
Designing a Flexible Workflow for Complex Real-Time
Interactive Performances

Esteban Gómez

Departamento de Música y Sonología
Universidad de Chile

Compañía 1264, Santiago, Chile
esteban.gomez@ug.uchile.cl

Javier Jaimovich
Departamento de Música y Sonología

Universidad de Chile
Compañía 1264, Santiago, Chile

javier.jaimovich@uchile.cl

ABSTRACT

This paper presents the design of a Max/MSP flexible workflow

framework built for complex real-time interactive performances. This

system was developed for Emovere, an interdisciplinary piece for

dance, biosignals, sound and visuals, yet it was conceived to

accommodate interactive performances of different nature and of

heterogeneous technical requirements, which we believe to represent

a common underlying structure among these.

 The work presented in this document proposes a framework that

takes care of the signal input/output stages, as well as storing and

recalling presets and scenes, thus allowing the user to focus on the

programming of interaction models and sound synthesis or sound

processing. Results are presented with Emovere as an example case,

discussing the advantages and further challenges that this framework

offers for other performance scenarios.

Author Keywords

Interactive performances, Max/MSP, Emovere, OSC

ACM Classification

C.3 [Special-Purpose and Application-Based Systems] Real-time and

embedded systems D.2.6 [Programming Environments] Interactive

environments H.5.5 [Information Interfaces and Presentation] Sound

and Music Computing.

1. INTRODUCTION
NIME performances utilize a great variety of resources in order to

create interactive experiences that comprise sound, music, lights,

projections and control of mechanical structures, among other

components. Each interactive live performance manages these

materials in diverse ways depending on its objectives and artistic

goals, combined with the artist’s experience with software and

hardware tools. Examples cover a wide spectrum, from performances

with robotic musical instruments [3] to sleeping performers [4]. A

popular set-up includes Max/MSP [1] in combination with

communication protocols such as MIDI and OSC [8]. In this paper,

we present a software framework built on these tools, which we

believe to represent an underlying structure in common among

performances of different nature. This system can be used as a base

to develop a performance set-up compatible with different live

scenarios, regardless of the resources needed in a particular

performance.

The framework presented in this paper was developed for

Emovere, a performance for contemporary dance, sound, projections

and lights. This performance was the result of an interdisciplinary

creative research project lasting over 18 months. During this time, a

team that involved dancers, composers, sound designers and visual

artists, among others, developed a methodology based on a lab

setting. The first phase of the project incorporated the development of

different creative materials that included several sound objects (SOs),

interaction design models, software tools and choreographic

structures that formed the building blocks of the approximately one

hour long interactive piece.1

 Emovere portrays different emotions through a dance

choreography divided in three acts. In this performance, each dancer

has four sensors attached to his/her body. The physiological signals

from the dancers drive an interactive performance constructed around

the theme of emotion. Emovere measures electrocardiography (ECG)

and electromyography (EMG) of four dancers, which are processed

and then mapped to a series of sound objects (SOs) in order for the

performers to be constantly modulating and shaping the sound and

visual environment of the piece. This creates a dynamic and

unpredictable soundscape that is mediated by the corporal state of the

performers, which in turn is affected by their volitional movements

and self-induced emotion.

 This document will focus on the Max/MSP-based sound

framework developed for addressing all the needs of the sound

composition during rehearsals and live performances. This

framework is oriented to provide a flexible workflow for several

performances beyond Emovere, thus, saving programming time and

making real-time parameter control easier and more convenient than

starting always from scratch.

 Even though this framework is currently designed to manage

sound environments, it is still under development and more

implementations will be added in the future to provide a similar

workflow when managing other type of resources and outputs. For

the next versions, and after appropriate stability tests, we intend to

make the framework files available for download.

1.1 Motivation
Max/MSP has been widely known around the world for its

short an attractive phrases like “Modular by design” [1] and

“No matter what you have on your table, you can probably

make it talk to Max” [1] because it proposes a more “organic

and immediate” [1] programming system compared to common

written languages such as C++. This appealing idea can lead to

endless possibilities in a relatively reasonable amount of time,

but as soon as a patcher (a Max/MSP program) becomes more

complex, it gets harder to be understood by a third party

because every programmer can use his/her own organization

within the Max/MSP environment. Previous efforts such as

Jamoma [5, 6] have been developed in order to standardize how

a complex patch can be planned and put together, in order to

create a common architecture to make third party understanding

and modifications easier than they currently are.

