
Sensors on Stage: Conquering the Requirements of

Artistic Experiments and Live Performances

Simon Waloschek
Center of Music and Film Informatics

HfM Detmold / HS OWL
waloschek@hfm-detmold.de

Aristotelis Hadjakos
Center of Music and Film Informatics

HfM Detmold / HS OWL
hadjakos@hfm-detmold.de

ABSTRACT
With the rapid evolution of technology, sensor aided perfor-
mances and installations have gained popularity. We iden-
tified a number of important criteria for stage usage and
artistic experimentation. These are partially met by exist-
ing approaches, oftentimes trading o↵ programmability for
ease of use. We propose our new sensor interface SPINE-2
that presents a comprehensive solution to these stage re-
quirements without that trade-o↵.

Author Keywords
Live Performance, Sensors, TUI Toolkits, Physical Comput-
ing, Arduino, Phidgets, Max/MSP

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation] User Inter-
faces — Input devices and strategies
H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing — Systems

1. INTRODUCTION
Modern digital sound synthesis methods open up many new
possibilities for musical expression. Almost every technical
parameter of sound and virtual instruments can be con-
trolled by artists. Interactive elements may be incorporated
into musical projects thanks to the mapping of these param-
eters into the digital domain. The prerequisite for this is an
interface with sensors that captures real world input and
provides the results in an adequate representation.
Although existing systems have already lowered the entry
barrier for such scenarios significantly, not all requirements
of live performances on stage and their conception have been
covered satisfactorily. The requirements that are laid out
in the following are based on our experience with sensing
platforms in concert and educational settings: In April 2014
we used the first iteration of a platform called “SPINE” [1]
to re-create and perform a piece called“Light Music”, which
applied inertial sensors to track the musician’s hands. This
was the first time that the piece was performed without
the help of the composer Thierry De Mey and his team.
Since the electronics originally used were not available, we
successfully used the SPINE as a substitute. Furthermore,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

NIME’15, May 31-June 3, 2015, Louisiana State Univ., Baton Rouge, LA.

Copyright remains with the author(s).

we regularly employ the Phidgets [9] sensor platform in our
educational workshops with composers and media artists.
Both scenarios featured the following requirements:
Ease of use: Creative processes of media artists and com-

posers are often characterized by experimentation and im-
provisation [7]. To support such processes, sensor plat-
forms should be simple to use and allow switching from
one sensor setup to another without much e↵ort. A neces-
sity to program in a low-level, text-based programming
language to get access to sensor values will oftentimes
switch the focus away from artistic experimentation. To
be optimal for such scenarios, the systems should be us-
able out-of-the-box or at most require only little configu-
ration.

Programmability: An enormous number of sensors are
available today and new sensors are made available con-
tinually. Ideally, a sensor system should interface with a
multitude of them. But embedded systems are able to
do much more than just forwarding sensor data to a PC.
They are capable of processing input data and producing
visual and sonic output on their own.

Robustness of Communication: An immanent key re-
quirement for all stage-worthy solutions is their reliabil-
ity. If the underlying transmission technology is prone to
errors, failures may distort the whole performance.

Speed: Slow transmission speeds may hamper complex live
performances. In order to process input data in real time,
the interface has to provide sensor values with su�ciently
low latencies.

These challenges are addressed by our platform SPINE-2
(see Figure 1), that is further described in this paper.

Figure 1: The SPINE-2 shield (green PCB) to
which various Grove sensors (blue PCBs) are at-
tached.

351

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015 



2. RELATED WORK
In the following we will discuss existing sensor platforms
with regard to the requirements outlined in the previous sec-
tion. We compare our solution to Phidgets, xOSC, Hiduino,
Arduino, and Raspberry Pi. Of course there are many other
sensor platforms that have been proposed, e.g., the CUI [13],
d.tools [8], the Eobody [6], the TOASTER and KROONDE
[4]. But those selected, we deem the closest competitors in
various aspects: Phidgets (concerning ease of use), xOSC
and Hiduino (robustness) and finally Raspberry Pi and Ar-
duino, both being popular physical computing platforms.

