
Transforming 8-Bit Video Games into Musical Interfaces
via Reverse Engineering and Augmentation

Ben Olson
Signal Narrative

Madison, WI, USA
ben@signalnarrative.com

ABSTRACT
Video games and music have influenced each other since
the beginning of the consumer video game era. In partic-
ular the “chiptune” genre of music uses sounds from 8-bit
video games; these sounds have even found their way into
contemporary popular music. However, in this genre, game
sounds are arranged using conventional musical interfaces,
meaning the games themselves (their algorithms, design and
interactivity) play no role in the creation of the music.

This paper describes a new way of creating music with
8-bit games, by reverse engineering and augmenting them
with run-time scripts. A new API, Emstrument, is pre-
sented which allows these scripts to send MIDI to music
production software. The end result is game-derived mu-
sical interfaces any computer musician can use with their
existing workflow. This enhances prior work in repurposing
games as musical interfaces by allowing musicians to use the
original games instead of having to build new versions with
added musical capabilities.

Several examples of both new musical instruments and
dynamic interactive musical compositions using Emstru-
ment are presented, using iconic games from the 8-bit era.

Author Keywords
Computer Music Controllers, Game Modding, Emulation,
Audio Programming, Active Score Music, Algorithmic Com-
position

ACM Classification
• Applied computing—Sound and music computing
• Applied computing—Computer games • Social and
professional topics—Software reverse engineering

1. INTRODUCTION
Video games and music have long been intertwined. In ad-
dition to having a musical soundtrack, many games have
rhythmic or compositional elements to them [13]. Video
games, as a large part of today’s culture, have in turn influ-
enced music. The chiptune genre of music involves crafting
music using sound chips from old game consoles, either to
invoke nostalgia or as a way to follow a minimalist aesthetic
[12]. Many musicians today across all genres use game hard-
ware or software simulations to augment their music with

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’16, July 11-15, 2016, Griffith University, Brisbane, Australia.
.

these sounds.
Chiptune music, however, does not use actual games in its

composition or performance, even if retro games are evoked
in the listener’s mind. Incorporating these games into the
musical process could lead to many new possibilities, for
reasons both artistic and technical.

Artistically, creating music by interacting with a game
adds a unique visual component to a traditionally non-
visual experience. Furthermore, there is a lot of cultural
value in 8-bit games. Many artists’ work features a game-
influenced “8-bit” aesthetic [7], and countless mass media
is game-influenced, including a recent multi-million dollar
film, Pixels. The personal value of these games to many
listeners adds another dimension to the art.

From a technical viewpoint, using retro games as mu-
sical interfaces leads not only to new ways to create mu-
sic, but also musical creations that have “character” based
on the algorithms, design and interactivity of the original
games. They present user interfaces that are widely ac-
cessible to non-musicians and indirectly communicate the
internal workings of the game via sonification.

This paper will look at one approach to incorporating
games into the creation of music: using run-time scripts
to augment them with MIDI output, for integration into
computer music workflows. This extends prior efforts to
convert games into musical interfaces by allowing musicians
to convert closed-source, seemingly non-extensible games
using simple scripting. The scope of this work is only emu-
lated 8-bit games, but the same principles can be used for
later games, albeit at greater difficulty.

Figure 1: Super Mario Brothers keyboard instru-
ment. The key being pressed is highlighted

73



2. PRIOR WORK
There is plenty of existing work in the area of repurposing
non-musical games for musical expression. One such exam-
ple is ChucK ChucK Rocket [15], which recreated the puz-
zle game ChuChu Rocket as a multiplayer musical canvas.
However the approach of rebuilding a game from the ground
up is time-consuming; in addition the recreated game will
not behave exactly the same as the original game, possibly
altering the musical output. A work closer to this paper is
UDKOSC, which allows musicians to create musical inter-
actions in games based on the Unreal engine [9]. However,
UDKOSC and other similar projects [5, 8] require a game
or game engine that is open-source or designed to be modi-
fiable; this precludes using any games designed for a closed
game console. This paper describes a framework allowing
musicians to transform non-extensible console games into
musical interfaces, using their original binary code and algo-
rithms. This unlocks a wide variety of games for musicians
to use as expressive interfaces.

