Understanding Cloud Service in the Audience
Participation Music Performance of Crowd in C[loud]

Antonio Deusany
de Carvalho Junior
Universidade de Sao Paulo
Rua do Matao, 1010,
CEP 05508-090, Sao Paulo,
SP, Brazil
dj@ime.usp.br

ABSTRACT

Cloud services allow musicians and developers to build audi-
ence participation software with minimal network configu-
ration for audience and no need for server-side development.
In this paper we discuss how a cloud service supported
the audience participation music performance, Crowd in
C[loud] [10], which enables audience participation on a large
scale using the audience audience’s smartphones. We present
the detail of the cloud service technology and an analysis
of the network transaction data regarding the performance.
This helps us to understand the nature of cloud-based au-
dience participation pieces based on the characteristics of
a performance reality and provides cues about the technol-
ogy’s scalability.

Author Keywords

Audience participation, Cloud Service, Networked Music

ACM C(lassification

H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing, H..5.3 [Group and Organization Inter-
faces] Web-based interaction, J.5 [ARTS AND HUMANI-
TIES] Performing arts (e.g., dance, music)

1. INTRODUCTION

It has been a long-standing endeavor to create musical per-
formances in which the audience can easily participate. In
particular, mobile smartphones have the highly desirable
characteristic of already being in the possession of the au-
dience members while offering networking and rich sensor
capabilities. Golan Levin’s Dialtones[13, 6] used ring-tones
and wireless network dial-up to enable a concert-hall filled
audience involvement piece with mobile phones. Since then
much effort has been devoted to build mobile-based infras-
tructure to support mobile-device based audience partici-
pation such as echobo[12], massMobile[17] or Swarmed]7].
This paper aims to describe the technical realities of a recent
audience participation piece called Crowd in Cfloud] [10].
Studying cloud services in real performance settings will en-
able us to better understand them as they evolve. In part

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
BY remains with the author(s).

NIME’16, July 11-15, 2016, Griffith University, Brisbane, Australia.

Sang Won Lee
Computer Science and
Engineering
University of Michigan
2260 Hayward Ave
Ann Arbor, Ml 48109-2121
snaglee@umich.edu

Georg Essl
Electrical Engineering &
Computer Science and Music
University of Michigan
2260 Hayward Ave
Ann Arbor, Ml 48109-2121
gessl@umich.edu

this paper can also be understood as advocating for the sim-
plicity of this approach to audience participation and that
some services that can be easily integrated into musical per-
formances without requiring a deep technical background in
cloud computing or virtual machines from the artist.

Our work draws upon two long-standing research and per-
formance traditions: (1) distributed musical performances,
a field of network music where people can collaborate in
music making remotely, and (2) mobile music, that consid-
ers musical interaction through mobile devices. We present
a three-way connection between a human, a musical instru-
ment and the cloud server, in which the interface is built on
a web page for collaborative music and the instrument com-
municates with the cloud server to enable social interaction
among the audience. Realizing this network setup using the
cloud service will require no network configuration for au-
dience (other than visiting a web page) and no server-side
programming (other than uploading the web pages) for the
musicians. In addition, leveraging recent advances in web
audio, we were able to distribute a complex networked mu-
sical instrument by sharing a shortened link.

In this paper we will focus on low level aspects of the
technological reality of the piece, both in terms of architec-
ture and in terms of the observed network characteristics
in a public performance of the piece. For a more detailed
description on the piece, please read [10] and watch a video-
taped performance at https://youtu.be/8nnrKJ4ApOc.

