
Csound Instruments On Stage

Alex Hofmann
Institute of Music Acustics

University of Music and
Performing Arts Vienna

Vienna, Austria
hofmann-alex@mdw.ac.at

Bernt Isak Wærstad
Department of Music

Norwegian University of
Science and Technology

Oslo, Norway
bernt.warstad@ntnu.no

Kristoffer E. Koch
Independent Electrical

Engineer
Trondheim, Norway

koch@kristofferkoch.com

ABSTRACT
Low cost, credit card size computers like the Raspberry Pi
allow musicians to experiment with building software-based
standalone musical instruments. The COSMO Project aims
to provide an easy-to-use hardware and software frame-
work to build Csound based instruments as hardware de-
vices. Inside the instrument, the Csound software is run-
ning on a Raspberry Pi computer, connected to a custom
designed interface board (COSMO-HAT) that allows to con-
nect potentiometers, switches, LED’s, and sensors. A clas-
sic stomp box design is used to demonstrate how Csound
can be brought on stage as a stand-alone hardware effect
instrument.

Author Keywords
Csound, Raspberry Pi, Linux, Live Performance, Stomp
Box, Digital Effects

ACM Classification
H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing, H.5.2 [Information Interfaces and Pre-
sentation] User Interfaces—Haptic I/O.

1. INTRODUCTION
Computer music software that allows musicians to combine
ready-made building blocks for sound processing motivates
them to design their own instruments. Especially in con-
temporary music, composers, interpreters, and improvisers
are often using software instruments built with tools like
Max/MSP, SuperCollider, PureData or Csound for live per-
formances.

In the line of these software tools, Csound is unique due
to the following features: a) Csound has a long tradition
as a sound renderer software. Being written in portable
“C programming language” in 1986 by Barry Vercoe, its
roots go back to the tradition of the Music-N languages de-
veloped by Max Mathews at Bell Laboratories in 1956/57
[4]. b) The development of the Csound language is under
the directive of a 100% backward compatibility, allowing
to open and play Csound files written more than 30 years
ago, even today with Csound 6.06 [4]. This feature also
makes Csound a good choice in terms of stability and con-
sistency, as all current code will be guaranteed to also run

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’16, July 11-15, 2016, Griffith University, Brisbane, Australia.
.

in the future. c) Furthermore, Csound offers an API for C,
C++, Python, HTML, Java and more [9, 5]. This makes
Csound a powerful audio renderer for various applications,
ranging from sequencer software (Blue1), over a VST-Plugin
engine (Cabbage2), an engine for iPad Apps3 (iVCS 34), a
game sound engine (Csound Unity5) and a sound playback
engine for smartphones6. d) Finally, Csound is a LGPL li-
cenced Open-Source software which can be installed, used,
and adapted freely for all use cases and runs on most of the
common operating systems (e.g., Windows, MacOS, Linux,
Android, iOS). e) Additionally, Csound has a vast amount
of free documentation and learning tutorials [6]7.

For live performances, audio software is mostly used on
personal computers and laptops. Although laptops allow
to take a customized software-based setup on stage, dis-
advantages are a) the need to connect external controllers
and audio interfaces, which is time consuming on stage, and
b) a laptop solely dedicated for live performance is expen-
sive. Laptops are mostly used for other tasks as well, which
require the installation of multiple software packages and
drivers on the same system. This may influence the stabil-
ity of the live performance setup.

Through the availability of credit card size, cheap (35$)
linux-based computers like the Raspberry Pi (RPI) it is pos-
sible to build low-cost, software-based, stand-alone musical
instruments [3, 2]. For such a setup, the operating system
can be optimized for real-time audio processing.

The Csound Euro Rack Module is taking this approach by
setting up an Arduino Board, a Raspberry Pi and Csound
so that the signal processing power of Csound can be inte-
grated into analog modular synthesizer systems [8]. An in-
stallation package of Csound for the RPI is available via apt-
get [1] or Csound can be compiled from the source code8.
Running Csound on a RPI needs an environment for input
and output (I/O) of audio signals and for controller inputs
to Csound.

In the current paper we are presenting a hardware and
software framework called COSMO (Csound on Stage Musi-
cal Operator) which facilitates to build Csound-based stand-
alone instruments.

