Proceedings of the International Conference on New Interfaces for Musical Expression

Quick Live Coding Collaboration In The Web Browser

Chad McKinney
University of Sussex, UK
C.Mckinney@sussex.ac.uk

ABSTRACT

With the growing adoption of internet connectivity across
the world, online collaboration is still a difficult and slow
endeavor. Many amazing languages and tools such as Su-
perCollider, ChucK, and Max/MSP all facilitate networking
and collaboration, however these languages and tools were
not created explicitly to make group performances simple
and intuitive. New web standards such as Web Audio and
Web GL introduce the capability for web browsers to du-
plicate many of the features in computer music tools. This
paper introduces Lich.js, an effort to bring musicians to-
gether over the internet with minimal effort by leveraging
web technologies.

Keywords
Live Coding, Network Music, Web Audio, Web GL

1. INTRODUCTION

There are a myriad of computer music languages and envi-
ronments with built in networking libraries. Common ex-
amples are SuperCollider, Max/MSP, and ChucK, which
all make use of the Open Sound Control (OSC) [25] proto-
col to share information between computers and programs.
While powerful, these libraries require a large amount of
effort to create some framework for groups to use. This has
led to a proliferation of higher level network libraries and
frameworks such as OSCGroups [1], Benoit Lib [16], the
Co-Audicle [22], and the Republic [10] which all serve to
simplify collaboration by building on top of existing tech-
nologies. These tools are rich and powerful but are difficult
to use, requiring expertise and with varying levels of stabil-
ity and operating system support.

Browser based technologies are a good choice for collab-
orative frameworks because web browsers are common and
their development is widely supported with heavily funded
development. The recent advent of web standards such as
WebGL [11] and more recently Web Audio [19] has led to
many early efforts for web based graphics and audio ap-
plications. WebGL and Web Audio are important because
they give developers access to powerful functionality such as
OpenGL Shader Language (GLSL) support and real-time
audio synthesis that was previously unavailable. Among
these online graphics and audio applications are several live

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’ 14, June 30 — July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

379

coding environments. Live Coding is a natural fit for web
development, not just because of WebGL and Web Audio,
but also because of the built in support for text editing in
HTML documents and the ability to use JavaScript as a
target language for code generation.

Before browser based live coding, networked live coding
has been an established technique because the information
that is shared between users is lightweight and highly ab-
stracted. Unlike audio and video streaming approaches, the
sharing of code between users requires very little bandwidth
and adverse effects from dropped packets can be easily cor-
rected or even ignored depending on the intent of the sys-
tem design. PowerBooks Unplugged were early pioneers
in merging networking techniques with live coding perfor-
mances [20]. Eschewing the stage to sit among the audi-
ence, members use only the sound produced by their laptop
speakers, although sometimes augmented by an amplified
signal for mid and low frequencies, using OSC messages to
share their code among members. Live coding performances
have utilized many different languages and approaches of-
ten with an emphasis on honesty and communication with
audiences [23]. Because of the difficulty of programming
live, several live coding specific languages have subsequently
been created such as Tidal [14] and IxiLang [12]. These lan-
guages provide very high level syntaxes and semantics for
the fast creation and manipulation of audio sequences and
synths graphs.

Most browser based live coding systems don’t use the
same code sharing approach as a group such as PowerBooks
Unplugged because they are designed for a single user. Be-
fore the creation of WebGL and Web Audio, sites like Jsaxus
[2] and Flaxus [9] used JavaScript and Adobe Flash to al-
low users to program graphics based applications in real
time. The standardization of the Web GL specification al-
lowed for 3D accelerated programs to be written entirely
inside a web browser. Sites like livecoding.io [8], Livecode-
lab [6], Livecoder [15], WebGL Playground [21], and GLSL
Sandbox [4] have harnessed this API to create live pro-
gramming environments that can be easily accessed from
any computer using a web browser. More recently the Web
Audio specification has been developed, but the project is
younger than WebGL and is still undergoing active devel-
opment and lacks a complete cross-browser implementation.
CoffeeCollider [26] is a newer framework that looks to bring
SuperCollider like functionality to the browser. It leverages
CoffeeScript for its more elegant syntax while providing ba-
sic functionality for synthesis and sequencing, but does not
support graphics or collaborative programming. Gibber is
an early adopter and provides a thorough audio synthesis
environment for live music and graphics programming [17].
The author has proposed adding collaborative sessions and
clock synchronization to the project however currently these
features are still in development [18]. Because none of these



Proceedings of the International Conference on New Interfaces for Musical Expression

technologies are complete or offer the features required to
bring ease to online computer music collaboration, the au-
thor has endeavored to create a new language designed from
the beginning with quick collaboration in mind. In this
paper Lich.js is presented with an explanation for the lan-
guage design, audio and graphics capabilities, networking,
and summed up with a look towards the future.