1 http://www.emovere.cl

305

http://www.emovere.cl/

 However, approaching a complex performance set-up often

requires building your own tools in order to accommodate a

particular set of inputs/outputs, different data formats,

heterogeneous signals and variant bandwidths. In the case of

Emovere, several complex tasks needed to be performed as

quickly as possible to optimize rehearsal times as well as to

consolidate certain acts of the performance and recall them

rapidly and exactly as they were planned.

 Under this paradigm, many questions arise regarding

information management storing preset files and recalling

efficiently as many copies as needed of a multipart patch (a

patch with other nested patches) used to process the data and

output of a sound under a specific method.

 Those questions opened a discussion about how to program

the system itself such as if a SQLite database was convenient

enough for all the information storage needed, or if other

structures were more convenient regarding the information

volume and speed needed to operate successfully in a real time

basis, such as the dict Max/MSP object based on the .json

format, or the .xml files associated with the Max/MSP pattr

object family, or a combination of them.

 Many Digital Audio Workstations (DAWs) such as Pro

Tools, Logic or Cubase use a design capable of accomplishing

many of this tasks successfully, but their environment is not

suitable to perform complex tasks with sensors and data

streams in real time, since their focus is audio edition in depth.

 From this starting point, the framework behind Emovere tries

to gather the best of both worlds to create an environment

suitable for complex real-time interactive performances based

on a DAW architecture and at the same time, create an

organized and intuitive way of working interaction design,

avoiding as many external dependencies as possible to prevent

the addition of new learning steps before creating patches.

 Consequently, we discarded the idea of using another framework

or third party design rules (such as SpatDIF2) as a starting point.

Besides, our goal was not to develop a comprehensive interface for

every possible patch inside Max/MSP as Jamoma, but to develop a

suitable interface to deal with sensor data as the main input stage and

process them efficiently in order to produce a sound output. For this

purpose, we needed (among others) a tailored virtual mixer

compliant with an output stage for our needs.

2. METHODOLOGY

2.1 Sound Objects: The Cornerstone for

Modular Workflow
Observing several DAW systems, we thought that the overall

model behind them has become very intuitive, because the

principles emulated by these software are the same principles

behind most analog mixing consoles and they are a common

place for sound engineers, musicians and sound artists. This

model can be understood as an input-processing-output (IPO)

model, where the input can be a MIDI signal from a controller

or an audio signal, the processing block can be the internal

routing and plugin processing units and the output will be an

audio signal or a MIDI signal as well.

 We needed to expand the input concept to receive multiple

inputs of different kinds, such as MIDI and OSC

simultaneously as a stream with fixed or variable frequency.

The output could be a single signal or several signals of

different types. For example, four audio signals and one OSC

message. In the case of Emovere, it was initially conceived as a

quadraphonic performance that requires four audio outputs for

each SO, but in some cases this includes OSC messages for the

video projections computer and other control signals.

2 http://www.spatdif.org/

 The processing block needed to be designed to allow multiple

possibilities, in order to process different interactive mappings

and configurations. Besides adding typical processing features,

such as reverbs or compressors, we needed to process OSC and

MIDI data streams and/or signals to create certain interactions.

For example, sometimes data can trigger the reproduction of

recorded files under specific conditions, or it triggers the

recording of a microphone signal based on a specific

physiological pattern of the dancers.

 At this point is where the Sound Object (SO) concept

emerges as an encapsulation of all the complex processing we

could imagine, becoming the cornerstone of the framework.

The whole model can be comprehended now as an expanded

IPO architecture where the SO is the complex processing unit

and at the same time it is fully opened to the programmer (see

Figure 1). Further information about how SOs interact with

each other will be described in the next sections.

2.2 Emovere Signal Flow within the System
As it was stated previously, four dancers performed in Emovere

with four sensors each. The data coming from the sixteen

sensors was processed within a laptop exclusively dedicated to

input processing, monitoring and routing of the incoming data,

since the amount of information in every second was

substantial and needed to be distributed to the visual resources

unit as well. This laptop was called “node”, but in smaller set-

ups the data processing stage can be integrated to the

framework as a SO or part of one, allowing performances to be

controlled entirely using only one laptop. In the specific case of

Emovere, if the data processing performed by the node was

added to the framework, less CPU would have been available

for the SO and output signal generation.

Figure 1. Signal flow diagram.