2.1 Ease of Use vs. Programmability
Tangible user interface (TUI) toolkits are non-
programmable integrated sensor solutions. Phidgets
[9] is perhaps the most commonly used TUI toolkit. A
standardized connector system is used to attach simple
analog and digital sensors to a master unit, where the
values are digitized and transmitted via USB in a vendor-
specific protocol. Furthermore, there are some specialized
sensor and actuator units that are directly connected to
the computer without using a master unit as intermediary.
Physical computing platforms like the Arduino [11], the
Rasperry Pi, or Beagle Boards on the other hand are open
and programmable. Almost any sensor can be connected
but this requires the development of a specific firmware.
While media artists may be proficient in visual program-
ming languages such as Max/MSP, they usually lack the
text-based programming background that is necessary to
program these platforms successfully. Our platform merges
these two approaches by presenting di↵erent layers to pro-
grammers and media artists.
We have evaluated the usability of SPINE-2 and compared
it to the Phidgets platform (see Section 4.1). Phidgets is
rated with ‘+’ (see Table 2). The usability of the SPINE-
2 is significantly better compard to our first iteration [1],
which we rate with ‘�’.

2.2 Robustness of Communication
RS232 over USB: Microcontroller-based physical com-

puting systems, like the Arduino, oftentimes use RS232
over USB for communication. The main problem with
RS232 over USB is that the drivers in modern operating
systems are not robust enough. In [1] we have reported
severe usability problems. The most common error we are
experiencing is that the virtual RS232 port stops working
until the computer is rebooted. We have also experienced
Max/MSP freezes and even blue screen errors. These is-
sues are usually related to user (or software) errors, e.g.,
the user may unplug the USB cable while the communi-
cation is still taking place or open more than one connec-
tion to the same port. Due to the problems when starting
communication, we find RS232 over USB to be problem-
atic for live musical performances and rate Arduino with
‘–’ in Tab. 1. Phidgets uses a vendor-specific implemen-
tation and thus shows similar problems, although to a
lesser extent. Therefore, we rate Phidgets with ‘�’.

Wi-Fi: Wireless transmission protocols operating in the
2.4 GHz band are vulnerable to interference from other
devices [12]. Although TCP/IP would provide reliable
communication over the unreliable Wi-Fi network, it is
not suited for time-critical transmission of sensor values
in the context of live musical performances, since it intro-
duces high and uncontrollable latency. Since xOSC relies
primarily on wireless communication, we rated it to have
intermediary transmission robustness (�) in Tab. 1.

Ethernet: Today, Ethernet uses full-duplex and point-to-
point connections between endpoints and switches so that

collisions do not occur, making lost packets rather un-
likely. Because most Raspberry Pi models provide Eth-
ernet we rate its transmission robustness as good (+).

Hiduino and SPINE-2: SPINE-2 is a Human Interface
Device (HID, see Section 3.2). The communication is
very robust as our evaluation shows (see Section 4.2).
The Hiduino [5] uses a comparable strategy and is also
rated with ‘+’.

2.3 Speed
For an objective comparison of transmission speed we cal-
culated the maximum throughput for all the above men-
tioned related systems. These values represent only the
theoretical connection speed without considering potential
speed losses due to other load (value conversions, overhead
etc.). Arduino and its variations (including SPINE-1 [1])
use a regular RS232 (UART) over USB connection for data
transmission with a maximum baud rate of 115.2 kBd/s,
resulting in a throughput of 11.25 kB/s. xOSC sends up
to 400 UDP unicast packets over a Wi-Fi connection per
second with a fixed size of 104 bytes which results in 40.625
kB/s [12]. Values for Phidgets could not be evaluated due to
its closed design. We assume that Hiduino transmits data
rather slowly due to the limited speed specified in the used
MIDI protocol. Raspberry Pi is able to communicate via a
100 Mbit/s connection [10] and thus can be considered very
fast. We measured the transmission speed of SPINE-2 in
Section 4.3.

3. THE SPINE-2
We wanted to create a sensor platform that is easy to use
for composers and media artists, such as Phidgets. How-
ever, we wanted our platform to be fully programmable so
that users can learn about low-level programming, develop
code for new sensor modules or use the platform in not yet
anticipated ways. As Arduino is a very popular physical
computing platform, we decided to make it the basis of our
platform. The solution consists of an Arduino Leonardo,
our SPINE-2 shield (see Figure 1), and specific software to
program the SPINE-2 system.

