
RWA - A Game Engine for Real World Audio Games

ABSTRACT
Audio guides and (interactive) sound walks have existed for
decades. Even smartphone games taking place in the real world
are no longer a novelty. But due to the lack of a sufficient
middleware which fulfills the requirements for creating this
software genre, artists, game developers and institutions such as
museums are forced to implement rather similar functionality
over and over again. This paper describes the basic principles
of Real World Audio (RWA), an extendable audio game engine
for targeting smartphone operating systems, which rolls out all
functionality for the generation of the above-mentioned
software genres. It combines the ability for building location-
based audio walks and -guides with the components necessary
for game development. Using either the smartphone sensors or
an external sensor board for head tracking and gesture
recognition, RWA allows developers to create audio walks,
audio adventures and audio role playing games (RPG) outside
in the real world.

Keywords
Sound walk, audio guide, state machine, game engine, LibPd,
Pd, binaural, positioning system, sensor fusion, head tracking,
speech recognition, HRTF, augmented reality, OpenAL

ACM Classification
H.5.1 [Information Interfaces and Presentation] Mutlitmedia
Information Systems, H.5.2 [Information Interfaces and Presentation]
User interfaces, K.8.0 [General] Games.

1. INTRODUCTION
At Nime 2014 we introduced a server-based architecture for
creating audio walks with simple gaming elements [1]. Server
and corresponding Android app are the basis for the RWA
engine. RWA consist of three different programs: The RWA-
Creator, the RWA-Runtime for iOS and Android (and possibly
for Windows Phone), and the RWA-Server. For the time being,
the focus lies on the development of the RWA-Creator and the
Android runtime. The Creator is a graphical user interface
which allows the user to program the basis of an RWA game,
mostly through drag and drop. More complex functionality than
utilized by a simple audiowalk might need some editing using
RWA's scripting language. Similar to other game engines, it
has different views for data creation and manipulation. The aim
is to provide an environment that enables the developer to

combine GPS or other location data like Bluetooth or RFID
tags with an event, where the term event might refer to almost
anything: Starting up game logic, changing the current game
state, sending messages to the server or another client, loading
a Pure Data (Pd) patch on the smartphone or simply playing an
audio file.
 The examples in this paper are based on a pen and paper RPG
fight sequence. While this is a rather unlikely scenario for an
audio game, it is the most complex case for applying the rule
set and therefore includes every other game situation.

2. RELATED WORK
During recent years, many commercial and non-commercial
tools for creating sound walks have been published, for
example [2, 3, 4, 5]. Both walks and guides may be created
easily with these tools through a graphical interface by
combining GPS data with audio or video files, but they all lack
the functionality for implementing game logic. A related
approach to the RWA engine without a follow-up realisation
was proposed in [6] by Timothy Roden and Ian Parberry. The
ideas described in their paper are close to RWA, however they
do not incoorporate location based interaction. A good resource
for audio games – although still in front of a computer display –
can be found in [7]. Examples for already realized games with a
real world character are for example Google's Ingress [8] and
Zombies, Run! [9]. While Ingress takes place in the real world
but is not an audio game, Zombies, Run! combines position
data and binaural audio content into a post apocalyptic real
world jogging game. The recently published Blowback [10]
also includes binaural audio but lacks the location based
interaction.
 Although they usually do not integrate any wearable technical
devices, alternate reality games (ARG) must be considered a
close relative to RWA games as they also use the real world as
their setting. A comprehensive introduction for ARG including
some of its most successful representatives has been published
in [11]. A very detailed description of augmented audio reality
including several use cases using HRTF's and head tracking is
provided in [12].

3. OVERVIEW
3.1 Workflow
An RWA game is composed of at least one RWA scene which
is automatically generated when the Creator application is
started up. A scene is a data structure which represents a state
machine with an arbitrary number of states and transitions, and
is either GPS based, settled in a user-defined coordinate system,
or not relying on any coordinate system at all. A simple city
guide could be described by several states within one GPS
scene. State transitions would only rely on the client's location
(meaning the smartphone's location) and be completely
independent from the client's former state. Using the Asset-
View, audio files or Pd patches for a certain state can be added
via drag and drop. If a state is not edited any further by using

Thomas Resch

Research and Development, School of Music
University of Applied Sciences Northwestern Switzerland

Audio Communication Group, TU Berlin
thomas.resch@fhnw.ch

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
NIME’15, May 31-June 3, 2015, Louisiana State University, Baton Rouge, LA.
Copyright remains with the author(s).