2. LICH.JS

Lich.js was created to achieve several goals including quick
collaboration, graphics and audio live coding, a terse and
expressive language, and a set of powerful but safe language
features. Collaboration is the main priority and it is for this
reason that the language is web based. The goal of Lich.js
is to make collaboration fast and painless for everyone, from
the most experienced network musicians to the casual inter-
ested party. Having the language running on the web allows
for members to join a group and start making art without
installing a single piece of software. The end goal is for
a group of people to sit down at any computer and start
making music together, as if the computer were like any
other instrument, lacking the requirement of some special
software pre-installed on the device.

The consequence of choosing a web based design is that
JavaScript now becomes the target language. 1 decided
early on that the syntax provided by JavaScript is too ver-
bose to allow for easy live coding. By creating a domain
specific language, unique syntaxes can be created to make
expressions terse and clear with respect to music and graph-
ics. Lich.js is a pure functional language with syntax similar
to Haskell, but unlike Haskell it is dynamically typed and
compiles to JavaScript. Haskell-like syntax was chosen be-
cause it provides both an existing language as an established
reference point and because the syntax is terse and declar-
ative. It also provides some other useful syntax elements
such as pattern matching, which allows function arguments
and case statements to easily select and decompose objects
by type. Lich.js also implements partial application, which
is similar to currying in Haskell, and allows for functions to
be passed a number of arguments less than the expected to-
tal. The return value is now a new function with that many
fewer arguments, and with the curried arguments prede-
fined in a new closure. Lich.js also widely uses a streaming
operator >> for data flow, which takes inspiration from the
|> forward pipe operator in F#. This operator fits well in
a music language because it composes chains of computa-
tion that are expressed similarly to a signal path through a
series of effects pedals or synth modules. For example “saw
440 >> lowpass 900 1 >> gain 0.1” expresses a saw oscillator
feeding into a low pass filter and finally being lowered in
volume.

Lich.js’s lexer and parser are written in Jison [5], which
compiles input strings of Lich.js into an abstract syntax
tree. This syntax tree is then recursively traversed gener-
ating substrings of code which are concatenated together
to produce the final target JavaScript code string. This
JavaScript string is evaluated against a pre-built runtime
that facilitates audio and graphics sequencing, and network-
ing capabilities. The entire framework is hosted on a server
and users simply visit a website to immediately begin col-
laborating. Immediacy is an important goal for the Lich.js
design because it makes iteration and code dissemination
incredibly simple for the ensemble. Juggling code bases
can be difficult even for experienced ensembles, especially
those using mixed operating systems. Lich.js is supported
on Windows, Mac OSX, Linux, and can even be run on
mobile devices such as tablets and phones.

380

A functional paradigm was chosen because it allows for
highly modular and terse programs, two features that are
useful when writing and using code in a real-time perfor-
mance. Like Haskell, Lich.js enforces immutability of ob-
jects. This means that variables can not be rebound or
mutated, including containers such as lists and dictionaries.
By disallowing object mutation it becomes easier to rea-
son about the behavior of a program, allowing for chains of
pure functions to build up complex, but more predictable
programs than imperative designs. This becomes especially
important in networked coding contexts where collisions be-
tween code bases can easily cause unforeseen consequences.

Being a live coding language, it would be rather useless
if there wasn’t some way to allow for side effects in the sys-
tem and Lich.js provides a few well defined ways to allow
for these effects. The easiest is to use the interactive mode,
which is the default mode when visiting a Lich.js website.
In interactive mode, commands can be executed and global
scope variables can be rebound by hand using a “let myVar
= myValue” syntax similar to GHCI for Haskell. Func-
tions or any other language construct still have no ability
to change objects and so any mutation is directly requested
by the user and only at global scope. For live coding this
is very useful because changes to synth definitions and pat-
terns are defined in the global scope. The user can now rely
on the vast majority of their programs being created with
pure functions. The other mode for writing code is the li-
brary mode which is similar to a basic Haskell file. Global
variables don’t require use of the “let” syntax but can only
be defined once and never changed as well as anything else.
Predefined user code can be compiled ahead of time with
useful functions such as chord progressions, section changes,
useful data structures, and so on, with the guarantees of
immutability. In interactive mode, library files can be im-
ported and called like any other system code.

