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ABSTRACT 
This paper presents a development of the ubiquitous computer 
keyboard to capture velocity and other continuous musical properties, 
in order to support more expressive interaction with music software. 
Building on existing ‘virtual piano’ utilities, the device is designed to 
provide a richer mechanism for note entry within predominantly non-
realtime editing tasks, in applications where keyboard interaction is a 
central component of the user experience (score editors, sequencers, 
DAWs, trackers, live coding), and in which users draw on virtuosities 
in both music and computing. 
   In the keyboard, additional hardware combines existing scan code 
(key press) data with accelerometer readings to create a secondary 
USB device, using the same cable but visible to software as a 
separate USB MIDI device aside existing USB HID functionality. 
This paper presents and evaluates an initial prototype, developed 
using an Arduino board and inexpensive sensors, and discusses 
design considerations and test findings in musical applications, 
drawing on user studies of keyboard-mediated music interaction. 
Without challenging more established (and expensive) performance 
devices; significant benefits are demonstrated in notation-mediated 
interaction, where the user’s focus rests with software. 
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1. INTRODUCTION 
In digital music, computer and musical keyboards support different 
aspects of composition and production, which can partition the 
creative process, between creativity and productivity phases. [11]  
The embodied interaction style supported by instruments (including 
MIDI devices) encourages musicians to ideate, compose, and 
perform music away from the computer, before capturing (recording) 
it in a realtime performance. In the computer, the sequencer/DAW 
then draws on keyboard and mouse interaction to edit and refine the 
musical data, mediated through a visual medium (UI or notation). 
However, generic computer input styles (keyboard, mouse, WIMP, 
etc.) are not optimized for fluid and expressive music interaction, 
splitting and shifting focus between the software environment 
(notation) and a separate hardware input device (instrument). 
   The computer keyboard is powerful and precise with respect to 
symbolic input, but lacks musical fidelity. Data entry is processed as 
enumerated scan codes, triggered by roughly 100 discrete keys, 
corresponding to alphanumeric symbols or functions, with modifiers 
(Shift, Ctrl, etc.) to expand control to additional layers of symbols or 
functions. Both data entry and program control are designed in 
sympathy with written language (e.g. mnemonic shortcuts for non-

symbolic actions, such as Ctrl-C for Copy, or Ctrl-O for Open). The 
keyboard’s QWERTY layout enables the development of computing 
virtuosity, in the form of motor skill and image schemata [12], as 
seen in touch typing, and similar to the learning mechanisms that 
allow performers more expressive control of musical instruments. [5] 
Indeed, the widespread development of such skill among computer 
users has engendered a design and layout that is resistant to change, 
and thus we can expect the QWERTY keyboard to be a fixture in 
studios and workstations for the foreseeable future. However,  
there is significant scope for adapting and extending the design  
within the constraints of existing interaction styles to improve 
expressiveness and control in musical scenarios. 
   By comparison, musical (MIDI) keyboards are accurate and 
expressive, but optimized for specialist musical, rather than general-
purpose use. Supporting from 25 to 88 discreet, unlabeled, linearly 
arranged piano keys; the MIDI keyboard’s design and ergonomics 
limit its utility as a computer control device, for tasks other than 
simple assignable triggers (though [4] offers a fascinating study of 
the piano as a chording keyboard for text-entry). The MIDI keyboard 
is designed for expression and creativity rather than efficiency and 
productivity, which is notably enabled through sensitivity to velocity 
and pressure (MIDI Velocity and Aftertouch) [1], and enhanced by 
passive haptic feedback from fully- or semi-weighted keys. In MIDI, 
pressure is captured at 7-bit resolution (0 to 127), effectively adding a 
‘continuous’ scale of control to the triggering of discrete pitches, 
significantly increasing the nuance of expressive input, albeit 
conditional on a concomitant increase in virtuosity.  
   The goal of this project is to similarly extend the discrete symbolic 
control offered by the computer keyboard with support for 
continuous scales of musical control, such as pressure and velocity; 
increasing the expressiveness of the keyboard without compromising 
its existing utility, functionality, or ergonomics. Accordingly, the 
envisaged user experience is characterized by fluid mixed-mode 
interaction with the device and software: symbolic input and 
keyboard shortcuts in computer modes, alternating with expressive 
musical input in performance mode. Specifically; rather than 
realtime, live musical performance, this research focuses on 
supporting richer input modes and interaction styles for “offline” 
notation and music editing, such as those in score editing, 
sequencing, and DAW software. 