On the non-musical side, there is a lot of relatively recent
work which makes this paper’s ideas possible. The reverse
engineering work of ROM hackers and speed-runners has
demystified a lot of the internal workings of early console
games [3]. Their work also led to the inclusion of scripting
capabilities into many video game console emulators [1].
These emulators have the capability to run scripts which
interact with the game as it is played. The scripts are gen-
erally used to augment the game in ways that cannot be
accomplished by modifying the game binary (e.g real-time
mouse input). The ability to use scripting to draw addi-
tional graphics in a game is used extensively by the musical
interfaces demonstrated in this paper.

3. IMPLEMENTATION
In order to implement the ideas described above, a new Lua
module, Emstrument (a portmanteau of ‘emulator’ and ‘in-
strument’), was created. Its API allows scripts running in
video game console emulators to send MIDI messages to ex-
ternal audio software, allowing games to be converted into
musical interfaces. Lua was chosen as the API language as
it is supported by many popular emulators [1] for its com-
pact, portable design and ease of use [11]. As a Lua mod-
ule, installation simply consists of downloading the binary
(emstrument.so) to the Lua install directory; no linking or
recompilation is required for use with an emulator. Emstru-
ment currently only outputs MIDI messages and does not
generate or manipulate in-game sounds; this was a conscious
decision to allow electronic musicians to use their existing
MIDI-compatible software and hardware.

Building a musical interface with Emstrument is fairly
straightforward. A script is written that observes some val-
ues in the console’s RAM while the game is played. These
values correspond to various in-game properties, such as
the player’s location, score, level, etc. When those values
change, MIDI messages such as notes, control changes, and
pitch bends can be programmatically sent over the 16 MIDI
channels to control audio software. Utility scripts which do
not interact with a game can also be written for uses such
as mapping MIDI controls to audio parameters.

3.1 API Design
The Emstrument API was created for ease of use and to
work specifically with scripting systems that iterate once
per video frame. It queues MIDI messages, which are con-
solidated and sent all at once, for precise timing and to elim-
inate redundant or conflicting messages (e.g multiple note
off messages per note on). To do this, Emstrument keeps

Figure 2: Emstrument data flow

extensive internal state; it is not simply a thin wrapper for
low-level MIDI functions.

The API functions are designed to make scripts concise
and readable. noteonwithduration() sends a note on mes-
sage, then sends the corresponding note off message after
the desired duration, so the script is not bogged down with
timing code. The allnotesoff() function turns off all the
notes currently active on a channel (and only those notes),
preventing the need to keep track of which notes are play-
ing1. The notenumber() function translates a string into
a MIDI note value, allowing for code which can easily be
read as chords and melodies. The rest of the functions are
described in the API documentation found at the link in
Appendix A.

3.2 Game Reverse Engineering
In a vacuum, the most difficult part of using Emstrument
would be reverse-engineering games to find the RAM ad-
dresses of in-game properties. However, this is not usually
difficult in practice for a few reasons:

• In modern computing the address of any value in RAM
is dynamic and potentially changes every time the pro-
gram is run. This makes variable detection an active
area of research [4]. However, 8-bit video games gener-
ally do not perform any dynamic memory allocation.
All the variables are stored in the same places every
time the game is run, for performance and because
there is no need for code portability.

• Much of the work of finding the RAM addresses of
these values has been done by the ROM hacking and
speed-running communities [3]; RAM maps for many
games are easily found online. There are several re-
sources for doing further reverse engineering [2].