2. COLLABORATIVE NETWORK MUSIC

Network music is a computer music tradition developed to
support collaboration among computer musicians [2]. The
use of local networking is a rather standard piece of net-
worked ensemble today. Interaction through a local network
requires a setup effort but adapts to the performer’s collab-
oration scheme and offers reliability as musicians know the
whole network structure while defining desired settings.
One of the technical aspects of setting up network per-
formances is addressing the hosts that will be participating.
If a remote host can be correctly targeted to local network,
this can be extended more globally. The conventional solu-
tion to this problem are fixed IPs. However, the necessity
of a NAT for IPv4, and before the wider adoption of IPv6
around the world, the need for a public IP on the Internet
limits this approach, as it is cumbersome to acquire. Some
solutions mitigate this problem by choosing a single central
server with a public IP. In this case, the other users will
need to create a socket with the server while this server
distributes data to all users. Collaborative live coding in-
terconnected through TCP/IP (fixed IP) is a good example
of extending local network to Internet and we already have

176

some performances like that using Republic', an extension
to SuperCollider, for example. However, if this solution is
applied to an audience participation context, the musician
will need to guide their audience to follow configuration
steps. This may include downloading an app, joining a spe-
cific network and typing the IP address, which may prove
difficult for casual users. Also, it might be challenging for
the musician to control a large-scale crowd.

The use of online services like Twitter can save some
network setup, as can be seen in Dahl’s TweetDreams [3].
Roberts’ Gibber [15] allows for code sharing through ex-
isting services/web browsers. Allison’s NEXUS [1] lever-
ages web services which provide interfaces for user interac-
tion, including easy and distributed setups. Cloud comput-
ing emerged as an alternative to facilitate easier network
music configuration. Hindle’s CloudOrch [8] and cloud or-
chestra [9] are early examples that use Cloud solutions to
leverage user interaction through powerful network infras-
tructure with less effort for the network setup. The system
architecture that supported the piece Crowd in Cfloud], the
work described in this paper, also used the Cloud, but fo-
cused on Cloud Services, as we discuss in the next section.

3. CLOUD SERVICES

Cloud services can achieve our goal of enabling audience
participation in musical performances using mobile devices
and provide an immersive/interactive musical environment
with fast and easy set up. The “always on” paradigm and
realtime interaction is now a technological reality in network
settings. Much of it has been enabled by cloud computing
technologies to distribute data faster through a reliable and
distributed network infrastructure. As part of unlocking
cloud services for network music performance we have eval-
uated the efficiency of a cloud service in acomputer music
context and obtained good results of 83ms latency between
devices in North and South America through the Pusher
cloud service? [4]. Although this work used an Android app
during the evaluations, the cloud service provides an API
(application programming interface) and SDK (software de-
velopment kits) for web applications that can be loaded on
browsers without any system configuration or app instal-
lation. In order to facilitate remote collaboration for live
coding, we created an application using the Pusher cloud
service. The application developed was named SuperCo-
pair, acts as a package for Atom.io, and explores pair pro-
gramming and distributed music performance using Super-
Collider [5]. Users can share SuperCollider files, edit the
files together online in a collaborative session, and can also
run codes locally, remotely and globally regardless of the
number of connected programmers, exchanging data with
the Pusher cloud service. As the communication is admin-
istrated by the cloud servers, the users only need to be
connected online to have a collaborative session.

Before cloud service, the developers would have to cre-
ate, setup, and start a server locally (or remotely) and de-
velop a custom software in order to manage the user inter-
actions and the message exchanges between connected de-
vices. Cloud services make network setup abstract to users
and distribute the data using computers clusters available in
distributed data center over the globe. The available APIs
offered by these services contain the functions necessary for
interconnection between devices, including methods to con-
nect, disconnect, and send messages, and also a callback to
listen for received messages.

"https://github. com/supercollider-quarks/Republic
2Pusher Cloud Service: http://www.pusher.com/

Upon our evaluations on a number of different cloud ser-
vices, we chose PubNub cloud service®, which had better
specification, for this performance. The advantages of Pub-
Nub, compared to Pusher, include larger message size and
a greater number of messages allowed. Both services have
plans that preserve the size of the messages but differ in
the allowable quantity of serviced messages. While Pusher
limits the messages to 10KB, PubNub accepts messages of
32KB. Another disadvantage of Pusher, especially in the
context of audience participation music, is that it will dis-
card messages if the device exceeds the rate of 10 messages
per second and plans limit the number of messages sent
per day. PubNub limits the quantity of messages sent per
month but the limits are never throttled even on free plans
for our purpose, so we can use the full service capacity dur-
ing one single performance, assuming no other performance
within that month. We also opted to use a paid plan for a
month to guarantee that we would have technological sup-
port during the performance and a dedicated key for this
application only, as opposed to using a free demo key. More
details regarding PubNub Cloud Service can be found at
their website: http://www.pubnub.com/. In the next sec-
tion we will describe the piece and application created for
Crowd in Cfloud], the performance evaluated in this paper.