For more complicated uses of state, Lich implements the
State Monad as found in Haskell. The State Monad is a
kind of wrapper that allows for state mutation to be em-
ulated using a chain of pure computations. Regarding the
type system, Lich.js is not a strict clone of Haskell, and
eschews a strong type system . For this reason some se-
mantics are more similar to Erlang or Scheme because of
the ability to utilize mixed lists or other structures. This
does introduce many more opportunities for confusion and
unpredictability, offsetting some of the efforts of the pure
functional design. Dynamic typing was chosen simply be-
cause it gives the user less to worry about while coding in
the moment, which is useful for live coding, as evidenced
by most of the other live coding languages using a similar
type system. Additionally, enforcing type semantics would
add another layer of computation during compilation which
could be potentially introduce more audio glitches during
performance.

3. SYNTHS AND PATTERNS

Web Audio is a new API that is still being implemented
in major browsers. Chrome and Safari provide full sup-
port and Firefox has recently enabled it in their browser,
although it is a less mature implementation. The API pro-
vides a relatively low-level interface for creating real-time
synthesis in pure JavaScript. The metaphor of a mixing
console with effects channels is present throughout, lend-
ing itself well to use in web applications and games. Un-
fortunately the API is unwieldy for live coding because it
is verbose and lacks many higher level features that you
can find in other audio programming languages. For these
reasons Lich.js compiles user created synth definitions into



Proceedings of the International Conference on New Interfaces for Musical Expression

pure JavaScript code, generating the necessary node con-
nections and managing unit generator life times. Currently
the WebAudio API defines several oscillators (sine, triangle,
saw, and square wave), filters (lowpass, highpass, bandpass,
notch, and several shelf variants), a waveshaper, a limiter,
buffer playback, convolution, mixing nodes, and FFT analy-
sis. This is a good basis for any audio application, but pales
in comparison to many other audio engines and as such re-
quires augmentation. Lich.js currently supports all of the
supplied audio types except for FFT analysis. Furthermore
it includes a wide array of custom unit generators includ-
ing noise generators, filters, distortion effects, reverb, bit
crushing, decimation, buffer manipulation, envelopes, and
a frequency shifter.

Lich.js also implements a robust synth definition syntax
that allows for language constructs, such as pattern match-
ing or conditional branching, to be used directly. This is
possible because these synth definitions compile down to a
graph of audio node connections in JavaScript and reference
values in the same language. This contrasts with a language
such as SuperCollider where synth definitions are walled off
from many language semantics because the target language
for audio processing is different. It should be noted that
higher level language semantics in Lich.js such as condi-
tionals won’t run at audio rate in a synth definition, but
instead will define the particular connections that are cre-
ated inside the node graph upon compilation. One unique
feature of the synth definition is the use of the >> operator.
This operator simply takes the left operand and applies it
to the right operand. The syntax is simple but would not
be easily implemented in other languages that don’t utilize
partial application. For this reason Lich.js synth defini-
tions have a signal path like flow that declaratively describe
transformations.

b tri 80 >> lowpass 320 1 >> perc @ 1 0.3
s white 1 >> bandpass 900 3 >> perc 0 1 0.2

drums b s [b bl s
leadSyn f sin f >> delay 1 0.1 >> perc 1 0.1 1

lead

leadSyn 440 [660 990] 330 _

220 _ 110 55

Figure 1: Some expressions for synth and pattern generation.

By using the play function, running synths can be gener-
ated from synth definitions, but using the generative pattern
sequencers in Lich.js allows for more powerful control. Cur-
rently there are two different syntaxes for generating pat-
terns in Lich.js. The first is impulse based patterns, such
as a drum sequence, and is invoked using the +> operator.
Impulse patterns define nested rhythms using variables and
lists without the need for commas and with rests marked
by the Haskell wildcard _ symbol. Rhythm duration modi-
fiers can be added to the pattern to generate more complex
expressions with a small amount of code. The other kind
of pattern generator is the solo pattern invoked using the
~> operator. Unlike impulse patterns, solo patterns only
take a single synth variable and afterwards are supplied a
sequence of values to call that synth with. This is useful
for sequencing bass lines, melodies, or any function that re-
quires an argument. Like impulse patterns, modifiers can
be added to the sequencer, but here they modify the values
passed to synth instead of durations.