392

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

the State-Editor, all assets will be loaded and executed
automatically in the runtime on arriving within the radius of the
state's GPS location and stopped and removed on leaving the
corresponding area. By default, audio content is rendered as a
regular mono/stereo source. Selecting Export from the main
menu saves the game script and allows distribution to clients
and server. This can be done manually or – at a later point in
RWA development – automatically, provided server and clients
are reachable via the network.

Figure 1. Screenshot of the Map- and Asset-View

3.2 Underlying Game System
The engine implements role playing game concepts and rules.
RPG systems have been sufficiently analysed in [13].
Additionally, RWA introduces the concept of the entity which
is either a subject – a hero or Non-player character (NPC) – or
an object. Entities may have an arbitrary number of predefined
attributes, they can influence attributes of other entities, and are
capable of performing specific tasks at certain times with these
attributes. They are also capable of owning other objects and
subjects. Every entity has at least a name attribute.
 A comprehensive task analysis for electronically enhanced
board games has been done in [14]. Its results can be directly
applied to RPG tasks by simply replacing the instructions in a
board game – for example "Go to Jail" – with the RPG
concepts of the game master and NPC's.

4. RWA-CREATOR
4.1 Requirements
The Creator application is written in C++ using the Qt
framework [15]. Binaries for OS X and Windows are available
at [16]. Linux, iOS and Android are also viable targets, and
corresponding binaries will be published at a later point, as will
the source code. Until then, RWA needs a Qt installation due to
the mandatory dynamic linking required by the LGLP license.
For the time being, the Max/MSP object fhnw.state [17] is used
for simulation purposes. In order to test RWA games in this
environment, game scripts have to be exported in the RWA-
Script format. For the Android runtime the XML format is
required.

4.2 Usage
4.2.1 Basic Setup, Managing Scenes
On startup, RWA automatically creates a default set of views
and editors – The Map-View, the Asset-View, the State-Editor
– and the first scene. More scenes can be added by choosing
New Scene or Duplicate Current from the scene menu, and
deleted by choosing Delete Current. For more elaborate
scenarios, it might be necessary to use the Manifest and the
Scene-Editor which allow for the use of global variables and
functions.

4.2.2 Map View
Available tools for editing and manipulating scenes within the
Map-View are arrow and rubber, implementing the same
functionality commonly used in other applications: Using the
arrow tool, GPS states can be generated by clicking into the
map, or moved by dragging an already existing state. The
rubber deletes states. Entryconditions, messages and connected
assets are editable in Asset-View and State-Editor, which
usually display the last touched state.

4.2.3 Asset-View
The Asset-View can connect certain file types through drag and
drop with the currently edited state. For the moment, supported
file-types are .wav and .aif audio-files and Pd patches. Support
for other audio and video formats will follow. The map to the
right of the asset file-list as shown in Figure 1. allows the user
to put the currently selected source in a particular position.
When a participant arrives within the radius of a state, the
localisation of the sound source should remain stable at the
chosen place(s) using binaural encoding – independent from the
orientation of the participant´s head, and the participant's
distance from the audio source. On entering a state, the default
behavior for assets is to trigger playback or load a Pd patch. In
order to modify this behavior and bind the execution of assets
to other conditions, the state script has to be edited by using the
State-Editor.

4.2.4 State-Editor
The State-Editor is a text based code editor and describes the
behavior of assets and possible tasks of the hero, and
interactions with other entities visible in the state. Currently,
RWA-Script is the only supported language for game logic,
supplying a limited instruction set with the ability to replicate
common RPG rules.

4.3 Implementation Details
Thanks to Kai Winter's qmapcontrol [18], RWA integrates
Google Maps as well as Open Maps support for the Map- and
Asset-View. Using Qt's signals and slots, the application
architecture is based upon a Model-View-Controller Pattern –
with a mirrored set of data for rendering – realizing a
communication scheme as shown in the figure below.

Figure 2. Communication diagram for the RWA-Creator

The base class for all views and editors is the RwaView-Class.
On calling its constructor, a pointer to the backend is passed in
order to interconnect user interaction signals with the
corresponding slots in the backend. Whenever data is modified
in any view, a signal containing the changes will be emitted.
The backend then sends a signal to the appropriate controller,
which writes the data into the model, notifies all currently

393

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

visible views, and forces them to redraw if necessary. Due to
Qt's widget implementations which already contain a model,
data is also directly updated internally within the widget.
However, this data is only a mirrored version of the currently
visible state or scene, and is merely used for rendering. Both
scenes and states use Qt's QList data structure, internally
represented by an array of pointers. This allows for fast random
access and therefore equally fast jumps to any state in the
game.