3.1 Universal Connectors
In order to have a pluggable solution we needed to choose a
standard for the connector which is used to connect sensor
modules to the SPINE-2 shield. We chose the Grove [14]
sensor module system due to its su�cient selection of rel-
atively inexpensive sensors. The Grove connector has two
power supply pins and two sensor-specific pins, usually ei-
ther analog, digital, I2C or UART.
To make it possible to connect any Grove sensor to any con-
nector on the SPINE-2 shield, each of the 6 connectors is
“universal”. This means that they can be used as analog
inputs, digital inputs or for more complex communication
protocols commonly used by sensors. These protocols are
already implemented in the Arduino microcontroller. Sev-
eral multiplexers redirect the needed data lines to the cor-
responding pins of the connectors.

3.2 Robust and Fast Communication
To avoid the errors mentioned in Section 2.2, we made
SPINE-2 a HID. Extending the idea of “Hiduino” [5], an im-
plementation for sending and receiving MIDI messages with
an Arduino via USB, the transmission speed and safety have
been significantly enhanced. HIDs require no driver installa-
tion and are supported out-of-the-box by modern operating
systems.
Each data value is transmitted as a 32-bit float to repre-
sent data with su�cient resolution. Although an analog

352

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015 



Table 1: Comparison of solutions
Phidgets xOSC Hiduino Arduino RaspberryPi SPINE SPINE-2

Ease of Use + – – – – � +
Programmability – + + + + + +
Comm. Robustness � � + – + – +
Speed [kB/s] N/A 40.625 N/A 11.25 � 1 MB/s 11.25 242.9

value will typically be a positive integer number, negative
and fractional values can be represented if necessary. Every
fixed-sized HID message that is being sent to the computer
contains up to 12 float32 sensorValues and uses a 1 byte
header with the number of sensor values (valueCount) and
a per-shield spineID. 12 sensor values have proven to be a
suitable trade-o↵ between the overall message size regard-
ing the transmission overhead and fast reaction time for
new sensor data. The single values are later identified by a
valueID in case of multiple values per sensor (e.g., three
axes of an accelerometer) and a connID which specifies the
corresponding connector.The Arduino Leonardo o↵ers up to
four USB endpoints. That enables the simultaneous use of
both the standard Arduino UART and the new HID imple-
mentation in a single sketch and a single USB cable. During
development, the regular UART can be a helpful tool for de-
bugging purposes. However, it is not recommended to use
the UART in a final setup.

3.3 Using the SPINE-2
In order to function properly, the SPINE-2 must know which
sensor is attached to which connector. This is done with a
configuration application called spineprog (see Figure 2).
First, the user attaches the sensors to the connectors on the
SPINE-2 shield. The particular sensor for each of the 6 con-
nectors from the list of already available sensors firmwares
is select. After chosing a serial interface, the Arduino can be
programmed. In the background, existing and newly gen-
erated C code is compiled and flashed to the Arduino. The
spineprog also prepares a ready-to-use Max/MSP patch for
the particular sensor setup selected by the user. The user
can copy this patch into the clipboard and paste it into
Max/MSP (Figure 2). Digital values are represented as
toggle switches. Analog values are represented as floating
point numbers in that patch.

Figure 2: The spineprog application is used to
program the Arduino and prepares an adequate
Max/MSP patch for the user.

3.4 Developing for the SPINE-2
In order to provide best familiarity to Arduino users, every
sensor specific module looks and feels as an individual Ar-
duino Sketch and can also be edited with the Arduino IDE.
Exactly like regular sketches, SPINE-2 modules consist of
a setup() method that is executed once after a success-
ful boot of the Arduino to initialize connected hardware. A
second method named loop() is called repeatedly and usu-
ally contains the code for obtaining new sensor values (see
Figure 3). The new function write(...) puts a value
into the transmission bu↵er and encapsulates the USB-HID
internals.