Figure 1. A Velocity-sensitive Computer Keyboard. 
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   The following sections discuss the background, applications, and 
development of a prototype device that uses an accelerometer to 
extend a standard computer keyboard with velocity-sensitivity, as 
well as other dimensions and properties of musical input. Findings 
from tests and user evaluations are presented, and discussed in the 
context of relevant computer music interaction scenarios. 

2. BACKGROUND 
The virtual piano is a common utility provided in music software, or 
available as a standalone virtual MIDI device (e.g. VMPK). A piano 
keyboard layout is tacitly overlaid on the computer keyboard, 
allowing pitch to be triggered at a fixed velocity. A degree of 
polyphony is supported, but due to shared resources in keyboard 
construction, some key combinations are not possible (the precise 
limitations vary between keyboard models). Mouse interaction is 
often also supported, exploiting 2D visualisations to input both pitch 
(key) and velocity (vertical offset of key click), but cumbersome and 
imprecise for rapid, accurate entry, even in short phrases. Virtual 
pianos are thus designed for playing simple melodies, phrases, and 
monophonic pitch selection, and are designed for convenience in 
simple tasks (without leaving the computer) or where specialist input 
hardware is not available (e.g. mobile settings, amateur setups). 
   While the mouse is an important tool for novice users and 
unavoidable in some GUI designs, its single point of focus limits the 
expressive bandwidth and precision of control. In the visual UIs of 
most professional music editing packages (sequencers, musical 
typesetters, DAWs), expert users migrate to keyboard shortcuts and 
bimodal keyboard-and-mouse interaction styles, for more efficient 
control of the program and direct manipulation styles of editing (e.g. 
drag and drop). Such literacy with keyboard shortcuts represents a 
form of computer virtuosity, enabled through repeated practice and 
learning, significantly improving efficiency and productivity when 
interacting with programs like ProTools and Logic Pro. Nonetheless, 
such packages greatly benefit from specialist hardware input devices 
for added precision, control, and haptic feedback – MIDI controllers, 
control surfaces, mixing desks, music controllers, and instruments. 
   Previous research [8-11] has shown that immersive musical 
interaction (and creative flow) can be supported in digital creativity, 
where software maintains user focus, supports rapid edit-audition 
cycles, and facilitates the development of skilled input and control. 
This is notably evident in expert use of soundtracking software [8], a 
text-based music notation manipulated using the computer keyboard, 
which is used for both musical pitch entry (using a virtual piano) and 
other properties (via symbolic entry; velocity, volume, and other 
musical directions), accelerated by a significant number of keyboard 
shortcuts and editing macros. The notation is manipulated in short 
editing episodes punctuated by frequent playback of short excerpts, 
providing rapid musical feedback on edits, lowering the literacy 
requirement, physically immersing the user in sound, and 
engendering an iterative, evolutionary approach to crafting music. 
The rapid oscillation of edits and targeted auditions is enabled 
through keyboard support, with shortcuts that control playback  
and efficiently move the cursor focus around the notation. The 
development of motor skill, including learnt postures and gestures 
(Figure 2; see [8]), supports a form of embodied music interaction 
through the standard keyboard. [9] 

 
Figure 2. Postures in Keyboard Interaction (see [8]). 