Once the information arrives from the processing stage (which

is the framework itself) through OSC protocol, it is distributed

to every SO after being routed through the Automation Cluster

(AC), which is the unit of the framework included as part of

every SO that allows them to discern whether OSC messages

are for them or not.

 After this, the SO receives the information and generates

output in real time according to the patch algorithms. The

output is transmitted to one or several channel strips inside a

virtual dynamic mixer depending on the SO configuration.

Every SO has its own configuration sheet inside a Max/MSP

dict object, thus, the framework creates instantly the necessary

amount of channel strips to control and visualize the SO

outputs. Aside from channel strips for every individual output

306

http://www.spatdif.org/

of a SO, there is also a master channel strip that allows

modifying all SO outputs at once, and this was especially useful

to create crossfades manually between different acts of the

performance where different SOs were being mixed.

 After the virtual mixing console, there is a panning stage

based on Ambisonics [7] that is able to pan all the signals

between every number of desired speakers and switch speaker

configuration rapidly, as well as having the option to store them

in a preset to be recalled later when moving from one venue to

another.

 Besides the normal signal flow, there are data flows for

specific tasks, such as controlling the mixer through a MIDI

controller or creating/destroying SOs remotely through OSC.

Every incoming signal has a unique path to separate high

priority task from low priority tasks.

2.2.1 Input Tools and Data Processing
As already mentioned, in order to optimize resources and

separate tasks, our proposal was to separate the sensor signal

processing and feature extraction from the sound and video

generation machines. For Emovere, four dancers were

connected with physiological signals, each one being streamed

at 250 [Hz] via Bluetooth to the node computer.

 This computer (the node), running Max/MSP, handled the

signal pre-processing stage, which includes artifact detection

and feature extraction for electromyogram (EMG) and

electrocardiogram (ECG) signals. Once the significant features

have been extracted, these were connected to different mapping

strategies, depending on the interaction modes that were

constructed for each section of the piece. For example, an ECG

signal would first be pre-processed to remove DC components

and heartbeats within a specific range, to then extract features

such as heart rate and heart rate variability [2]. These features

can then be mapped to different SO via OSC existing in the

framework computer.

2.2.2 Sound Objects Management Architecture
Every SO inside the system should have a unique name and can

be created or destroyed. Beneath the system there is a dict

object containing all the information of every SO, such as

inputs and outputs and the route to the folder where the SO’s

patches are located. This way, SOs can be traced and the

organization of the virtual mixer can be recalculated using this

information every time a new SO is created or destroyed, as

well as the necessary calculations to keep the Ambisonics

panning system organized.

 A SO can be created from the terminal or the GUI of the

system. There are commands that can be written in the terminal

and they will trigger the necessary functions included in the

core scripts of the framework using a different path from the

one used to receive OSC, and since the core scripts are made of

JavaScript, tasks like creating an object have a low priority.

The advantage of the terminal commands is that they can be

recalled remotely because the terminal has its own dedicated

port (see Figure 2).

2.2.3 Bidirectional Framework-Object

Communication
When a new object is incorporated to the framework, it has to

follow certain rules to work properly and to be communicated

with the framework. However, the rules are kept as simple as

possible.

2.2.3.1 Folder structure
Every SO should have its folder inside the “obj” folder and it

should have a subfolder called “presets” where all the preset

files will be stored automatically. The folder’s name can be

whatever the user wants, but the main patcher used as

abstraction inside the framework should be called with the

same name (see Figure 3).

Figure 2. Creating a new SO of the “exso” type named

ExampleSO. The “Create new SO” button will prompt a

window requiring a name for the new “exso” type SO. The

same result could be obtained writing the command below

using the terminal.

Figure 3. SO folder distribution diagram where “exso”

stands for “Example SO” which is a SO type used as

example. The “exso.maxpat” patch could be a complex

interaction such as a granulator.

2.2.3.2 Local variables
Some pv objects3 are incorporated in order to establish

communication between the framework and the SO, the

LOC%id% will contain the unique ID of a SO inside the system

and the LOC%obj_name% will contain the name given to the

SO by the user. This will allow the core scripts to locate SOs

using the this.patcher JavaScript method (see Figure 4).