1http://blue.kunstmusik.com/
2http://cabbageaudio.com/
3https://github.com/csound/csound/tree/develop/iOS
4http://csound.github.io/showcase/2015/11/22/ivcs3/
5http://rorywalsh.github.io/CsoundUnity/
6Find an overview of Csound applications under http://
csound.github.io/create.html
7Find tutorials and documentation under: http://
csound.github.io/documentation.html
8To compile the latest Csound Version for the RPI fol-
low the build instructions on github: https://github.com/
csound/csound/blob/develop/BUILD.md#raspian

291



2. MOTIVATION
The idea for the COSMO project started in 2013 on the
Linux Audio Conference in Graz when Edgar Berdahl gave
a workshop on Making Embedded Musical Instruments and
Embedded Installations using Satellite CCRMA[3, 2] and we
discussed possibilities to run Csound-based effects [7] on
such a device.

Stomp-boxes are a popular design for effect engines in a
live setup. Predominantly used by guitarists, stomp boxes
are also often part of other live-electronic setups used by
keyboarders or DJ’s. Although alternative interface designs
are under development [10], musicians (especially guitarists)
are used to turn effects on and off with their feet and to
modify the effect settings with potentiometers and switches
on the box. In our “basic design”, Csound is running on
a RPI in a stomp box case as a stand-alone device (see
Figure 1 and 3).

3. INTERFACE DESIGN
As digital signal processing is very powerful and versatile,
it is often combined with traditional analogue instruments
and analogue hardware. Hereby, it is a challenge to com-
bine the analogue/acoustic domain with its classic inter-
faces, musicians practised on for years and know the playing
techniques, with the new, often changing and non-idiomatic
interfaces coming from the digital domain. Our COSMO
design attempts to provide an easy integration of custom
digital signal processing into existing analogue hardware ef-
fect chains, i.e.stomp box guitar pedals. A custom designed
interface board (COSMO-HAT), attached to the RPI allows
to connect up to eight analogue controller inputs, eight dig-
ital controller I/Os and MIDI-I/O sockets (Figure 2). A
benefit with this design is the dedicated hardware which
makes it less prone to be unstable.

We do not provide a standard layout for the COSMO in-
terface in terms of the number and position for the buttons
and the potentiometers. This allows the musicians to de-
sign an interface for their specific needs. A guitar player
might want to change parameters with his feet and proba-
bly wants a different layout than a vocalist who has both
hands available during a live performance. Figure 1 shows
three different designs created by participants in a COSMO
workshop. The size of the stomp box and the limitation
in the number of controllers may be seen as a limitation,
but also forces the user to work more thoroughly with the
mappings of controllers to the software.

A USB sound card inside the stomp box provides I/O of
the audio signals. Another feature of our design is a built-
in analogue cross mixer between the dry and the processed
signal. This helps to preserve the original tone of the input
signal and allows to use COSMO for send effects with longer
latency and larger buffer sizes.

3.1 COSMO-HAT
The COSMO-HAT is a “Hardware Attached on Top” for
the RPI. It is a printed circuit board that contains a micro
controller (Atmega 1284P, by Atmel) to a) read-out up to
8 control inputs (potentiometers); b) control up to 8 LED’s
or button switches. The board is open source9 and designed
in KiCAD10, an open source CAD tool for electronics. We
have also made room for connecting MIDI I/O, and inter-
facing the versatile WS2812 ”neopixels” (by Adafruit) a pro-
tocol to control multi-color LEDs.

9All materials can be found under https://github.com/
cosmoproject

10http://kicad-pcb.org/

Figure 1: Three designs for COSMO (Csound on
Stage Musical Operator) stomp boxes by workshop
participants.

The firmware (the software running on the Atmega 1284P
micro controller on the COSMO-HAT) is open source, and
communicates with the RPI over a serial connection (SPI).
That will allow for extension of features, e.g. offloading
real time tasks to the micro controller, like on an Arduino.
One example of offloading tasks is a digital noise filter, cur-
rently running on the micro controller. The firmware for
COSMO-HAT is provided as an executable script on our
pre-configured RPI (Raspbian) operating system available
as a download. No external tools or cables are required
for the communication between the COSMO-HAT and the
RPI, including all updates of the firmware.