3.1 Scheduling

The scheduler in Lich.js has been greatly improved upon
since the original implementation. JavaScript timers can

381

have a variation of tens to hundreds of milliseconds which
is not reliable enough for an audio sequencer, and for this
reason the original scheduling in Lich.js was uneven and in-
consistent. In a massive revision the scheduler was rewritten
to use a technique found in several other web audio applica-
tions [24]. The most important part of the technique is to
recognize that Web Audio implementations are run in a dif-
ferent thread from the main user view and the Web Audio
scheduler is highly accurate. The problem is finding how to
leverage the accuracy of the Web Audio timer without hav-
ing the standard JavaScript timers mar the fidelity. The
solution is to write an event scheduler with a look ahead
time. Because Web Audio Objects have an explicit start
and stop time, if you can schedule events far enough ahead
of time (100ms or so should suffice) then even if your sched-
uler has variance, the actual web audio event will still occur
accurately. Furthermore the scheduler is more robust and
can withstand higher variance in CPU activity from other
parts of the program.

4. GRAPHICS

Most of the graphics functionality in Lich.js is built upon the
THREE.js [3] library which is a WebGL based JavaScript
library for 3D graphics. Although WebGL has been sup-
ported longer than Web Audio, the API is very low level,
requiring tremendous effort to make something usable, let
alone live coding. Pragmatism was the deciding factor for
using THREE.js. Writing a new language, audio system,
and client/server architecture were all tremendous tasks,
but necessary to materialize the unique features required
in Lich.js. WebGL on the other hand is older than Web
Audio and THREE.js has well established itself as a sta-
ble library that implements most features that would be
needed in a graphics based application. While THREE.js
abstracts away most of the difficulties of OpenGL, it still
requires more code than is feasible to write in real time. For
this reason most of the graphics work in Lich.js has been to
take the implementation of THREE.js and build on top of
it a collection of higher level functions and algorithms for
live coding visuals.

Lich has several functions for 3D mesh generation from
basic shapes such as spheres and boxes to complex genera-
tive algorithms. The functions take position and color data
in addition to any other values they require, creating the
mesh and directly drawing it in the scene. All meshes can
have their position, rotation, angular and linear momen-
tum, color, and scale manipulated in real-time. Further-
more, because the pattern sequencers described in the pre-
vious section support more than just audio functions, you
can compose a definition that manipulates a mesh instead
of audio. Beyond mesh manipulation, Lich.js has some pre-
liminary code for shader generation using a mini-language
called Splice. Splice is a very basic language that takes a
string and translates every character into a GLSL function,
then wraps up the result with some boiler plate code to cre-
ate a new GLSL shader. The result is often glitchy with
some surprising behavior. Passing native GLSL code di-
rectly is supported, but writing pure GLSL in real-time is
cumbersome. At the moment there is no 2D Graphics API
or support for textures. These are among several features
that will be added in upcoming versions of the language.

5. NETWORKING

Networking was the greatest motivating factor for creating
Lich.js with a web based implementation. The network-
ing features currently supported are simple, but the focus
has been to make the project stable and usable first, before



Proceedings of the International Conference on New Interfaces for Musical Expression

adding more features. Networking in Lich.js uses a sim-
ple client and server architecture with the server written in
Node.js [7]. There are three main networking features in the
language: the networked IDE, chat based communication,
and shared code execution. The Lich.js IDE is based on
the ACE HTML5 code editor which supports syntax high-
lighting, matching bracket highlighting, and customizable
keyboard bindings. The work on the IDE so far has served
to create a completely automated user management experi-
ence. When a user visits a Lich.js site they are greeted with
a request for a user name. The server receives the name
and stores a cookie on the client computer so they don’t
have to reenter this information in the future. There is cur-
rently no password system so this is the extent of logging on.
Once into the main Lich.js page they are presented with a
code editor and a post view on the bottom. If another user
joins the same site the code editing view is automatically
split in half using a smooth transition animation, and now
both users can see other’s code. Originally the code editor
was a single document, but this caused significant issues
with unexpected code deletions and collisions. The current
method affords many of the same features of the shared
editor, namely the visibility of the code and efforts of the
other users, but the networked code editors are read-only
for everyone but the owner.

A chat feature was added to the system because even
though the post window could be used as a chat using print
functions, it was easy to lose messages to system print out
and was too small for an audience to read. The new chat
feature prints chat messages very large and right justified
over the entire window. The messages fade in and out and
only last a few seconds. They are legible and invite at-
tention without being too distracting. Finally, code is ex-
ecuted across the network. Whenever any user executes a
function that function sent is across the network and exe-
cuted for each client. While currently not implemented, it
would be useful to have a more sophisticated implementa-
tion that uses time stamps with pre-calculated latency to
execute changes synchronously across the system. Another
concern is that while it is very simple to start using Lich,
if an interested user wanted to create their own server, the
procedure is more complicated. It requires the installation
of Node.js and using some command line tools. A more el-
egant method needs to be developed to make independent
servers easier to create for newer users.