2.2.3.3 Shortcuts and AC
Every SO has its shortcut subpatcher and AC subpatcher. The

shortcut subpatcher contains the shortcuts for every object

attached to an active object to avoid triggering shortcuts when

the SO window is not on focus, this helps to prevent shortcut

overlapping. The AC subpatcher controls the incoming OSC

messages. Every AC can be detached individually if desired to

optimize CPU and to keep the shortest path possible between

3 pv objects can store and share a variable within a patch

hierarchy, thus, being invisible for other top-level patchers.

307

the incoming OSC message and the object inside the SO that

receives that OSC message (see Figure 5 and Figure 6).

Figure 4. Every SO has a unique ID assigned when it is

created that is stored in the pv LOC%id% object. The

name of the SO is stored inside the pv LOC%obj_name%

and will be used for many purposes such as printing the

name of the SO as the window title. Every variable of a SO,

such as name and ID can be accessed by the core scripts

using its scripting name. Inside the SO, those variables can

be accessed locally by the pv objects.

Figure 5. The shortcut structure inside the shortcuts

subpatcher. Inlet 1 is connected with an active object to

prevent shortcuts overlapping. If the window is on focus

and a combination such as 81 (Shift+Q) is detected, the

example shortcut will close the parent patcher’s window

calling a thispatcher object with the same scripting name.

Figure 6. An example of an automation cluster (AC). With

the information provided by local variables, the combine

object will set up the adequate OSC message to be received

and decoded. The receive object has no argument, this way

it will be dynamic and can be closed using the “set” message

without second argument. After the route object, the int

object will help to guarantee the type of the decoded

variables and the path can be closed using the toggle object.

Finally, the pattrforward object will deliver the variable to

the target object within the parent patcher.

2.2.3.4 Preset manager
The preset manager will perform all the tasks related with

saving and loading presets. This subpatcher should be slightly

modified before being pasted inside a new SO because of the

folder routes of the new SO. Preset can be loaded remotely

using terminal command lines (see Figure 7).

Figure 7. The preset manager can load and save presets and

update the list rescanning the preset folder when needed.

The last loaded preset will be shown at the bottom. A preset

can be loaded using the “Load preset” button or remotely

using the command line described. Any new SO will start

with the init.json preset after being created.

3. RESULTS ANALYSIS

3.1 CPU and DSP
The framework ran over a MacBook Pro and Max 6. The same

computer was used in every performance and lab session.

Unnecessary services such as Bluetooth and Wi-Fi were always

turned off to keep the minimum necessary to reinforce stability

and operate comfortably as well. Table 1 describes hardware

and software specifications used during the performance and

relevant settings of Max/MSP.

Table 1. Computer specifications and settings

Computer specifications

Model MacBook Pro (13-inch, MID 2012)

Processor 2.9 GHz Intel Core i7

Memory 8 GB 1600 MHz DDR3

Graphics Intel HD Graphics 4000

Operating system OS X Yosemite 10.10.2

Audio interface MOTU 828x

Framework specifications

Size without audio

files

13.3 Megabytes

Full size 1.23 Gigabytes

Externals ICST_ambisonics_2_3_1

Max/MSP configuration

Sampling rate 44100 Hz

I/O Vector Size 256 samples

Signal Vector Size 256 samples

Scheduler in

Overdrive

Enabled

Scheduler in Audio

Interrupt

Enabled

Parallel processing Enabled

308

 Data was transmitted from the sensors at 250 [Hz], this way,

4000 int numbers were received each second in the node unit.

However, the same rate was not necessarily reflected in the

input of the MacBook Pro running the framework, because the

node unit processed data before reaching the framework and

depending on the case, float numbers could be received instead,

or specific messages at a different frequency, but always using

the OSC protocol.

 Each act of Emovere used different amount of resources as

shown in Table 2. Emovere featured the design of nine different

types of SO combined under artistic criteria in every act.

 On the other hand, although the DSP CPU monitor was

always a concern during performances, evaluation was assessed

only anecdotally by visually monitoring the CPU usage. Further

stress tests are pending in order to assess the framework’s

capabilities. The design premise was that the DSP CPU monitor

should not exceed the 60% during a performance under normal

conditions, including muting the DSP of a SO once it was

considered idle. During the development of the framework we

experienced that over 60% or 65% of CPU usage, and with the

chosen configuration, screen might freeze for short periods of

time, thus, making visual monitoring gradually harder. Finally,

this criteria was stated as a fine limit for safe operation.

Table 2. Number of audio channels and SOs used during

acts of Emovere.