   This virtuosity, often likened to “musical touch-typing”, is widely 
evident in videos1 of tracker users (as studied in [8] and [9]),  
but nonetheless highlights areas for improved ergonomics and 
expressiveness. For example, the keyboard’s lack of velocity control 
makes auditioning and entering melodic passages limited and 
cumbersome, requiring manual entry of dynamics. While the virtual 
piano supports live playback and “key jamming”, the fixed velocity 
offers limited expression, yielding a mechanical performance and 
hindering the ideation of new musical ideas – consequently, 
influencing the aesthetic of users with less musical experience. Since 
dynamics can significantly affect timbre, users may also commit to 
instrumentations prematurely, not knowing the range of the voice. 
   While this paper principally explores velocity for musical 
applications, the additional degree of freedom and analogue input 
offered by continuous-scale pressure readings have other uses, as 
explored in other research. Inspired by music keyboards, Microsoft 
Research previously developed a prototype pressure-sensitive typing 
keyboard, conceived for use in general-purpose computing [2] – 
though applications, in gaming (varying walking speed) and instant 
messaging (mapping ‘emotion’ to font size), are only briefly 
discussed and, curiously, no consideration is made of musical use. 
Their design replaces the standard keyboard’s conductive membrane 
with a custom-manufactured carbon ink printed layer that captures 
variable pressure, output as modulated voltage (rather than simply 
closing a circuit). The paper does not detail how the pressures / 
voltages are integrated with symbolic input or exposed in software or 
the operating system, nor detail the relative cost and complexity of 
components and manufacturing. However, the intricacy of the  
design contrasts the relatively simple, low-cost, and accessible 
accelerometer augmentation taken in the following section. 

3. DESIGN & PROTOTYPING 
The keyboard is conceived as a single physical device, presenting 
two virtual devices to the OS / software: for musical input (MIDI) 
and computer (data) input, respectively. The USB specification 
allows both modes to be exposed in software through standard OS 
drivers, using USB HID and USB MIDI profiles, obviating the need 
to install additional software or drivers. Using an integrated USB 
hub, the two devices can be connected using a single USB cable, 
such that the physical form factor can be identical to the standard 
computer keyboard. Figure 3(a) shows the architecture of the 
integrated device, alongside the variation (b) used for testing. 
 

 
 (a) Integrated System (b) Prototype (for testing) 

Figure 3. System Architecture. 

                                                                    
1 See https://www.youtube.com/watch?v=SQ5jTaXywuM. 

[Accessed: 14/04/2016] 
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Figure 4. ADXL335 Accelerometer in Keyboard Chassis 

 
Figure 5. Arduino USB-MIDI Interface2 

 

 
 

Figure 6. Black and White Piano Key Finish 

 