The COSMO-HAT is fully integrated into the python
script provided with the project resources (including a pre-
configured Raspbian image with examples). This script
manages the communication between the csound engine run-
ning on the RPI and the COSMO-HAT. With this design
the user can directly start to create Csound instruments
using only the Csound language.

3.2 COSMO Cross mixer
For the design of a COSMO effect pedal, we included a true
bypass circuit, that allows the performer to turn off the de-
vice immediately and output the clean input signal. The
COSMO cross mixer is a relay based stereo true bypass
switch and a dry/wet potentiometer. True bypass means
that when bypass is enabled a) no signal will be coming from
the COSMO effects b) no signal will run into the COSMO
inputs. Another feature is, that if power is lost, the COSMO
cross mixer mechanically falls back to bypass mode. The
cross mixer is a fully analogue circuit, which works with-
out any delays, providing a fail-safe interface for the sound
operator11.

3.3 Software
COSMO is designed to run Csound for audio processing at
first hand. A patch layout to map the controllers of the
box to the parameters in Csound is provided together with
some example effects12. Through the history of Csound,
thousands of Csound instruments covering most of the ex-
isting sound synthesis and sound modifying techniques ex-
ist13. This makes Csound a suitable software platform for
such an application.

11The schematic of the Cross mixer circuit can be
found online: https://github.com/cosmoproject/
bypass_crossmix/blob/master/bypass_crossmix-
sch.pdf

12https://github.com/cosmoproject/cosmo-dsp
13For inspiration check out Iain McCurdys ’Real Time
Instruments’: http://iainmccurdy.org/csound.html or
the classic collection of Csound instruments http://
www.csounds.com/resources/audio/.

292



Figure 3: COSMO in a chain of guitar effect pedals.

Figure 2: COSMO-HAT circuit board to connect 8
analogue controller inputs, 8 LED’s or switches and
MIDI I/O.

3.4 Audio Interfaces
Depending of the choice for an audio interface one has to
find a compromise between the flexibility of the design and
the input-output latency. The usage of USB-audio inter-
faces with the RPI allows to use any linux supported inter-
face14. An other option to interface sound to the RPI is the
cirrus logic audio card (CLAC) which is especially designed
for high quality audio I/O and is connected to the GPIO
header of the RPI15.

We tested audio input-output latency (I/O) for a USB
audio interface (UCA-222, by Behringer) and the CLAC
with Csound on a RPI2 Model B (900MHz quad-core ARM
Cortex-A7 CPU, 1GB RAM). A ”RimShot”sound was played

14All USB 1.1 audio class compliant devices are supported by
linux. Futhermore, a list of supported professional audio in-
terfaces can be found under http://wiki.linuxaudio.org/
wiki/hardware_support

15An easy way to install the required real-time kernel for the
cirrus logic audio card is via http://rpi.autostatic.com/.
Add the repository by following the descriptions on the
website. Then apt-get the following packages: linux-image-
cirrus, cirrus-config-overlay, cirrus-config-modprobe, cirrus-
config-scripts, cirrus-config. All information is from the
element14 forum: https://www.element14.com/community/
thread/31714?start=45&tstart=0

with a TR-8 drummachine (by Roland). The sound was
split with a VLZ 1402 Mixer (by Mackie). One signal went
directly into a Focusride audio interface and the other sig-
nal was routed via an ”Aux Send” of the mixer into the RPI
and then into the Focusrite audio interface. Both signals
were recorded simultaneously with Ableton Live, using a
sampling rate of 44,000 Hz (16 Bit). The delay between
both signals was calculated.

With the UAC-222, the smallest hardware buffersize we
were able to run on the RPI without artefacts was 512 sam-
ples (-B512 -b64; ksmps = 64)16. This resulted in a I/O
latency of 30 ms. The same setting with the CLAC showed
half the latency (15 ms). Moreover, we were able to reduce
the hardware buffer to 256 samples (-B256, -b32; ksmps =
32) which resulted in 7 ms I/O latency.

Unfortunately, the GPIO pins used in current COSMO-
HAT design overlap with the GPIO pins used by the CLAC.
In future designs we aim to support the CLAC by allowing
to jumper the COSMO-HAT to different GPIO pins.