Act Audio channels

(mono outputs)

SOs used

Act #1 19 8

Act #2 26 16

Act #3 13 13

Total 58 37

4. DISCUSSION

4.1 Real-Time Effectiveness
The framework was used during 20 live performances and seen

by over 1200 people with no issues. Only minor instabilities

were detected, such as the DSP engine restarting unexpectedly

during rehearsals. We were not able to reproduce this error, and

it never occurred after restarting Max/MSP.

The framework was developed initially over the latest

versions of Max (7.03 at the time) but eventually we noticed

that the improvements made from Max 6 to Max 7 were

accompanied by an increased CPU usage, specifically for a

poly~-based patches. Because we were running several SOs

with poly~ during the performance, each with a substantial

amount of voices, we decided to go back to Max 6 in order to

improve stability. Correspondence with Cycling74 informed us

later that the increased CPU usage seems to be related to the

new dirac feature included in Max 7. Aside from decreasing

CPU usage, the overall GUI was affected because Max 7 GUI

includes new additions that are not entirely retro-compatible

with Max 6. In future versions of the framework the GUI will

be kept as independent as possible from the GUI provided by

Max.

 Future improvements are focused on extending the

capabilities of the framework for managing different kinds of

outputs other than sound, such as light systems or reducing the

two laptops system to one in the case of smaller scale

performances. Further implementations were tested but not

fully implemented yet, such as a virtual mixer and SO control

over wireless networks from a portable device such as tablets or

mobiles.

4.2 Flexibility in Different Venues
The speaker manager included in the framework and the preset

system was sufficient to change the whole configuration

overnight when changing venues. The performance was shown

in different venues with totally different speaker settings and

every time the system proved to be adjusted successfully.

Obviously, some minor modification and skimming through the

whole performance is needed to fine adjust the overall sound

and correct the panning to get a proper spatialization as you

would normally do with a band or a play.

5. CONCLUSIONS
As the input-processing-output (IPO) structure is common

among very complex systems, taking advantage of this

architecture leads to an intuitive design with a simple

workflow. Although the framework is at an early stage of

development, the results obtained reinforce its suitability for

live interactive performances.

 The use of the sound object (SO) as a processing block,

allowed the expected independency between the framework and

the interactions inside every SO. Even though the dependency

between SOs and the framework can be improved, the current

degree of dependency was not an obstacle for programming

several SOs to deliver a variety of possibilities within a single

performance.

 Additional testing should be done to establish more accurate

conclusions regarding the minimum requirements of the

framework over different operating systems, as well as its

maximum capabilities. Nonetheless, the framework developed

was able to successfully control and manage a complex

interactive performance such as Emovere, proving to be a

flexible and reliable system.

 Further analysis on poly~-based patches should be done in

order to allow users to include the improvements incorporated

in recent versions of Max 7 for the development of future

versions of the framework, as well as quantifying the extra

CPU usage due to dirac features. This will also improve the

recommendations we could elaborate regarding the maximum

framework capabilities.

6. REFERENCES
[1] Cycling ’74: https://cycling74.com/. Accessed: 2016-01-27.

[2] Jaimovich, J. and Knapp, R.B. 2015. Creating Biosignal

Algorithms for Musical Applications from an Extensive

Physiological Database. Proceedings of the 2015 Conference

on New Interfaces for Musical Expression (NIME 2015) (Baton

Rouge, LA, Jun. 2015).

[3] Mathews, P., Morris, N., Murphy, J., Kapur, A. and

Carnegie, D.A. Tangle: a Flexible Framework for Performance

With Advanced Robotic Musical Instruments.

[4] Ouzounian, G., Knapp, R.B., Lyon, E. and DuBois, R.L.

2012. To be inside someone else’s dream: On Music for

Sleeping & Waking Minds. Proceedings of the International

Conference on New Interfaces for Musical Expression

(NIME’’12) (2012).

[5] Place, T. and Lossius, T. 2006. Jamoma: A modular

standard for structuring patches in Max. Proceedings of the

International Computer Music Conference (2006), 143–146.

[6] Place, T., Lossius, T., Jensenius, A.R. and Peters, N. 2008.

Flexible control of composite parameters in Max/MSP. (2008).

[7] Wakefield, G. 2006. Third-order Ambisonic extensions for

Max/MSP with musical applications. Proceedings of the 2006

ICMC. (2006).

[8] Wright, M. 2005. Open Sound Control: An Enabling

Technology for Musical Networking. Org. Sound. 10, 3 (Dec.

2005), 193–200.

309

