lightening had the second best timing variability, and
attribute this to the different way in which users control
their movements when there is no tactile event.

1.4.3  Studies of real drum gestures

S. Dahl [3] made motion capture recordings of drummers
playing a simple rhythm on a real snare drum, and found
that subjects raised the stick higher in preparation for ac-
cented strikes and that preparatory height correlated with
higher peak velocity. For their analysis they detect hits
as points which satisfy two criteria: the local minima of
stick tip height must pass below a threshold, and the dif-
ference between two subsequent changes in vertical velocity
(roughly equivalent to the 3rd derivative of position, also
known as “jerk”) must surpass a threshold.
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repeat 4x

Figure 1: The stimulus rhythm. Slow notes are
labeled ‘S’ and fast notes ‘F’

1.4.4  Sensorimotor synchronization

Air-drumming in time to music is a form of synchronizing
movements to sound. Research into sensorimotor synchro-
nization goes back decades [9], and one of the primary find-
ings is that when tapping in time to an audible beat (usually
a metronome click), most people tap before the beat. This
“negative mean asynchrony” is often a few tens of millisec-
onds, but may be as great as 100 ms. This is relevant to
our work because we assume that, much like the subjects in
tapping experiments, our air-drummers are synchronizing
some physically embodied sensation to the beat.

As far as we know, the research we described in this paper
is the first detailed empirical analysis of drumming gestures
in time to percussive sounds.

2. STUDYING AIR-DRUMMING GESTURES

2.1 Experiment

The goal of our study is to understand what people do when
they perform air-drumming gestures in time to rhythmic
sounds, and how their movements correspond to the sounds.
The ultimate aim is to use these results to design better
discrete air-gesture-controlled instruments.

2.1.1 The tasks

We recorded the movements of people making air-drumming
gestures in time with a simple rhythm described below. Par-
ticipants performed two tasks. Task 1 is to gesture in time
with a recording of the rhythm. They were asked to gesture
as if striking a drum somewhere in front of them with a
closed empty right hand, and to act as if they are perform-
ing the sounds they hear. Since we are interested in gestures
someone might make while performing an air-instrument in
free space, we did not provide further specification as to the
location or style of the strike.

Task 2 is to vocalize the rhythm while gesturing as if they
are performing on a drum somewhere in front of them. They
create the rhythm themselves by saying the syllable “da”
or “ta” for each drum hit. These tasks are very different:
the first is to synchronize one’s movement to an external
sound, and the second is to simultaneously make sounds and
gestures which coincide. Neither of these are the task we are
interested in, i.e. playing sounds with discrete air-gestures.
By comparing the performance of these two tasks we hope
to understand whether one is a better proxy (section 2.3.1.)

The stimulus rhythm is shown in figure 1. We are inter-
ested in whether people’s gestures are different when per-
formed at different speeds, and so the rhythm is designed
to have an equal number of ‘slow’ notes (quarter notes with
rests in between), and ‘fast’ notes (quarter notes with no
rests.) We compare these two cases in section 2.3.2.

For task 1 the rhythm was played by the sound of a syn-
thesized tom drum at a tempo of 100 beats per minute
(where a beat is one quarter note.) For task 2 participants
heard a 4-beat metronome count at 100 bpm, after which
they performed and vocalized the rhythm without audio
accompaniment.

For each trial participants perform the rhythm four times
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Figure 2: A participant with markers and motion
capture cameras

in succession without stopping. Two trials are recorded for
each task, resulting in a total of 8 repetitions of the rhythm
for each task.

A third task was recorded in which participants performed
a similar rhythm which has notes of two dynamic levels (ac-
cented and unaccented.) The analysis and comparison of
these cases will be described in a future publication.

2.1.2 Equipment

Participants were outfitted with fourteen reflective mark-
ers on their right arm and upper torso (figure 2), and their
movements were recorded at 200 frames per second by a Mo-
tion Analysis motion capture system with twelve cameras
mounted around the participant.

Participants could read the rhythm on a music stand
1 meter to their front right. For task 1 the rhythm was
played over a Behringer MS40 studio monitor placed 1 me-
ter to the front left. For task 2, a metronome count-off was
played over the studio monitor, and participants’ vocaliza-
tions were recorded by an AKG C414 microphone placed
1 meter in front of them. All sounds were recorded into
the motion capture system at 20kHz via an analog input.
Stimulus and metronome sounds were played from Able-
ton Live and initiated at the beginning of each trial by the
experimenter.

2.1.3 Participants

We recruited ten participants with the requirement that
they have some experience playing a musical instrument
and that they be able to read music. The participants were
five females and five males, ranging in age from 22 to 57
years, with a median age of 23.5 years. All were right-
handed. They reported between 13 and 48 years of musical
experience, with a median of 16 years. Four participants
had formal dance training, and these reported receiving 3
to 7 years of training. Before recording data it was verified
that each participant could read the simple rhythms and
perform the desired tasks.