4. WORKSHOP CONCEPT
The COSMO framework was designed as a basis for work-
shops on how to build stand-alone music instruments based
on Csound. With the current framework, the duration of
a workshop requires at least two full days to build the de-
vice. This includes, soldering all connection pins on the
COSMO-HAT, creating a knob layout, drilling holes into
the enclosure, soldering the connections from the knobs to
the COSMO-HAT, extending the network and USB exten-
sion from enclosure to RPI, and running a basic Csound FX
instrument17. Apart from assembling COSMO in a work-
shop, detailed build descriptions are given on the COSMO
website (http://cosmoproject.github.io/), which allows
to build the device independently.

5. FUTURE WORK
COSMO is a hardware and software framework which is
designed to build a stand-alone Csound-based effect instru-
ment. The framework allows for adaptation and modifica-
tion of the “basic” effect pedal design. Connecting a MIDI
keyboard would allow to build a Csound based synthesizer,

16Optimizing I/O latency with Csound http:
//www.csounds.com/manualOLPC/UsingOptimizing.html

17See building steps http://cosmoproject.github.io/docs/

293



Figure 4: Participants designing their own inter-
face panel, by drilling holes for the buttons, LED’s,
audio sockets, and switches into the enclosure and
soldering the connections to the COSMO-HAT.

other sensors (e.g., photo resistors) or more audio outputs
might be a suitable setup for a sound installation. The
COSMO workshops are meant to give novices an easy in-
troduction into building their own stand-alone digital ef-
fect instruments, with a primarily focus on sound design
in Csound. No programming knowledge is required, as all
components are complementary. However, with the current
framework, we noticed that an advantage of not providing
a fixed interface layout encourages the creativity of the par-
ticipants on one hand, but on the other hand also makes it
a more time consuming procedure, than simply assembling
a fixed number of pre-designed parts. A possible solution
to this might be, that in the workshop, only a very basic
(one button, one LED) stomp box is built first and if there
is time remaining, the participants can expand their de-
signs individually. From this consideration a redesign of the
COSMO-HAT is foreseen, which is based on using one (or
multiple connectable) small and less expensive I/O board
(COSMINI-HAT). Each board is responsible for only one
controller I/O instead of the big COSMO-HAT with mul-
tiple I/O’s. With this method the design and the price of
a COSMO box is resizeable. Overall, the COSMO frame-
work is a suitable basis to undertake workshops in design-
ing and building digital instruments based on Csound with
musicians having more experience in sound design than in
programming. An even simpler COSMO-light framework is
forseen for the future which also allows to work with high
school students. Here, the making steps will need less time
consuming soldering of components and might be based on
the 5$ Raspberry Pi Zero and the COSMINI-HAT.

6. ACKNOWLEDGMENTS
This research was supported by the Arts Council Norway.

7. REFERENCES
[1] P. Batchelor and T. Wignall. Beaglepi. Csound

Journal, 18, 2013.

[2] E. Berdahl. How to make embedded acoustic
instruments. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
2014.

[3] E. Berdahl and W. Ju. Satellite ccrma: A musical
interaction and sound synthesis platform. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, 2011.

[4] R. Boulanger. Ways Ahead: Proc. of the First
International Csound Conference, chapter Csound
Past, Present and Future: Keynote for the Opening of
the First International Csound Conference, pages 2–8.
Cambridge Scholar Publishing, Newcastle upon Tyne,
UK, 2013.

[5] Gogins. Composing music for csound in c++. Csound
Journal, 17, 2012.

[6] J. Heintz, A. Hofmann, and I. McCurdy, editors.
Csound - Floss Manual. FLOSS Manuals Foundation,
first edition, 2011.

[7] A. Hofmann, A. Mayer, and W. Goebl. Towards a
live-electronic setup with a sensor-reed saxophone and
csound. In Linux Audio Conf., pages 153–156, 2013.

[8] I. Ikenberry and J. Lim. Csound eurorack module.
Csound Journal, 18:1–9, 2013.

[9] V. Lazzarini. Ways Ahead: Proc. of the First
International Csound Conference, chapter
User-Developer Round Table I: The Technology of
Csound, pages 24–31. Cambridge Scholar Publishing,
Newcastle upon Tyne, UK, 2013.

[10] S. Suh, J.-s. Lee, and W. S. Yeo. A gesture detection
with guitar pickup and earphone. In Proceedings of
the International Conference on New Interfaces for
Musical Expression, 2014.

294