5. RWA-RUNTIME
5.1 Setup
The Android RWA-Runtime prototype is based on the Android
FHNW AudioWalk app, which has been programmed for the
Indoortracking project. For details on the underlying
architecture, please refer to [1]. In contrast to the original
application, the RWA-Runtime is self-aware of its own current
state, and therefore has to load the game script into memory in
order to be server-independent. On startup the RWA-Runtime
creates its own entity by looking up the instructions described
in the Manifest, and (usually) sets its state to the beginning of
the first scene. In the easiest case, the hero's only attribute is a
name. In a more complicated scenario, she might have a set of
attributes, for instance strength, intelligence, or health points,
and is already in possession of several objects.

Figure 3. A Manifest describing a hero and one object

5.2 State Transitions
A single state is capable of holding a set of instructions and
messages in the @onentry-block and another set within the
@pathway-block. This allows for the representation of a typical
RPG cycle, using a minimal number of states, for example a
fight sequence as shown in the diagram below. Scene variables
and functions on the top and the first state are represented in
RWA-syntax.

Figure 4. Fight sequence in RWA

The scheduler and executing interpreter for evaluating state
transitions, tasks, and interactions works with a rate of 10 Hz
which is completely sufficient for dialogue-based game
situations, as well as for location-based state transitions.
Explicit state transitions can be achieved by using the goto
statement and are done instantly. They also allow for designing
a well ordered game hierachy by interconnecting states and
scenes as illustrated in the following figure, where the fight
sequence is now completly isolated in its own scene.

Figure 5. Isolated RWA scene "ork_fight"

6. ADVANCED FUNCTIONALITY
In order to set up scenarios as described in the previous chapter,
it might be useful to predefine not only entities but also
reappearing functions, for example for the fight sequence. This
can be done either in the Scene-Editor for scene-specific
actions as layed out in Figure 4., or in the Manifest, which
provides global access of functions and variables from every
state in the game.

Figure 6. Functions in RWA-Script in the Manifest

7. RESULTS
So far, only a few walks have been created and tested within
the provisional Max/MSP simulation or as a single user game
without any client-server interaction or binaural audio. But
even without applying all the possibilities provided by an RPG
rule set and other (not yet implemented) technologies, the
existing system enables the user to program more complex apps
than do the existing tools mentioned above. The time it takes to
produce content not included, applications may be generated
within minutes. The possibility of transferring an existing scene
to a different location with only a modicum of additional
editing – a sound walk created originally for Berlin's Tiergarten
will need some adjustments for New York's Central Park –
enables the developer to create and ship applications with the
same sound material and functionality for a variety of locations
at once.

394

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

LibPd is stable and runs reliably on iOS and Android, and
makes it possible to integrate signal processing without having
to alter the actual audio callback.
 First tests have been done with calculating binaural sources on
a Smartphone using the OpenAL Mob Library [19] and the Pd-
Object earplug~ [20]. Depending on the library used and the
additionally needed reverb for improving the distance
simulation, an iPhone 4s was capable of computing three
sources simultaneously. Although this number does not seem
much at first glance, benchmarks like the Geekbench [21]
suggest, that the currently available generation of smartphone
processors is at least three or four times faster.

8. CONCLUSION
The success of games like Ingress, Run, Zombies! and
Blowback, proves, that there is a definite need for a middleware
like RWA. Through the usage of an RPG rule system it is
possible to program a wide variety of applications, ranging
from position based audio information systems, to audio
adventure games, to language training applications, to complex
audio-based role playing games. The resulting software can
react to differences in daytime, weather, gender, or the
participant's age, as well as to fictional attributes, objects, and
NPC's, and therefore allow users to generate a completely
dynamic audio augmented reality. The code editors for
describing state- and scene-behavior are already easy enough to
use – in future development, specialized editors and templates
for certain situations will be included in order to allow for even
more rapid game development. In combination with the already
existing, very intuitive graphical interfaces, artists and game
designers will be able to create RWA games by simply
dragging and dropping – without the need for advanced
programming skills.