4. CROWD IN C[LOUD] : ONLINE DATING
THROUGH MUSIC

Crowd in Cfloud] is a networked music piece composed and
developed for audience participation at a music concert [10].
It draws on the idea from the piece In C' by Terry Riley,
wherein musicians (with various instruments) were guided
to play pre-composed melodic fragments in C Chord [14].
In Crowd in Cfloud], each participant uses web browsers
(typically on their smartphones) that support Web Audio
API and are instructed to play a short snippet (or tune)
composed by herself and by other audience members for a
random amount of time. The aggregated result of each in-
dividual playing a short tune creates a heterophonic texture
of chance, largely in C chord. For more detailed motivation
regarding the aesthetic of the piece, see [10].

Ease of use in designing a musical interface for audience
participation is one of the most significant qualities in au-
dience participation [12]. This is especially essential to mo-
tivate people to participate in the piece with clarity and
musicality. Crowd in Cfloud] incorporates two design de-
cisions to achieve this accessibility. First, the interaction
design in the instrument is loop-based where a participant
needs to place musical notes on screen and the pattern of
five musical notes will create a tune that is looped indefi-
nitely based on where the notes are. This means the user
does not need to make a playing gesture constantly in order
to generate tones. This nature of modifying a musical loop
ensures that the instrument will generate sound so that the
musician need not worry about being too sparse or silent
due to low participation.

Second, the piece uses the metaphor of online dating for
browsing the composed tunes of others. In the beginning
of the performance, once a participant finishes the compo-
sition, he or she can browse, and play, what other audi-
ence members have composed. Browsing tunes composed
by others mimics an online-dating website (such as Tinder
4) where a user creates a personal profile and then browses
other member profiles that include pictures and written de-
scriptions about themselves. The networked instrument cre-
ates a temporary social network that lasts until the end of

3PubNub Cloud Service: http://www.pubnub.com
Yurw . gotinder.com

177

the performance where each tune is a musical profile of a
participant. In addition, the collection of each tune com-
posed by individuals serves as musical phrases found in Ri-
ley’s In C.

The metaphor of creating and browsing online profiles
creates a set of states a participant can be in during the
performance. The musical instrument for a user can be in
one of five different states: NAME, EDIT, WAIT, CHECK,
and MINGLE. Each state is used to design different inter-
faces and different modes of social interaction: 1) NAME
is the initial state where a user determines the screen-name
for participation. 2) EDIT is the state in which a user can
compose and modify the looped tune to create a profile.
3) WAIT is a transient state that involves waiting for data
response of tunes (typically composed by other audience
members) 4) CHECK is the state where one can browse
(and play) someone else’s tune and 5) lastly, MINGLE is
the state where a participant can play two tunes at the
same time, which is a metaphor of conversation, off-line
meeting, or being a match. The times in which a partici-
pant makes a transition from one state to another are the
points when a participant’s smartphones request data from
the cloud service.

In Crowd in Cfloud], the only sounds that constitute the
piece are coming from the audience seats, from speakers
of the audience’s smartphones. There is a performer on
stage who runs a performer’s interface, which serve as a
scoreboard-like visualization in which stats of each profile
is displayed (e.g. the number of likes). In fact the computer
that the performer runs acts as a server where all the audi-
ence’s tunes are stored and stats are calculated. Whenever
a participant modifies a pattern or browses audience mem-
ber’s tune, the audience’s interface request data from the
performer and waits for its response, which would come via
the cloud server from the performer’s web page loaded at
the laptop on stage. Additionally, the performer can orches-
trate the crowd by live coding in Javascript. The on-the-fly
code is distributed to all connected devices and is used to
change the property of the instrument that audience play,
as seen in [11]. For example, a performer can change chord
and scale of the instrument so aggregated outcome of tunes
can make chord progression over time. Therefore all devices
are connected and will transmit data to the performer’s lap-
top. In the following sections, utilization of cloud service
for data transmissions will be discussed.