1 void setup() {
2 pinMode(PIN_A, INPUT); //Set PIN_A to input
3 }
4 void loop() {
5 write(1, digitalRead(PIN_A)); //Send via channel 1
6 write(2, analogRead(PIN_B)); //Send via channel 2
7 }

1 #include <Spine.h>
2 namespace sensor0 {
3 const uint8_t SENSOR_ID = 0;
4 uint8_t PIN_A = A0; //Definition of hardware pins
5 uint8_t PIN_B = A1;
6 inline void write(uint8_t c, float f) {
7 Spine.write(SENSOR_ID, c, f);
8 }
9 #include "foo.h" //Insert SPINE module code

10 }
11 namespace sensor1 {
12 [· · ·]
13 }
14 void setup() {
15 Spine.begin();
16 sensor0::setup();
17 sensor1::setup();
18 }
19 void loop() {
20 Spine.select(0); //Select multiplexer channel 0
21 sensor0::loop();
22 Spine.select(1); //Select multiplexer channel 1
23 sensor1::loop();
24 }
25

Figure 3: A simple sensor module (top) and the
automatically generated main file (bottom)

During the flashing process, all selected SPINE-2 modules
are merged via an internally generated Arduino sketch.
Each module is wrapped in its own C++ namespace
(sensor0, sensor1 etc.) to avoid variable and function
name conflicts. This main sketch is generated by the spine-
prog. To compile the C code, the spineprog contains a
stripped down version of the Arduino toolchain with our
own changes to the USB-HID part of the Arduino platform.

4. EVALUATION
We performed a pilot user test where we compared our sys-
tem to the Phdigets system to see if our system is as easy
to use as a (non-programmable) TUI toolkit. Furthermore,
we evaluated technical aspects of the system.

4.1 Pilot User Test
The pilot user test was performed with five students of our
university. In the test we compared our SPINE-2 system

353

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015 



with the Phidgets system. The participants were instructed
to install the necessary software on their own computer and
control the frequency of a sine generator with a sensor in
Max/MSP. After that they were encouraged to use the plat-
form creatively. The user test was carried out as part of a
weekly Max/MSP course.
The participants received an anonymized package contain-
ing an Arduino Leonardo, our SPINE-2 shield, various
Grove sensors and the software including a PDF manual.
After the task they filled out the System Usability Scale
(SUS) [3] questionnaire. In a second step the participants
received Phidgets system components and links for the soft-
ware and the manual. The participants again performed the
task and filled out the SUS questionnaire. Each of the two
tasks took about 40 minutes.
SPINE-2 received an average SUS score of 86 (� = 7.0),
which makes it a system with excellent usability according
to Bangor et al. [2]. Phidgets received an average score of
76 points (� = 18.0). Accordingly it has a good usability.
An unpaired sample, unequal variance, 2-sided t-test was
conducted to compare the previous iteration of the SPINE
with the SPINE-2. A statistically significant improvement
(P < 0.05) was found. In a previous user study it had ob-
tained an average SUS score of 74 (� = 8.4) [1]. We are
aware of the influence that the testing order of the systems
had but were restricted to a very limited number of partic-
ipants.
Our evaluation indicates that the usability of SPINE-2 is at
least as good as Phidgets. Furthermore, the SPINE-2 has
other benefits. Most importantly it is still a fully-fledged
Arduino system that can be programmed freely.

4.2 Reliability of Communication
Experiences with UART-based systems revealed serious
problems in case of unpredictable disconnections and mul-
tiple instances accessing the same hardware. The sever-
ity ranged from Max/MSP freezes to complete system re-
boots. The software architecture of HID prevents such con-
sequences. In this way the SPINE-2 is invulnerable to con-
nection interruptions and automatically continues to receive
new values after a reconnection.
To test the robustness, we intentionally unplugged and re-
plugged a SPINE-2 50 times while using it with Max/MSP.
Our Max External successfully recognized the absence of
the interface and resumed its work without any further im-
pairment after reconnection.
Multiple instances of the SPINE-2 object in Max/MSP are
internally managed and do not disturb each other. In con-
trast to UART connections, which allow only one instance
to access the data, our implementation forwards all incom-
ing data to newly instantiated SPINE-2 objects if the hard-
ware is already used instead of accessing it on its own. We
evaluated this feature with multiple simultaneously opened
Max Patches using a single SPINE-2 shield.