• In the case where a RAM address for a value is un-
known, a secondary value often can be used. For ex-
ample, an increase in the player’s score can be tracked
instead of a change in an undiscovered “power-ups ac-
quired” value.

4. MUSICAL INTERFACE EXAMPLES
The following sections discuss the design of 4 selected game
modifications which use Emstrument. Two are game-based
single musical instrument controllers, which leverage expert
technique (gameplay expertise), one of Cook’s design prin-
ciples for computer music controllers [6]. There are also

1The MIDI channel mode message for “All Notes Off” was
not universally supported on tested audio software, so it
was implemented manually

74



two multi-instrumental interactive compositions, following
the principle of “Create a piece, not an instrument”. These
scripts are all under a few hundred lines of code and show
promising results. There were not any great difficulties in
translating musical ideas into code using Lua and Emstru-
ment.

4.1 New Musical Instruments
4.1.1 Super Mario Brothers - Keyboard

Super Mario Brothers is an iconic early 2D run and jump
game. This script superimposes a diatonic keyboard onto
the bottom of the screen, which is played by jumping on
keys at different horizontal positions (Figure 1). The in-
strument resembles a fully digital version of Andante [16],
a system overlaying walking figures over a keyboard2.

The keyboard covers 2 repeating octaves, enough to play
simple melodies. As the player travels right in the game
world, the keyboard scrolls left, making it feel like an object
in the game’s virtual world. The virtual physicality of the
keyboard leads to ideas for further physical interactions (e.g
ducking the character to trigger aftertouch).

The instrument works for both percussive sounds (pi-
ano, marimba) and sustained sounds (strings, pads), as the
player can hold a note by standing in the same place af-
ter triggering a note. Early versions of the instrument also
triggered notes when the player walked over them, but this
resulted in reduced control and mechanical-sounding runs
of notes.

Playing the instrument requires some practice, just like
learning the game for the first time, since making precise
jumps and landings requires adjustment to the game’s in-
ternal physics.

4.1.2 Arkanoid - Drum Machine
Arkanoid is a clone of Breakout which is converted here
into a percussion generator. Standard MIDI drum notes
are triggered when the ball changes direction in response to
hitting various objects. The player has some control over
the drum pattern by directing the ball in different directions
by hitting it with different parts of the paddle.

Figure 3: Arkanoid drum machine. Triggered notes
are drawn on the right below the score

One challenge faced when converting games into musical
interfaces is keeping a regular rhythm, as in-game events oc-
cur at arbitrary times. That is accomplished here by slightly
2This was not discovered until after the instrument was
implemented

quantizing the events, as is done in many rhythm games [13].
For this instrument a further game modification was added

to always keep the ball in play to keep the drum pattern go-
ing. The result is the ball continually increasing in speed
creating more and more intense rhythms, not unlike a drum-
mer playing a solo. This emergent behavior gives the instru-
ment character, giving life to code written decades ago.

4.2 Interactive Musical Compositions
Emstrument can be used to play many instruments simul-
taneously to create full compositions. This is accomplished
by sending messages on multiple MIDI channels (one for
each voice), and filtering the messages at the endpoints.
These algorithmic compositions are created by the interac-
tion of the algorithms in the script and the algorithms in
the game; they thus can be described as inter-algorithmic
compositions.

These pieces can be recorded as audiovisual art, or played
live, transforming the game into what is referred to as active
score music [13].

4.2.1 Tetris - Multi-Sequencer Composition
Tetris is a seminal puzzle game where falling blocks are
arranged by the player, who tries to avoid filling up the
game board by clearing horizontal lines. Using Emstru-
ment the game board becomes the input for 2 independent
sequencers, which trigger a bassline, drum pattern, and lead
synth based on the content of each of the 10 columns (re-
sulting in the odd meter of 10

4 or 5
4).