9. ACKNOWLEDGMENTS
Thanks to Dr. Michael Kunkel, Prof. Dr. Stefan Weinzierl, and
the Electronic Studio Basel for their support of my research.

10. REFERENCES
[1] Matthias Krebs, Thomas Resch (2014): "A simple

Architechture for Server based (Indoor) Audio Walks". In:
Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME 2014). London.
P.269-272.

[2] Authentic Tours Limited (n.y.), myTours [online]. URL:
http://www.mytoursapp.com [accessed January 21st
2014].

[3] Espro Acousticguide Group (n.y.), acousticguide [online].
URL: http://www.acoustiguide.com [accessed January
21st 2015].

[4] Toozla (n.y.), toozla [online]. URL:
http://www.toozla.com/ [accessed January 21st 2015].

[5] audioguideMe (n.y.), Audioguideme [online]. URL:
http://www.audioguide.me/ [accessed January 21st 2015].

[6] Ian Parberry, Timothy Roden (2005): "Designing a
Narrative-Based Audio Only 3D Game Engine". In:
Proceedings of the 2005 ACM SIGCHI International
Conference on Advances in computer entertainment

technology (ACE'05). New York: ACM
P. 274-277.

[7] Richard van Tol, Sander Huiberts (n. y.): AudioGames,
your resource for audiogames, games for the blind, games
for visually impaired! [online]. URL:
http://www.audiogames.net [accessed January 22nd 2015].

[8] Google Inc. (n. y.), Ingress [online]. URL:
https://www.ingress.com/ [accessed January 21st 2015].

[9] Six to Start with Naomi Alderman (n.y.), Zombies, Run!
[online]. URL: https://www.zombiesrungame.com/
[accessed January 21st 2015].

[10] Deutschland Radio (2015), Blowback [online]. URL:
http://blogs.deutschlandradiokultur.de/hoergame/
[accessed January 21st 2015].

[11] Jeffrey Kim, Elan Lee, Timothy Thomas, Caroline
Dombrowsky (2009): "Storytelling in new media: The
case of alternate reality games, 2001-2009" [online]. URL:
http://firstmonday.org/ojs/index.php/fm/article/view/2484/
2199 [accessed April 15 2015]. In: First Monday, Volume
14, Number 6.

[12] Aki härmä, Julia Jakka, Miikka Tikander, Matti
Karjalainen, Tapio Lokki, Jarmo Hiipakka, Gaëtan Lorho
(2004): "Augmented Reality Audio for Mobile and
Wearable Appliances". In: Journal of the Audio
Engineering Society 52 (6). P 618-639.

[13] Anders Tychsen (2006), "Role Playing Games -
Comparative Analysis Across Two Media Platforms". In:
Wong, Fung, Cole, Pisan (Edt.): Proceedings of Third
Australasian Conference on Interactive Entertainment (IE
2006). Perth. P.75-82

[14] Daniel Eriksson, Johan Peitz, Staffan Björk (2005):
"Enhancing Board Games with Electronics". In: Gellersen,
Want, Schmidt (Edt.): Proceedings Series: Lecture Notes
in Computer Science, Vol. 3468. Berlin: Springer-Verlag
GmbH.

[15] Digia plc (n.y.), Qt [online]. URL: http: http://qt-
project.org/ [accessed January 23rd 2015].

[16] Thomas Resch (2015): Github repository for RWA
[online]. URL: https://github.com/funkerresch/rwaengine/
[accessed 2015, April 15].

[17] Matthias Krebs, Thomas Resch (2014): Github repository
for Large Scale Indoortracking [online]. URL:
https://github.com/fhnw-imvs/fhnw-audiowalk/ [accessed
2015, April 15].

[18] Kai Winter (2008), qtmapcontrol [online]. URL:
http://www.medieninf.de/qmapcontrol/ [accessed January
23rd 2015].

[19] Jawbone (n.y.),Github Repository for the OpenAl Mob
Library [online]. URL:
https://github.com/Jawbone/OpenAL-MOB [accessed
January 23rd 2015].

[20] Pei Xiang (2004), earplug~ [online]. URL:
http://sourceforge.net/projects/pure-
data/files/libraries/earplug~/earplug~-0.2.tar.gz/download
[accessed January 23rd 2015].

[21] Primate Labs (n.y.), Geekbench [online] URL:
http://www.primatelabs.com/geekbench/ [accessed
January 23rd 2015].

395

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