S. PERFORMANCE STRUCTURE FOR AU-
DIENCE INTERACTION

The performance structure was inspired by other networked
pieces that presented a centralized network with a server for
receiving and sending information [16]. However, our choice
of using the cloud service set us free from the burden of de-
veloping a custom server application, which is replaced with
a single web page written in HTML and Javascript.This will
be a useful setup for artists who want to write a network
music piece who do not have a networking background but
can write an interactive web page. As its name suggests,
PubNub cloud service permits easy interconnection between
users through channels using publish-subscribe (or pub-sub
paradigm). An application (or device) can subscribe to a
channel and receive every notification that is published to
the channel. For example to broadcast a message to all
devices, a device can publish a message to a channel that
every device is subscribed to. This provides a convenient
abstraction that is robust against changes in network or
end-user device and allows dynamic reconfiguration of par-
ticipation. The push(or publish) notifications paradigm also

Figure 1: Performance structure. The left side de-
picts the performance space. On the right side, a
rectangle represent a channel, solid lines show pub-
lishing and dotted lines show subscription.

Price/month Free $15 | $49 | $125 | $399
Daily devices(max) | 20 100 | 3k | 10k | 25k

of msg per month | 1 million | Millions(underspecified)
Additional messages | - Up to $5/M

Table 1: PubNub pricing plan(April 2015)

makes performances more robust against technical disrup-
tions such as disconnection and delays.

The left side of Figure 1 presents the performance setup at
the concert hall. There were two kinds of web pages running
during the performance, one for the performer and another
for the audience. The performer sat center-stage and his
application (a web page) was project onto a screen for the
participants seated in the audience. They were instructed
to visit their application that has the musical instrument on.
The performance hall had wireless network available from
the university and had a good reception of mobile network
connectivity such as 3G.

A representation of the cloud service with the channels we
used is on the right side of the Figure 1. In our performance
we designed three types of channels following the PubNub
API for web application: a performer channel, an audience
channel and individual channels equaling the participant
number. The performer application is subscribed to the
performer channel to receive messages sent from audience
member’s devices. Once a participant visits, it requests a
performer’s application to create an individual channel by
publishing a message to the performer channel. The indi-
vidual channel is then created to respond to an audience
application’s request, typically for the audience to retrieve
a tune composed by others. When the page is loaded, every
device is given a universal unique identifier (UUID) from
the cloud service API, which is used to create an individual
channel. Lastly, all the audience members are subscribed to
the audience channel. This channel is used for crowd con-
trol: to send textual instructions, to live-code the mobile in-
strument, to start/end the performance and to troubleshoot
the performance when it goes wrong (silence, refreshing the
page).

The service plans available from PubNub at the time of
the performance were divided into free and paid plans, and
the price is described at Table 1. The number of messages
was not an issue for the performance context (even with the
free plan), because we would use the application only during

178

rehearsals and on the performance day. However, the free
plan limits the maximum number of daily devices to 20. As
we could not predetermine the number of turnout for the
performance, we could limit the number by the capacity of
the concert hall (450), which led us to choose the third plan
option in the assumption that there may be more than 100
devices.

PubNub cloud service provides an extensive API and
SDKs, and the service can be easily configured with a few
functions. Initially, the application needs to get an UUID
and initialize the PubNub object including information re-
garding the account: the publish key and the subscribe
key. After that, the device can publish messages to any
channel as long as the channel name is known (e.g. “per-
former”, “audience”). When subscribing to a channel, it is
also necessary to define a callback function that will typ-
ically parse the received messages. The basic function to
set up a publish-subscribe mechanism is presented on List-
ing 1. The code of two applications are available in the
open-source repository at:

https://github.com/panavrin/tindermusic.