4.3 Performance
We first measured the transmission speed that could be
theoretically achieved with no sensors attached. A stable
communication with a computer is established at an aver-
age rate of 242.878 kB/s. Compared to the solutions using
UART with a commonly used rate of 11.25 kB/s (115200
baud/s, 10 bits per transmitted byte), this is a theoretical
speed up of about 21. With a single 3 axis accelerometer
connected to the SPINE-2 that is utilized via I2C, we mea-
sured a throughput of 78.401 kB/s.
A more realistic setup scenario example would consist of 3
analog (e.g. light sensors, sliders, rotation angle sensors)
and 3 digital (e.g. buttons) sensors. Such a configura-

tion achieved a data rate of 69.939 kB/s. Since each sensor
value is represented as a 32 bit float regardless of the sen-
sor type, this equals a sample rate of about 2310 samples/s
for each sensor. The HID approach performs significantly
better than typical UART solutions.

5. CONCLUSION AND FUTURE WORK
The use of sensors in live performances leads to very spe-
cific requirements for sensor interfaces. We have shown that
our approach meets these criteria and outperforms compet-
ing systems in several regards. Our SPINE-2 shield extends
the Arduino system and thus enables programmers to use
the widely-used Arduino language. Composers on the other
hand do not need to know the internals. A simple graphical
user interfaces lets the user easily configure a sensor setup
and export a customized Max/MSP patch for a quick inte-
gration into new or existing projects. The ease of use has
been evaluated with the SUS method and was considered
excellent.
Making the SPINE-2 a HID enhanced the transmission
speed and safety compared to similar systems and elimi-
nated the need of driver installation.
We plan to increase the number of supported sensors. This
goal could ideally be accomplished by users that contribute,
creating a SPINE community with an active exchange of
code, experience and knowledge.

6. REFERENCES
[1] A. Hadjakos and S. Waloschek. SPINE: A TUI

Toolkit and Physical Computing Hybrid. In NIME,
pages 625–628, 2014.

[2] A. Bangor, P. T. Kortum, and J. T. Miller. An
empirical evaluation of the system usability scale.
Intl. Journal of Human–Computer Interaction,
24(6):574–594, 2008.

[3] J. Brooke. SUS: A quick and dirty usability scale.
Usability evaluation in industry, vol. 189, 1996.

[4] T. Coduys, C. Henry, and A. Cont. TOASTER and
KROONDE: high-resolution and high-speed real-time
sensor interfaces. In NIME, 2004.

[5] D. Diakopoulos and A. Kapur. HIDUINO: A firmware
for building driverless USB-MIDI devices using the
Arduino microcontroller. NIME, pages 405–408, 2011.

[6] E. Gallin and M. Sirguy. Eobody3: a ready-to-use
pre-mapped and multi-protocol sensor interface. In
NIME, 2011.

[7] S. Gelineck and S. Serafin. From idea to realization -
understanding the compositional processes of
electronic musicians. In Audio Mostly, 2009.

[8] B. Hartmann, S. R. Klemmer, M. Bernstein,
L. Abdulla, B. Burr, A. Robinson-Mosher, and
J. Gee. Reflective physical prototyping through
integrated design, test, and analysis. In Symposium on
user interface software and technology (UIST), 2006.

[9] Phidgets Inc. Phidgets Inc. – unique and easy to use
USB interfaces. http://www.phidgets.com, 2014.
[Online; accessed 25-January-2015].

[10] Raspberry Pi Foundation. Raspberry pi model
specifications. http://www.raspberrypi.org/
documentation/hardware/raspberrypi/models/specs.md,
2015. [Online; accessed 29-January-2015].

[11] D. Mellis, M. Banzi, D. Cuartielles, and T. Igoe.
Arduino: An open electronic prototyping platform. In
Conf. on Human Factors in Computing, 2007.

[12] T. Mitchell, S. Madgwick, S. Rankine, G. Hilton,
A. Freed, and A. Nix. Making the most of wi-fi:
Optimisations for robust wireless live music
performance. In NIME, 2014.

[13] D. Overholt. Musical interaction design with the
CUI32Stem: wireless options and the GROVE system
for prototyping new interfaces. In NIME, 2012.

[14] SeeedStudio. Grove system – wiki.
http://www.seeedstudio.com/wiki/GROVE System,
2014. [Online; accessed 02-January-2015].

354

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015 