The procedure was approved by the internal review board
for human subjects research at Stanford University.
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2.2 Analysis
2.2.1 Detecting audio onsets

The first stage of analysis is to determine the onset times of
the audio events (the drum or vocal sounds) for each trial.
These onset times will act as a reference against which we
compare the timing of the movement features.

To detect audio onsets we pass the squared audio signal
in parallel through two DC-normalized one-pole low-pass
filters. These are used to estimate two energy envelopes
of the audio where one is “fast”, with a time constant of
0.5 ms, and the other is “slow”, with a time constant of
10 ms. When the ratio of the fast estimate over the slow
estimate exceeds a threshold, we register a potential onset.
Similar techniques have been used to detect the first arrival
time of echoes in geophysical prospecting [2], and have been
adapted for detecting audio onsets [5]. We remove potential
onsets for which the slow estimate is very low (these are
false events in the background noise), and those which occur
within 200 ms of an earlier onset (in order to keep only the
first moment of attack.)

2.2.2  Detecting hits

The first movement feature we examine is the end of the
striking gesture, which we refer to as a hit. In a real drum
strike the hit would correspond to the moment when the
drum stick hits the head of the instrument, imparts energy
into the instrument thus initiating the sound, and rebounds
in the opposite direction from which it came.

For a striking gesture in free space, where no physical con-
tact is made, where is the end of the strike? As Collicutt et
al. discovered [1], and as we found when inspecting our own
data, the hit does not necessarily correspond to the moment
when the minimum height is reached. Furthermore, we do
not restrict our participants’ movements to any particular
plane or direction (they are instructed to act as if they are
striking an invisible drum “somewhere in front of them”).
Thus we define a hit as the moment at the end of a striking
gesture where the hand suddenly changes direction.

To that end we designed a sudden-direction-change detec-
tor. The design takes inspiration from the onset detector
described in section 2.2.1, which compares slow and fast es-
timates of audio energy. Our direction-change detector uses
a slow and fast estimate of the hand’s 3D velocity vector.
The intuition is that during a sudden change of direction,
the slow estimate will lag behind the quickly reacting fast
estimate, and the angle between these two estimate vectors
will be large. Upon inspecting our data we found that the
moment we believed was the hit most reliably corresponded
to a positive peak in the rate of change of this angle.

Here is a detailed description of our sudden-direction-
change detector:

1. From the motion capture data extract the position
data for the hand (using the marker on the back of
the hand at the base of the third finger.) This is rep-
resented as three coordinates (z, y, and z) over time,
where x is the direction the participant is facing, and
z is upward.

2. Smooth the position data in each dimension by ap-
proximating each point as a weighted least-squares
quadratic fit of the point and its seven neighbors on
either side.?

Calculate the 3D velocity vector of the hand, vihand,
as the first difference of the smoothed hand position.

!Thanks to Jonathan Abel for suggesting this technique.
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Figure 3: Detecting the hit for a strike gesture

4. Create two smoothed versions of the velocity vector
by passing it through two “leaky integrators” (i.e. DC-
normalized one-pole lowpass filters.) One, Viow, has
a time constant of 100 ms, and the other, vy.s: has
a time constant of 5 ms. These are implemented as
recursive filters on the 3D velocity vector according to
the following difference equations:

Vfast[n] - (1 - afast)vhund[n] + afastvfast[n - 1}
Vislow [’ﬂ] = (1 - aslow)vhand[n] + Astow Vsiow [’ﬂ - 1}
where asiow and agqse, are the pole locations corre-

sponding to the slow and fast time constants.

. At each time point n calculate the angle 6 between
Vslow and Vfast:

[n] = cos™ " (

. Find all peaks of 04;0pe which exceed a threshold. We
consider the times of these peaks as the moment when
a movement changed direction and we store them as
candidate hit times.

(Vstow([n]; Vsast[n])
[Vstow[n][| - [Vsast[n]]l

. Calculate Osi0pe as the first difference of 6.

We then want to find the change of direction associated
with each strike gesture. That is we want those direction
changes which occur after a fast movement and near to an
audio onset. To find the hit for each audio onset we apply
the following algorithm:

1. Since a hit occurs after a fast movement of the hand,

we find all peaks of the magnitude hand velocity, ||[Vhandll,

which exceed a certain threshold.

. For each of these peaks we find the next candidate hit
time (i.e. a large peak in O0pe as described above.)

. To prevent choosing changes of directions that occur
after a preparatory upwards movement, we remove
hits for which the distance between the hand and the
shoulder is less than a threshold.