The structure of the code and performance is similar to
other performances that follow the same paradigm of audi-
ence participation, but our solution avoids any server imple-
mentation or any intercommunication manipulation, thanks
to the advantages of the cloud service. The actual physi-
cal machines are abstracted and run in the background to
realize the performance. The audio generated from that ap-
plication was based entirely on Web Audio and could run
on any compatible device, including many mobile devices
that can run a web browser that supports Web Audio. In
the following section, the performance is evaluated in terms
of the network message transactions.

6. PERFORMANCE RESULTS

In April, 2015, “Crowd in Cfloud]” was premiered at the an-
nual concert of the Mobile Phone Ensemble, University of
Michigan. Our performance lasted for 6 minutes with the
sole sound from audience creations, proceeded by a per-
former’s introduction explaining how to participate. We
developed applications to log transmitted messages among
connected devices during the piece, using a computer lo-
cated on site and a remote server that listens to the cloud
service. The two logs were compared and were identical
other than the timestamps. Given the remote server was
physically the farthest machine (California) from the other
machines at the site of the performance hall (Michigan) and
the cloud data center (Northern Virginia), it is reasonable
to claim that message loss was unlikely.

The messages logged were limited to the performer and
the audience channels as they were predefined and the mes-
sages are anonymous. Individual channels of audience mem-
bers that were created on the fly were not logged for this
study. As the purpose of this study was to understand net-
work traffic of the performance, no attempts were made to
provide logging details that would have allowed identifica-
tion of individual user behavior. Rather user numbers are
used to indicate overall load and temporal patterns on the
network. The time window in which we analyzed the mes-
sages is defined by the time that the performer went live
(or pressed the “go live” button) and lasted for the actual
performance (six minutes).

The number of UUIDs created by PubNub during the
performance was 184, indicating that the audience interface
page was visited 184 times (including page refreshing). On
the other hand, we had only 76 different screen names en-
tered during the performance, and 69 of them send/receive

// Request an UUID
var my id = PUBNUB. uuid ();
// Initialize with Publish & Subscribe Keys
var pubnub = PUBNUB. init ({
publish__key: publishKey ,
subscribe__key: subscribeKey ,
uuid: my_id,

1)

// Subscribe to a channel
pubnub. subscribe ({
channel: my_id 4+ ",audience",
message: parseMessage, // callback for msg
error: function (error) {
// Handle error here

heartbeat: 15

1)

// Parse received message

function parseMessage(message) {

if (typeof message.type !|== ’undefined ’){
if (message.type =— "create—response"){
// Do something

} else if
}

// Publish a message to a channel
pubnub. publish ({

channel: "performer",
message: {"type":"create',
"my_id":my_id,
"nickname": strScreenName},

error function(m) {
// Handle error here

}
})s

Listing 1: Example of JavaScript code from Pub-
Nub API presented at audience page

messages for the actual participation. The high number
of UUIDs compared to the number of screen names is be-
cause we did not restore previous sessions of UUIDs when
refreshing the screen and the performer sent a message that
refreshes the page right before the performance. Another
discrepancy in the number of screen names (76,69) may be
caused by the incompatible devices or voluntary disconnec-
tion from the participation.

Figure 2 presents the duration of individual user’s par-
ticipation during the performance. Each horizontal line is
drawn from the time a participant submits the first mes-
sage to the performer channel until the system observes the
last message. Most lines starts approximately one minute
after the performance started, indicating that initially par-
ticipants spend time in composing their musical profiles (or
composing tunes). The short line indicates that the user
was active for a short amount of time. This reflects the
cases in which a user refreshed the page due to the delay
from the cloud and created another screen name after re-
freshing the page. Therefore, multiple lines from a single
participant may exist.

Based on Figure 2, the total number of users connected at
the same time is calculated in the Figure 3. The maximum
value in the graph, which indicates the maximum number of

179

©
=}

~
o

o
=}

v
=}

user index
N
o

w
=]

N
)
|

—
o

0 1 2 3 4 5 6
timestamp (minutes)

Figure 2: Participation of the audience during per-
formance

50

f

local max:
48 users

40

w
o

N
o

quantity of users

10+

0 1 2 3 4 5 6
timestamp

Figure 3: Number of users connected during the
performance

users online at a specific moment during the performance,
was 48. This reflect the practical number of participants at
the performance based on our observation of the number of
turnouts at the concert.