Figure 4: Tetris multi-sequencer. The 2 sequencer
playheads are drawn above the blocks

At the start of a game, the bass and lead synth play a
single note corresponding to the bottom of the game board.
As the board fills up, they start playing notes corresponding
to the top block of each column. When the player creates a
difficult situation by introducing a gap in a column (where a
horizontal line can no longer be formed), that column then
triggers percussion sounds. As the game proceeds and the
player inevitably stacks the columns higher and higher, the
music becomes more intense to match the game’s increasing
intensity. Various techniques are used to keep the music
dynamic and reduce repetition, including altering sequencer
behavior when lines are cleared.

This composition is an example of how a new auditory
experience can change the way a game is played. Instead
of keeping the board as clear as possible as they would in
the original game, the player is tempted to make “mistakes”

75



to introduce new rhythms and sounds, while still trying to
avoid filling up the board completely.

4.2.2 Pac-Man - Generative Soundtrack3

Pac-Man is a maze game where the player is pursued by
4 ghost characters. The game’s carefully written AI algo-
rithms cause tension to build as the ghosts chase the player,
then release when the ghosts (sometimes) retreat. To re-
flect that tension, in this composition each ghost controls
a synthesizer voice. These voices are filtered based on the
player’s distance from each ghost. Thus, in dangerous situ-
ations when multiple ghosts are near the player, their notes
combine in dissonant ways to create tension. To fill in mu-
sical space, other sounds are played when the player eats
various objects, and to avoid repetition the various notes
and sounds are changed based on player and ghost direc-
tions and locations across different levels.

The end effect is that the playful chirping sounds found in
the original game are replaced by ominous bass-heavy and
distant sounds, darkening the mood of the game. Future
game-based generative compositions could be used to fur-
ther explore the connection between audio and how a game
is experienced.

5. SUMMARY
This paper describes Emstrument and 4 game modifications
made possible with it, as a starting point in creating music
using the algorithms, design and interactivity (rather than
the sounds) of 8-bit video games. Using Emstrument, music
can be created using games unexplored by prior research in
repurposing games for musical expression.

These musical interfaces create synesthetic experiences
where the visuals illustrate the music in ways non-musicians
can understand, as well as communicating the underlying
architecture and behaviors of the game via rhythm and har-
mony. In addition, they create a new form of gameplay
in which the player not only has to accomplish their in-
game goals, but do so in a “musical” way (e.g playing sub-
optimally for better musical results). Playing music writ-
ten for conventional instruments with these interfaces is not
easy, due to the player’s limited control over the game, forc-
ing the creation of new unconventional forms of music.

Beyond any other consideration, these new musical inter-
faces are fun to use, as “Everyday objects suggest amusing
controllers” [6].

6. FUTURE WORK
First and most importantly, work needs to be done exploring
the usability of these new musical interfaces by external
users, as a study could not be carried out while this project
was in development. Musicians and composers familiar with
gaming could provide insight into how these game-derived
interfaces either succeed or fail at allowing them to express
their musical ideas in new ways, and help further develop
the core concept.

Beyond that, there are a few straightforward ways to ex-
tend Emstrument possibly worth investigating:

• Currently, Emstrument runs in a static script, but
support for persistent state could be added to allow for
live coding performances, where the script is updated
in real time. The computation involved in emulation
is light enough to be done in a web browser and could
perhaps work in conjunction with a browser-based live
coding environment like Gibber [14].

3This Emstrument script does not have an added visual
component, so a screenshot is not shown in this paper.

• Emstrument is used to generate sound but does not
take it as input. Adding MIDI or audio input to
Emstrument would allow even further integration be-
tween music and game. Using MIDI input to influence
a game was previously investigated in a modified ver-
sion of Asteroids [10], but the game itself was not used
as a musical interface.

7. REFERENCES
[1] TASVideos / Lua Scripting.

http://tasvideos.org/LuaScripting.html.
Retrieved 2016-04-15.

[2] TASVideos / Reverse Engineering.
http://tasvideos.org/ReverseEngineering.html.
Retrieved 2016-04-15.