 
Figure 7. Arduino-based Prototype 

                                                                    
2 https://github.com/ddiakopoulos/hiduino 

   The device captures location (key / scan code) data using standard 
membrane keyboard hardware [2], wherein two plastic layers with 
conductive strips are separated by a perforated non-conductive layer, 
such that when pressure closes the gap, a circuit is made. Contact 
points on each membrane are arranged in a matrix (e.g. one striped 
vertically, one horizontally) such that each contact can be localized to 
specific rows and columns, identifying individual keys. A layer of 
silicon domes is added above the contacts to extend the ‘travel’ of 
keys and provide a degree of passive haptic feedback (resistance). 
   Finger pressure is detected using an accelerometer, secured to the 
interior of the keyboard chassis (Figure 4). While partially decoupled 
from the direct impact of individual keys, this arrangement allows a 
single sensor to be used, and tests demonstrated a good level of 
sensitivity from conducted vibrations. Other sensor types (such  
as pressure pads or piezoresistive layers [2]) are also possible,  
but the accelerometer was chosen for its low relative cost, ease of 
integration and potential for supporting additional degrees of freedom 
(e.g. X / Y movement). In the prototype, an Analogue Devices 
ADXL335 3-axis accelerometer is affixed to a standard Dell 
keyboard exploiting existing space in the chassis. This low-cost (~$1) 
sensor has a fixed 10-bit / 3g pressure range, which provided 
sufficient sensitivity and noise performance for velocity capture 
(when combined with basic DSP: FIR filtering and peak envelope 
following), but more sensitive sensors (or averaged multiple sensors, 
strategically placed in the housing) could offer improved precision. 
   The accelerometer reading alone can be used to support MIDI 
Channel Aftertouch functionality, allowing software to respond to 
pressure, or integrated with HID keyboard input in software to create 
note events with pitch and velocity. To support hardware MIDI Note 
On, the USB MIDI component also requires access to the key / scan 
code (i.e. pitch / note number). This could be achieved using a 
microcontroller unit (MCU) that detects / sniffs the signals from the 
keyboard’s hardware to identify pitch, either intercepting the encoded 
serial output of the keyboard’s HID chip or scanning the keyboard 
matrix directly (without compromising HID functionality).  
   For testing, the prototype model uses an Arduino Uno MCU 
(Atmel ATmega328P; Figure 4), flashed with USB MIDI firmware 
(using HIDUINO), to create a MIDI device that streams Channel 
Aftertouch messages, where keyboard HID input is subsequently 
used to detect and generate note events in the computer. This requires 
additional logic in client software (e.g. the sequencer / DAW) to 
support MIDI Note On/Off events from the setup. The code looks for 
local maxima in the stream of MIDI Aftertouch messages, which are 
married with corresponding key up/down events that the trigger note 
events. These events are not synchronous, so data values are buffered 
until both pitch and velocity are detected. Moreover, testing showed 
that the order of peak pressure and key press events is not guaranteed 
– the physical construction of the key mechanism (i.e. haptic 
resistance provided by the silicone domes) means certain (e.g. soft) 
touches peak in pressure before closing the circuit, whilst other (e.g. 
hard) touches peak after. This adds additional complexity to the code, 
which is encapsulated in a simple C library extension (single header 
file) – but establishes the methods, in portable code, for embedding in 
a subsequent integrated hardware device. 
   Nonetheless, the prototype’s simplified architecture (Figure 3b) and 
software layer means it is not natively supported in existing MIDI 
programs. However, this avoids one complication of the dual mode 
design, where conventional text entry will generate MIDI notes for 
any listening music software (even running in the background). In the 
integrated device, this necessitates a toggle for MIDI functionality, 
which could be a hardware switch, hardcoded keyboard shortcut, or 
one of the existing, seldom-used lock toggles (e.g. Scroll Lock). 
Alternatively, to avoid any interference with HID functionality, it 
would also be possible to use the accelerometer to detect orientation 
or gestures as a method for toggling the mode (or changing other 
settings). Nonetheless, in all key functional respects, the prototype 
(Figure 7) performs as the final model would. 
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Figure 8. Pressure Sensitivity (top) 
and Compensation Map (bottom). 

   To emphasize the musical affordances of the device and to help 
new users adapt to the virtual piano layout, keys are colour-coded in 
white, black, and grey (Figure 8). The prototype model achieves this 
by amalgamating interchangeable key caps from two keyboards of 
similar model, grey and black, and finishing the piano’s white keys 
with gloss enamel spray paint. Grey keys are used for non-musical 
input, white and black to mimic the piano. Unpainted, the black keys 
retain their original labels, ensuring that visual cues for the less-
familiar top row of symbols and punctuation remain. However, the 
gloss finish of the white keys obscures labels for two rows of letters. 
In a consumer version, it would likely be necessary to include labels, 
though the target user is assumed to have motor skill and knowledge 
of basic keyboard layout, enabling a stronger piano aesthetic. The 
finished prototype is pictured in Figures 1 and 7. 
   With completion of the prototype hardware, the final stage of 
development concerned calibrating pressure readings, to account for 
the location of the sensor and its relative proximity to key presses 
(Figure 8). For keys farther from the sensor, sensitivity is reduced, 
requiring an additional scaling factor to normalize the device’s 
response to touch across the range of pitches. For such calibration 
(and in the absence of a precise method to reproduce exact key 
pressures), sample data was collected through a series of structured 
manual input sequences (for example, descending musical turns), 
wherein multiple readings from different postures, hands, fingering, 
and users were averaged to build a generic model of the changing 
sensitivity across the keyboard. From this, a map of reciprocal values 
was constructed to compensate for the variation in sensitivity. 