6. CONCLUSIONS AND FUTURE WORK

In this paper I have argued that the continued difficulty
of networking has stifled the creation and productivity of
network bands and ensembles; that there is a need for a
simpler approach for users of all experience and skill levels.
To accomplish this goal I have an introduced Lich.js, a new
live coding language in the burgeoning field of web based
languages. After surveying the current alternatives a jus-
tification was made for the need of yet another language;
one based on collaboration from the beginning. Following
the introduction, Lich.js was covered in detail, including the
language syntax and semantics, synth definitions and pat-
tern generation, graphics, and networking. Lich.js is open
source and available on GitHub [13] but is still in develop-
ment. The official release of Lich.js will align with NIME
2014. Leading up to the official release the project will see a
concerted effort to minimize bugs and increase performance.
New features are also being considered such as local area
network clock synchronization, time stamped code execu-
tion, Open Sound Control responder implementation, and
more graphics and audio functionality.

382

7.
(1]

(15]

(16]

(17]
18]
(19]

20]

(21]

(22]

23]

24]
25]

[26]

REFERENCES

R. Bencina. OscGroups, 2010.
http://www.audiomulch.com/~rossb/code/oscgroups/.
J. Brodsky. Jsaxus, 2013.
https://github.com/jonbro/jsaxus.

R. Cabello. Three.js, 2010. http://threejs.org/.

R. Cabello. Glsl sandbox, 2013.
http://mrdoob.com/139/GLSL_Sandbox.

7. Carter. Jison, 2014.
http://zaach.github.io/jison/docs/.

D. D. Casa, S. McDonald, J. Stutters, and T. C.
Ryan. Livecodlab, 2013. http:
//www.sketchpatch.net/livecodelab/index.html.

R. L. Dahl. Node.js, 2009. http://nodejs.org/.

G. Florit. livecoding.io, 2013. http://livecoding.io.
I. Ivanoff and J. Jimenez. Flaxus, 2006.
http://www.i20ff.org/flaxus/screen.html.

J. Rohruber, A. de Campo. The republic quark, 2011.
https://github.com/supercollider-quarks/Republic.
Khronos Group. Webgl - opengl es 2.0 for the web,
2013. http://www.khronos.org/webgl/.

T. Magnusson. The ixi lang: A supercollider parasite
for live coding. In "Proceedings of the International
Computer Music Conference”, pages 198-200, 2011.
C. McKinney. Lich.js, 2014.
https://github.com/ChadMcKinney/Lich. js.

A. McLean. Artist-Programmers and Programming
Languages for the Arts. PhD thesis, Department of
Computing, Goldsmiths, University of London,
October 2011.

F. Obermeyer. Livecoder, 2013.
http://livecoder.net.

Patrick Borgeat, Holger Ballweg, and Juan A.
Romero. Benoitlib, 2012.
https://github.com/cappelnord/BenoitLib.

C. Roberts. The web browser as synthesizer and
interface. 2013.

C. Roberts. Gibber 2.0, 2014.
http://charlie-roberts.com/gibber/info/.

C. Rogers. Web audio api: W3c working draft, 2013.
http://www.w3.org/TR/webaudio/.

J. Rohrhuber, A. de Campo, R. Wieser, J.-K. van
Kampen, E. Ho, and H. Hélzl. Purloined letters and
distributed persons. In Proceedings for the Music in
the Global Village Conference, 2007.

K. Samp. Webgl Playground, 2013.
http://webglplayground.net/.

G. Wang, A. Misra, and P. R. Cook. Building
Collaborative Graphical Interfaces in the Audicle. In
NIME ’06: Proceedings of the 2006 conference on New
interfaces for musical expression, pages 49-52, Paris,
France, France, 2006. IRCAM — Centre Pompidou.
A. Ward, J. Rohrhuber, F. Olofsson, A. McLean,

D. Griffiths, N. Collins, and A. Alexander. Live
Algorithm Programming and a Temporary
Organisation for its Promotion. In O. Goriunova and
A. Shulgin, editors, read_me — Software Art and
Cultures, 2004.

C. Wilson. A tale of two clocks, 2013. http://www.
html5rocks.com/en/tutorials/audio/scheduling/.
M. Wright, 2002. Open sound control 1.0 specification.
http://opensoundcontrol.org/spec-1_0.

N. Yonamine. Coffeecollider, 2013.
http://mohayonao.github.io/CoffeeCollider/.