[3] N. Altice. Tool-assisted console emulation and
platform plasticity.
http://metopal.com/2011/12/06/tool-assisted-

console-emulation-and-platform-plasticity/,
November 2011. Retrieved 2016-01-20.

[4] G. Balakrishnan and T. Reps. DIVINE: DIscovering
Variables IN Executables. In B. Cook and
A. Podelski, editors, Verification, Model Checking,
and Abstract Interpretation, volume 4349 of Lecture
Notes in Computer Science, pages 1–28. Springer
Berlin Heidelberg, 2007.

[5] M. Cerqueira, S. Salazar, and G. Wang. SoundCraft:
Transducing StarCraft 2. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, pages 243–247, Daejeon, Republic
of Korea, May 2013. Graduate School of Culture
Technology, KAIST.

[6] P. Cook. Principles for designing computer music
controllers. In Proceedings of the 2001 Conference on
New Interfaces for Musical Expression, NIME ’01,
pages 1–4, Seattle, Washington, 2001.

[7] M. Grethe and C. Andrew. Videogame music:
chiptunes byte back? In DiGRA ’07 - Proceedings of
the 2007 DiGRA International Conference: Situated
Play. The University of Tokyo, September 2007.

[8] R. Hamilton. q3osc: or How I learned to stop
worrying and love the game. In Proceedings of the
International Computer Music Association
Conference, Belfast, Ireland, 2008.

[9] R. Hamilton. UDKOSC: An immersive musical
environment. In Proceedings of the International
Computer Music Association Conference,
Huddersfield, United Kingdom, 2011.

[10] J. Holm, J. Arrasvuori, and K. Havukainen. Using
MIDI to modify video game content. In Proceedings of
the International Conference on New Interfaces for
Musical Expression, pages 65–70, Paris, France, 2006.

[11] R. Ierusalimschy, L. H. de Figueiredo, and W. C.
Filho. Lua—an extensible extension language. Softw.
Pract. Exper., 26(6):635–652, June 1996.

[12] I. Márquez. Playing new music with old games: The
chiptune subculture. Games as Art, Media,
Entertainment, 1(3):67–79, 2014.

[13] P. Martin and K. Fares. Levels of sound: On the
principles of interactivity in music video games. In
DiGRA ’07 - Proceedings of the 2007 DiGRA
International Conference: Situated Play. The
University of Tokyo, September 2007.

[14] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. Ann Arbor, MI:
MPublishing, University of Michigan Library, 2012.

76

http://tasvideos.org/LuaScripting.html
http://tasvideos.org/ReverseEngineering.html
http://metopal.com/2011/12/06/tool-assisted-console-emulation-and-platform-plasticity/
http://metopal.com/2011/12/06/tool-assisted-console-emulation-and-platform-plasticity/


[15] S. Smallwood, D. Trueman, P. R. Cook, and
G. Wang. Composing for laptop orchestra. Computer
Music Journal, 32(1):9–25, 2008.

[16] X. Xiao, B. Tome, and H. Ishii. Andante: Walking
figures on the piano keyboard to visualize musical
motion. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 629–632, London, United Kingdom, 2014.
Goldsmiths, University of London.

Appendix A: Emstrument Links
Source code, including scripts: http://github.com/ben-signalnarrative/emstrument

Demo video, showing game-based instruments and compositions: http://vimeo.com/150221247

API documentation: http://github.com/ben-signalnarrative/emstrument/blob/master/documentation/doc.md

Scripting tutorial: http://github.com/ben-signalnarrative/emstrument/blob/master/documentation/tutorial.md

77

http://github.com/ben-signalnarrative/emstrument
http://vimeo.com/150221247
http://github.com/ben-signalnarrative/emstrument/blob/master/documentation/doc.md
http://github.com/ben-signalnarrative/emstrument/blob/master/documentation/tutorial.md