4. USER EVALUATION 
To evaluate interaction and expression using the device, a controlled 
ecosystem was developed to support a user study, combining the 
prototype hardware with a text-based software pattern sequencer, 
designed to provide a minimal music editing UI for testing touch, 
expressivity, and performance in mixed-mode (music and computer) 
input (see video). Users spent 30-minutes with the device, divided 
into four stages: two free play / practice stages to acclimatize subjects 
to the technology, respectively with and without velocity-sensitivity; 
then two stages of more purposeful composition, creating a short 
excerpt of music, similarly with and without velocity-sensitivity. The 
software provided a selection of velocity-sensitive, sample-based 
voices, including piano, EP, tuned percussion, oboe, flute, cello, and 
drum kit. All data input was captured and stored for future analysis.  
   Upon completion, subjects completed a survey that quantitatively 
probed (using an 11-point Likert scale, scored 0 to 10 or -5 to +5) 
their subjective experience of various aspects of using the hardware, 
and relevant prior experience of music, computing, and keyboards. 
An additional comment section allowed subjects to qualitatively 
feedback on their experience. Participants (n=15) were drawn from 
the students and staff of UWE’s music technology course, reflecting 
a variety of computer music practices and aesthetics. Despite the 
relatively small sample size, results (see Figures 9, 10) demonstrated 
good consistency, as discussed in the remainder of this section. 

 
Figure 9. Box Plot of User Study Responses (n=15), 
including evaluations (left) and comparisons (right). 

 

 
Figure 10. Dynamic Sensitivity Map 
(from user study responses, n=15). 

   On scales of 0 to 10, users reported very good precision (x̅=7.33, 
σx=.98) in mapping between touch pressure and resulting velocity, as 
represented in both the visual notation and audio output. Several 
comments highlighted “surprising” and “unexpected” levels of 
responsiveness in the keyboard. Consistency (evenness) of touch 
across the keyboard similarly scored highly (x̅=8.00, σx=1.46). 
   While the sensor is 10-bit (0-1024) and MIDI velocity / aftertouch 
encoding 7-bit (0-127), the exact precision – accounting for sensor 
and electrical noise – is unknown, but users were able to reliably 
capture a minimum of 6 practical dynamics levels (from p to ff) using 
the keyboard. This was assessed using a question in which subjects 
circled dynamics marks (from ppp to fff), corresponding to those 
they felt able to reproduce and distinguish, as shown in Figure 10.  
   The results, as well as a number of comments, indicate that very 
soft touches were difficult to capture. This is likely due to the 
physical key mechanism, where the silicon domes provide sufficient 
haptic resistance to create a minimum pressure ‘threshold’ for 
triggering a keystroke, combined with the mapping function used in 
the code. Through initial testing, a basic 𝑦 = 𝑥 mapping (Figure 11) 
was applied to raw sensor readings to open up the range of velocities 
produced, enabling more varied and expressive control. While the 
results show this non-linear mapping was broadly effective, lower 
dynamics map to a very limited range of very low pressures – 
notably, also at the extremes of the accelerometer’s stated sensitivity. 
To compensate, an alternative mapping is also illustrated in the 
figure, integrating a linear section to expand the range yielded by 
lower pressures. Initial tests suggests this strategy is effective at 
extending response to softer dynamics, but further study is needed to 
assess how this impacts the overall feel or ‘touch’ of the keyboard. 