One of the significant aspects of the analysis is to develop
metrics so that we can estimate maximum network traffic
per second (bytes/sec) in order to evaluate the feasibility of
the network setup given the scale of the performance. This
will be a useful measure to secure the performance in terms
of network configuration based on the estimated number
of attendance and the networked interaction scheme of the
musical application. Based on the log data available, all the
transaction messages (that are not logged) are estimated ac-
cording to the PubNub API and the message protocol that
we defined. The size and number of estimated messages
are close to the reality because the missing messages are in
response to the request messages (that the logging applica-
tion kept track of) and we can calculate the fairly accurate
size of each message type based on the protocol regardless
of its value.

The Figure 4 and 5 show two different metrics with which
we can infer the feasibility of the network configuration.
Figure 4 shows the number of transmitted messages per
second, and Figure 5 presents the number of bytes in the
messages sent per second during the performance. In both
graphs, the peak of the graphs matches the time window
that includes the peak in Figure 3. The number of mes-

20

15¢

quantity
=
o

2 3 4
timestamp (minutes)

Figure 4: Histogram of the number of messages in
each second during the performance (Estimated)

6000

5000

N
o
=3
=)

3000 -

N
o
=]
=)

size of actions in chars

1000

3
timestamp

Figure 5: Size in bytes of the messages in each sec-
ond during the performance (Estimated)

sages matters because the cloud service keeps track of the
number of messages and can limit the functionality by the
monthly plan of choice. In the meantime, the metric in Fig-
ure 5 helps us estimate the bottleneck step in the network
pipeline. While these two graphs can vary as the number
of bytes per message differs based on its type (25 to 470
bytes), two graphs show similar patterns. Given that the
cloud service allowed messages up to 32 kBytes, the mes-
sage that the program required was at most 470 bytes(=
0.00047 kBytes). In addition, most network devices con-
sider the maximum transmission unit (MTU) as 1500 bytes
and divide messages into different packet, which indicates
that all messages would be sent in one packet.

In total, we had 86961 bytes received by the performer,
370,630 bytes sent by the performer, and 457,591 bytes in
total, during the 6 minute-performance. In terms of band-
width, we can assure that the total data exchanged during
the whole performance including entire participants did not
exceed 1Mb. This information can be useful for the audi-
ence to alleviate their concern with the data usage caused
by participating in the performance if they were using lim-
ited mobile data plan. Rather, loading the web interface
page in the beginning constituted the largest share of data
downloaded at 1.5MB. Based on our observation, the per-
formance would not have been affected even if we chose
PubNub’s cheapest service plan in terms of bandwidth. Un-
surprisingly, the device with the heaviest network traffic was

180

the performer’s laptop (at under 0.5 Mb for the whole per-
formance). However, since any delay (either computational
or network) in the performer’s laptop would impact all con-
nected devices, it is recommended to use wired connection
to route the data separately as well as optimize the code
that is running that may contribute to the delay.

7. DISCUSSION AND CONCLUSIONS

In this paper we presented utilization of a cloud service
for audience participation in musical performances. The
amount of network configuration both for the developers
and audience members was minimal. The network config-
uration using the cloud service allowed performer to medi-
ate the orchestration of the piece and let audience mem-
bers participate and collaborate with the social interaction
metaphor. Our analyses on the performance log show the
cloud service had more than enough capacity to service the
performance and gives us some information regarding what
we should consider for upcoming performances. We discov-
ered that the bandwidth required for this performance is
low given the specific interaction scheme (browsing musi-
cal profiles) among audience members. This minimize our
concern of failure for heavy traffic and audience concern of
data usage consumption for participation. This is partic-
ularly significant given that audience participation cannot
be easily be rehearsed in realistic setting upfront.

Regarding the cloud service plans, we note that the num-
ber of messages can hardly limit the network usages of the
performance, even if we would have performed everyday
during the whole month. However, the number of syn-
chronously (daily) connected devices could have been the
limit and actually could have been the case if we used the
free plan given our miss on restoring session of UUIDs. The
dress rehearsal on the same day should have consumed a cer-
tain number of devices. In general, we can conclude that the
cloud service was stable for the performance with a strong
evidence of no message loss.