4. For each audio onset we find the hit candidate which
is closest in time, and define this as the hit time.

Does this method find the correct moment where a hit
occurs? There is no way to know for sure because the “hit”
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Figure 4: Detecting the hit for a more complex
strike gesture.

does not exist in any objective sense, i.e. we have no ground
truth. Figure 3 shows the detected hit time for a slow note
by one participant. Since the striking gesture happens pri-
marily in the z and z directions we plot those position com-
ponents. We see that the hit happens at extrema in both
these dimensions, and that the hit coincides with a distinct
minimum in the magnitude velocity.

However the striking gesture of another participant, shown
in figure 4, is more complex. This participant tended to add
a sharp hook to the end of their strike. This can be seen
by examining the position data, and is detected as multi-
ple direction changes (large peaks in 0sope). Our algorithm
chooses the first such peak which corresponds to an extrema
in the x direction and a sudden change of slope in magnitude
velocity.

2.2.3 Acceleration Peaks

While examining the data we noticed that large peaks in the
magnitude acceleration often occur close to the audio on-
set. For an unimpeded movement, acceleration of the hand
is the result of a muscular force, and so we hypothesize that
an acceleration peak may correspond to the internal move-
ment event that air-drummers create to correspond with
the sound. (In fact these peaks are decelerations as the
participant sharply brakes their strike.) In order to pick
the highest peak corresponding to each strike, we employ
the following algorithm:

1. Calculate the acceleration vector, a, as the first differ-

ence of the velocity vector calculated in step 3 above.

. Calculate magnitude of the acceleration vector, ||al|.

w

. Look for times where |ja|| first exceeds threshold
AccThrpign, and call these Tyyp.

. For each Ty, find the next point where ||al| passes
below threshold AccThriow, and call these Taown.-

. For each interval [Typ, Taown] find the time of the high-
est peak in ||a||, and save this as a prospective accel-
eration peak.

For each audio onset find the prospective acceleration
peak that is nearest in time, and define this as the
acceleration peak time for that onset.

Figure 5 shows the acceleration peak for the strike gesture
for a slow note. We can see that it occurs much closer to
the audio onset than the corresponding hit.
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Figure 5: Detecting the acceleration peak for a
strike gesture.

2.2.4 Timing Statistics

The audio onset times, hit times, and acceleration peak
times were calculated for each note, as described above. For
each hit time and acceleration peak time we subtract the
associated audio onset time to get the time offset (or asyn-
chrony) between the audio event (the onset of the sound)
and the detected movement event (a hit or an acceleration
peak). A negative offset means the movement event pre-
ceded the audio event, and a positive offset means it came
after. All subsequent analysis is performed on these offsets.

Since there were two trials for each task, we aggregate
the data from each trial for each participant, and then split
the data into the slow note and fast note conditions. For
each participant this leads to a total of 40 events for each
condition (5 events per 4-bar rhythm for each condition X
4 repetitions of the rhythm x 2 trials per task.)

In order to reject bad data due to detector errors or par-
ticipant mistakes, we remove events whose offset is greater
than half the time between notes (600 ms for slow notes, 300
ms for fast notes.) We then reject as outliers events which
lie more than two standard deviations from the mean for
each condition for each participant. This led to the rejec-
tion of 21 slow hits, 21 fast hits, 18 slow acceleration peaks,
and 23 acceleration peaks (out of 400 total for each case.)

For the following results we want to know whether var-
ious conditions differ in the greater population. We com-
pute the mean (or standard deviation) of each participant’s
offset times for the conditions we wish to compare. To in-
fer whether the two conditions differ in the population, we
conduct a two-sided paired-sample T-test of the ten partic-
ipants’ means (or standard deviations) for the two condi-
tions.

For example, to compare whether for task 1 the standard
deviation of hit times is different between slow notes and
fast notes, we first find the standard deviation of each par-
ticipant’s slow hits for task 1. Then we find the standard
deviations of each participant’s fast hits for task 1. We now
have 10 sample standard deviations for each condition, and
on these we conduct a T-test with 9 degrees of freedom.

2.3 Results
2.3.1 Which task is better?

The first question we want to answer is whether there is any
important difference between the two tasks the participants
performed. Task 1 was to gesture in time to drum sounds,
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Figure 6: Position data for 2 slow notes and 3 fast
notes.

and task 2 was to vocalize drum sounds while gesturing
along with them.

We compared both the means and standard deviations of
task 1 and task 2 across all conditions (the four combina-
tions of slow notes, fast notes, hits and acceleration peaks.)
We found two significant differences: for fast notes both hits
and acceleration peaks came slightly earlier in task 1, and
for slow notes both hits and acceleration peaks had slightly
higher standard deviations in task 1.

The differences were small, and the findings do not make
a compelling case for either task being better. However task
1 is a simpler activity, so for the remainder of this paper we
use only the data from task 1. As a sanity check the analyses
described below were also performed on task 2, and none of
the results contradict those reported here.