 
Figure 11. Control Mapping Functions, 
including original (y) and revised (y’). 
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   Mixed-mode interaction scored reasonable high (x̅=6.07), but with 
higher variance (σx=1.98). This category assesses how users are able 
to mix musical input (notes) with computer input (symbolic entry, 
cursoring, clipboard, playback, program control, etc.). As such, it 
depends on computer and keyboard experience, which varied within 
the sample. However, comments from more experienced computer 
musicians and keyboard users noted benefits when composing via a 
single integrated device – that it “focused” or “accelerated” their 
interaction. Users also appreciated the facility to easily and quickly 
“fine-tune” MIDI-recorded velocities using alphanumeric entry. 
   The velocity-sensitive functionality of the device adds significant 
musical expressivity to the standard computer keyboard. On a scale 
of -5 to +5, comparisons were consistently and overwhelmingly 
positive (x̅=+3.67, σx=1.18). Comparisons with specialist music 
input devices (MIDI keyboards, controllers, etc.) were less favorable, 
though by a narrower margin than expected (x̅=-.64, σx=1.60). 
Comments suggest that while the touch and real-time performance 
characteristics of the keyboard are inferior, many users recognize a 
form of non-realtime, meta-expressive power that arises from the 
symbolic and more abstract music editing functionality enabled 
through integration with computer functionality (program control, 
clipboard use, ad hoc playback) – an “enjoyable”, high-energy, 
immersive, and focused way of writing music; rapid and fluid, but 
decoupled from ‘live’ musical time (c.f. [10]).  
   When asked how easy it might be to integrate the device into their 
existing computer music practice, subjects responded positively 
(x̅=7.25, σx=1.86). This also translated to a similarly high average 
likelihood that subjects would adopt such a device, if available at a 
suitable price point ($30-60) (x̅=7.29, σx=2.27). While this project is 
not intended as a commercial enterprise, such questions can reveal 
factors in the design of new interfaces for musical expression that 
facilitate (or inhibit) wider adoption. In this instance, the simple 
design adds an affordable and practical level of expressivity to a 
generic computer input device, without compromising compatibility 
with existing uses. For desktops, it replaces the existing keyboard, 
requiring no additional space, and uses driverless USB connectivity 
for ‘universal’ compatibility. While less complementary to laptop 
setups, survey comments also highlight potential for “portable” use, 
similar to existing small form-factor MIDI controllers. 
    Finally, a number of comments (as well as verbal feedback) from 
participants simply noted how much more “enjoyable” or “fun” the 
interaction style was, compared to conventional computer music 
methods, such as mouse and keyboard manipulation of sequencers 
and DAWS. This correlates with a large number of subjects 
continuing to use the system beyond the allotted 30-minute window 
of the experiment, and expressions of interest in future development 
of the technology. 

5. DISCUSSION & FUTURE WORK 
The velocity-sensitive computer keyboard described here, 
especially in light of user feedback, highlights opportunities for 
expressive extensions to ubiquitous computer input devices.  
The development of more expressive functionality, benefiting 
artistic creativity but using a device optimized for productivity, 
demonstrates the potential for new interfaces for expression in 
the non-realtime and “offline” modes of notation-mediated 
interaction that characterize computer work. To that end, this 
paper has explored applications in music editing software, such 
as sequencers, trackers, DAWs, and score editors; focusing on 
expressive interfaces for composition (plus arrangement and 
transcription), rather than live performance – augmented 
computer device, rather than augmented instrument. However, 
one area of live computer music that may benefit from an 
integrated device for both expressive and symbolic control is 
live coding: whether the device presented here would help 
avoid mode switching between code and controller, or whether 
there are more novel applications for pressure-sensitivity (in 