For the future, we plan to further investigate and im-
prove the performance practice. First, the log application
will be modified to complete all the metrics that we had to
estimate in this work.Not only will this let us measure the
actual network traffic but we will also be able to analyze
the user experience during the performance. For example,
we will be able to detect network delay for individual and
dropout when a user refreshes the page due to a delay in
information retrieval. Second, we are in the process of en-
hancing the user experience in case of contingency. Given
that all the relevant code to run the musical instrument is
already downloaded locally, the interactivity should have
been continued while the application waits for a response
from a server. Lastly, we are interested in understanding
how collaboration among audience members changed their
experience with the performance. Learning whether the
social aspects of the instrument help the audience sustain
their interest in participation is important to garner further
understanding in prolonged audience engagement.

8. ACKNOWLEDGMENTS

We would like to thank the students from winter class of Mo-
bile Music Ensembles from University of Michigan. Thanks
for CAPES(Brazil) funding during the research and Emma
Planet support on paper proofreading.

9. REFERENCES

[1] J. T. Allison, Y. Oh, and B. Taylor. Nexus:
Collaborative performance for the masses, handling
instrument interface distribution through the web. In
Proceedings of New Interfaces for Musical Expression,
2013.

2] A. Barbosa. Displaced soundscapes: A survey of
network systems for music and sonic art creation.
Leonardo Music Journal, 13:53-59, 2003.

[3] L. Dahl, J. Herrera, and C. Wilkerson. Tweetdreams:
Making music with the audience and the world using
real-time twitter data. Citeseer.

[4] A. D. de Carvalho Junior, G. Essl, and M. G.
de Queiroz. Computer music through the cloud:
Evaluating a cloud service for collaborative computer
music applications. In Proceedings of the International
Computer Music Conference, Denton, Texas, 2015.

[5] A. D. de Carvalho Junior, S. W. Lee, and G. Essl.
Supercopair: Collaborative live coding on
supercollider through the cloud. In International
Conference on Live Coding, 2015.

[6] A. de Souza e Silva. Art by Telephone: from static to
mobile interfaces. In Lanfranco Aceti, editor,
Leonardo Electronic Almanac, volume 20. Leonardo
On-line, 2004.

[7] A. Hindle. Swarmed: Captive portals, mobile devices,
and audience participation in multi-user music
performance. In Proceedings of the 13th International
Conference on New Interfaces for Musical Expression,
pages 174-179, 2013.

[8] A. Hindle. Cloudorch: A portable soundcard in the
cloud. In Proceedings of the International Conference
on New Interfaces for Musical Expression, London,
United Kingdom, 2014.

[9] A. Hindle. Orchestrating your cloud-orchestra. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, 2015.

[10] S. W. Lee, A. D. de Carvalho Junior, and G. Essl.
Crowd in c[loud]: Audience participation music with
online dating metaphor using cloud service. In
Proceedings of Web Audio Conference, 2016.

[11] S. W. Lee and G. Essl. Live coding the mobile music
instrument. In Proceedings of New Interfaces for
Musical Ezxpression (NIME), Daejeon, South Korea,
2013.

[12] S. W. Lee and J. Freeman. echobo: A mobile music
instrument designed for audience to play. Ann Arbor,
1001:48109-2121.

[13] G. Levin. Dialtones - A telesymphony, September
2001, 2001.

[14] T. Riley. In c¢. Composition, 1964.

[15] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. In Proceedings of the
International Computer Music Conference (ICMC),
Ljubljana, Slovenia, 2012.

[16] G. Weinberg. Interconnected Musical Networks:
Toward a Theoretical Framework. Computer Music
Journal, 29:23-39, Jun 2005.

[17] N. Weitzner, J. Freeman, Y.-L. Chen, and S. Garrett.
massmobile: towards a flexible framework for
large-scale participatory collaborations in live

performances. Organised Sound, 18(01):30-42, 2013.

181