2.3.2 Are slow and fast notes different?

For most of our participants the gestures for slow notes had
pauses or bounces between them, while the gestures for fast
notes were simpler and more sinusoidal (see figure 6.)

For the sake of reliably triggering discrete air-gestures,
we care whether the offset times for hits and acceleration
peaks are different for slow and fast notes. If they are,
then an instrument which triggers sounds from discrete air-
gestures needs to somehow take into account the tempo and
rhythmic level of the intended notes.

We break this question into four separate tests:

(a) For hits, do slow and fast notes have different mean
offsets? Yes, slow hits are much later than fast hits
(T'(9) = 4.5366, p = 0.0014.)

(b) For hits, do slow and fast notes have different standard
deviations? No.

(c) Do slow and fast notes have different mean offsets for
acceleration peaks? No, the difference between fast and
slow hits does not exist for acceleration peaks.

(d) Do slow and fast notes have different standard devia-
tions of the offset for acceleration peaks? Yes, but only
slightly (T'(9) = 2.5592, p = 0.0307.)

Table 1 shows the mean offsets across all participants for
all four cases. In summary, slow hits will on average oc-
cur after the audio onset, while hits detected for fast notes
will fall much closer to the audio onset. For acceleration
peaks, even though no significant difference was detected,
the means for fast notes do precede the means for slow notes.
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Table 1: Mean offsets across all participants

Fast Notes | Slow Notes
Hits -3 ms 44 ms
Acceleration Peaks -32.9 ms -13.9 ms

2.3.3 How are hits and acceleration peaks different?

Next we want to know how the offsets for hits and acceler-
ation peaks differ:

Do hits and acceleration peaks have different mean off-
sets for slow notes? Yes (7'(9) = 4.8440, p = 0.0009.)

Do hits and acceleration peaks have different mean off-
sets for fast notes? Yes (T'(9) = 4.5294, p = 0.0014.)

Do hits and acceleration peaks have different offset stan-
dard deviations for slow notes? Yes, but only slightly
(T'(9) = 3.2287,p = 0.0103.)
(d) Do hits and acceleration peaks have different offset stan-
dard deviations for fast notes? Yes, but only slightly
(T'(9) = 2.4022,p = 0.0398.)

It’s no surprise that hits and acceleration peaks have sig-
nificantly different mean offsets. Acceleration peaks, as
we’ve defined them, should always occur before their as-
sociated hit.

A better question is, by how much? For slow notes we find
that acceleration peaks precede hits by between 31 and 85
ms (this is the 95% confidence interval for the paired-sample
T-test.) For fast notes acceleration peaks precede hits by
between 15 and 45 ms. That is, the difference between hits
and acceleration peaks is smaller for fast notes.

3. DISCUSSION
3.1 Hits vs. acceleration peaks

If you wanted to design a system to trigger sounds with air-
drumming gestures that has a timing that feels natural to
the user, which movement feature would you use?

It is interesting that when comparing standard deviations,
either between hits and acceleration peaks (section 2.3.3,
tests b and c), or between slow and fast notes (section 2.3.2,
tests b and d), the few significant differences found were
small. This suggests that either feature would have similar
noise or jitter.

For a real-time system, acceleration peaks are better be-
cause they occur on average before the time of the audio
event (see table 1), and don’t vary as much with note speed
(section 2.3.2, tests a and c.)

The hit and acceleration peak detection algorithms (sec-
tions 2.2.3 and 2.2.2) are not designed for real-time use.
Both use thresholds which are calibrated to the range of
the related variable over the length of a recorded trial. And
the algorithm for choosing peaks relies on future knowledge.
Thus for real-time applications these algorithms would need
to be revised to work using only previous information.

3.2 Other applications of these results

The research described here, and future similar research into
coordination between music and movement features, may
have application to other musical interactions. For example
hyper-instruments (traditional instruments that have been
augmented with various sensors whose data is used to con-
trol computer based sound-processing) may be designed to
more precisely trigger discrete audio events from gestures
made with the instrument.
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Similarly, systems which control musical processes from
the movements of dancers may also be made to have bet-
ter timing with respect to the dancer’s internally perceived
sense of discrete movement events.

3.3 Future Work

There are a number of ways this work can be developed and
extended. We have not yet analyzed the individual differ-
ences between participants, and we would like to understand
how dynamic level affects air-drumming gestures.

We currently compare notes at two rhythmic levels. To
better understand how tempo or rhythmic level affects the
timing of movement features with respect to the desired
sound, we would need to run further studies with multiple
tempos and more complex rhythms.

We expect that further analysis of our movement data
may reveal other movement features which more reliably
indicate the correct time of the player’s intended sounds.

Lastly, it may be useful to study other non-striking dis-
crete air-gestures, such as triggering a sound by bringing
some part of one’s body to a sudden halt, which is differ-
ent than the drumming gestures studied here which usually
have a rebound.
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