code editing itself) is an interesting direction for future work. 
Moreover, basic pressure and velocity sensitivity have 
applications in many areas of computing and digital creativity, 
such as games or expressive text writing [1][2]. 
   As concerns the device discussed here, testing and user 
feedback identify several directions for continued development. 
Further improvements in sensitivity, response, and mapping can 
be affected through minor refinements of the embedded code 
(envelope following, filtering, and other DSP). Accurate testing 
could improve calibration, using specialist test equipment to 
reproduce precise pressures (available through the university’s 
product design department). Other aspects of ‘touch’ relate to 
physical characteristics, and alternatives to the basic membrane 
/ silicon dome key mechanism can be found in other keyboard 
designs that offer softer, quieter keys with a more linear haptic 
resistance (e.g. Cherry MX Black mechanical switches, and other 
‘quiet key’ keyboards). As previously observed, improved sensor 
chips (or combinations) may also offer more sensitivity. 
   Using a three-axis accelerometer allows expressivity in two 
further dimensions, which can be explored through the existing 
prototype hardware. However, while the impact of hitting a key 
produced practical readings and resolution (Z-axis), initial tests 
of X- and Y-axes showed only minimal fluctuations when a 
pressed key was pulled or pushed left/right or up/down. Other 
envelope following and signal processing techniques may 
improve the utility of these small signals, to add modulation of 
other musical properties – and potentially fingering methods 
such as those exposed by the SeaBoard [6] or TouchKeys [7] 
interfaces. At the same time, an alternative interaction style is 
possible, where the user triggers a note via a key with their left 
hand and manipulates the entire keyboard with their right, 
possibly using the cursor cluster (immediately adjacent to the 
sensor) as a grip for lateral and vertical movement. In this way, 
the keyboard becomes a form of 2D pitch bend / modulation 
wheel. Indeed, this bimanual interaction style fits with postures 
observed in computer music interaction (Figure 2), where data 
manipulation using alphanumeric keys and navigation using 
cursors or mouse are respectively split between the hands. 
   The low-cost accelerometer approach is easily adapted to other 
keyboard layouts, while alternative form-factors might also be 
considered. For performing artists, the laptop is a popular 
platform. Laptops with mechanical drives typically feature an 
accelerometer (e.g. Apple’s Sudden Motion Sensor) to detect shocks, 
used to protect the sensitive hardware. This would enable an elegant 
software solution, adding velocity readings to laptop-based music 
software without any additional hardware. However, with the advent 
of solid-state drives, such sensors are now rare, though an attachable 
USB accelerometer could be used; albeit requiring a software layer to 
integrate keystrokes and pressure detection, such as that used in the 
prototype. Moreover, the presence of accelerometers in most mobile 
devices would enable a similar extension of expressivity for input to 
touch-based devices, such as tablets and smartphones, which are 
increasingly finding new uses in music making and performance. 
   Finally, for the next stage of this project; a more challenging 
technical milestone will be to realize the integrated hardware device, 
using the architecture in Figure 3 (a): offering combined USB HID 
and USB MIDI functionality, fully housed within the keyboard 
chassis, connected by a single USB cable, and supporting driverless 
operation without dependence on client software support. As with the 
prototype, existing technologies and cheap components are available 
to facilitate such development, but the manufacturing process 
becomes significantly more complex and expensive, moving from 
prototyping boards to custom PCBs and hardware components. The 
currently proposed design combines a Microchip PIC24/PIC32 
(16-bit MCU with USB MIDI support and 10-bit ADCs) and 
USB2512B (2-Port USB Hub IC). Additional funding (possibly 
crowd-sourced) is being sought to continue the project. 
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   One of the principle objectives of this research is to explore 
unified interfaces for computer music that help maintain focus 
and workflow in software-based composition and production 
processes, integrating direct, low-level musical input (live 
performance) with more abstract, high-level computer-based 
editing (shortcuts, clipboard, ad-hoc playback, arranging, etc.). 
Identifying and addressing usability issues in existing packages 
(i.e. sequencers and DAWs) such as focus, device, and context-
switching, delayed or deferred edit feedback, and UI or notation 
inconsistencies has been a focus of previous research on flow in 
computer music [8-11], which it is hoped the development of 
hardware input devices might inform. To this end, a larger scale 
deployment and extended, longitudinal study of an integrated, 
end user-ready edition of the device – following different users, 
applications, environments, and workflows over an extended 
period – represents a promising direction for future study. 

6. SUPPORTING VIDEO 
A video presenting expressivity tests and demonstrating mixed-
mode interaction with the device, within a computer music 
scenario, is available from: http://revisit.info/nime2016.  
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