
x2Gesture: how machines could learn expressive gesture 
variations of expert musicians 

 

 
Christina Volioti  

MTCG Lab, Department of Applied 
Informatics, University of Macedonia, 

156 Egnatia Street, GR-540 06, 
Thessaloniki, Greece, 

christina.volioti@uom.edu.gr 

 
Sotiris Manitsaris  

Centre for Robotics, MINES 
ParisTech, PSL Research University, 

60, Boulevard St-Michel,  
75272, Paris, France 

sotiris.manitsaris@mines-paristech.fr 

 
Athanasios Manitsaris  

MTCG Lab, Department of Applied 
Informatics, University of Macedonia, 

156 Egnatia Street, GR-540 06, 
Thessaloniki, Greece, 

amanitsaris@uom.edu.gr 

 
Eleni Katsouli   

MTCG, Department of Applied 
Informatics, University of Macedonia, 

156 Egnatia Street, GR-540 06, 
Thessaloniki, Greece,  
katsouli@uom.edu.gr 

 
 
 

 
 
 

 
 

 
ABSTRACT 

There is a growing interest in ‘unlocking’ the motor skills of expert 
musicians. Motivated by this need, the main objective of this paper is 
to present a new way of modeling expressive gesture variations in 

musical performance. For this purpose, the 3D gesture recognition 
engine ‘x2Gesture’ (eXpert eXpressive Gesture) has been developed, 
inspired by the Gesture Variation Follower, which is initially designed 
and developed at IRCAM in Paris and then extended at Goldsmiths 
College in London. x2Gesture supports both learning of musical 
gestures and live performing, through gesture sonification, as a unified 
user experience. The deeper understanding of the expressive gestural 
variations permits to define the confidence bounds of the expert’s 

gestures, which are used during the decoding phase of the recognition. 
The first experiments show promising results in terms of recognition 
accuracy and temporal alignment between template and performed 
gesture, which leads to a better fluidity and immediacy and thus 
gesture sonification.  
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1. INTRODUCTION 
Gesture constitutes a component of human expression. It can 
also be characterized as a self-contained part of music. A musical 
performance is a sequence of expressive gestures that 
encapsulate both theoretical knowledge and practical motor 
skills. Each musical performance is unique due to expressivity, 

since for a given musical excerpt, interpretations can vary 
greatly, depending on the performer or even on expression that 
the performer has each time s/he plays the same piece [11]. 

Recently, research on the capturing and recognition of musical 
gestures has become very appealing. Many researchers and 
musicians have developed interfaces that use machine learning 
algorithms and aim at recognizing not only the cinematic aspects 
of the gesture [4][17], but also measurable parameters about 
expressivity [12]. From a machine learning point of view, there 
is usually an important compromise to make between a fast, or a 

rich training of the model. There are musical interfaces that are 
based on one-shot learning [4][12][17], in which the system 
requires only one training example instead of large data sets; 
thus, the training time is greatly reduced but significant limits are 
put on the modeling of expressive variations of the same gesture. 
Thus, the modeled information is less rich than when using large 
data sets. Moreover, within a sensory-motor learning context, it 
is important to identify precisely the tolerance between the 

executions of an expert performer in order to provide meaningful 
feedback to the learner. Therefore, the mathematical description 
of how an expressive gesture is being performed, along with the 
modeling of its variations are becoming crucial research topics.  

Our approach is based on the concept that expressiveness is an 
intended gestural variation, which should be taken into account 
when modeling the gesture. In one of our previous work, 
Manitsaris et al. [22] has proposed a way to model offline 
gestural know-how in craftsmanship. As an extension of this 

work, we propose x2Gesture, which aims at recognizing musical 
expert gestures in real-time taking also into account the 
expressive variations. This is accomplished by implementing a) 
the existing work which models expert motor skills, and b) 
machine learning algorithms for real-time expert gesture 
recognition. Finally, our proposed methodology can support a 
unified user experience for both learning of expert musical 
gestures and performing musical gestures. 

 This paper is structured as follows: firstly, we review the state 
of the art (SoA) concerning machine learning algorithms that are 
used for gesture recognition (Section 2). Then our 
methodological approach (Section 3) and its implementation in 
two case studies (Section 4) are described. Finally, we conclude 
with our first evaluation results (Section 5).  

2. RELATED WORK 

2.1 Expert musical gestures 
Firstly, we shall define some terms, which are key to our 
methodological approach. The term ‘musical gestures’ lies in the 

intersection between observable actions and mental 
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representations [13]. A good definition of this, taken from Hatten 
(2003) is [19]: ‘musical gesture is biologically and culturally 
grounded in communicative human movement. Gesture draws 
upon the close interaction (and inter-modality) of a range of 
human perceptual and motor systems to synthesize the energetic 

shaping of motion through time into significant events with 
unique expressive force’. 
 When we refer to expressive gesture, what do we mean? 
According to [6], ‘expressiveness is conveyed by a set of 
temporal and spatial characteristics that operate more or less 
independent from the denotative meanings of those gestures’. 
The notion of expressivity measures how the expert gesture is 
performed. Hence, how an expressive gesture is performed is 

equally as important as what/which expressive gesture is 
performed [18].   
 By using the term ‘expert gestures’, we mean that performers 
have mastered their gestural skills. For example, they are those 
gestures that require years of training and practice before 
performers are able to perform them. Although this kind of 
expert has acquired high-level motor skills, expressive variations 
may occur between the different musical interpretations, even 

unconsciously. In order to control and measure expressive 
variations, some researchers use the ‘neutral performance’ as a 
reference [7], which is the performance played without any 
specific expressive intention. Alternatively, the mean of all the 
performances was taken as a reference [23].  

2.2 Machine learning algorithms  
Machine learning algorithms, such as those based on Hidden 
Markov Models (HMMs) [20], Dynamic Time Warping (DTW) 
[1], Hierarchical Hidden Markov Models (H-HMMs) [15], 
Sequential Monte Carlo technique [12] etc., are widely used for 
gesture recognition systems for continuous interaction. [2][3][4] 
successively developed a system based on a hybrid model 
between HMMs and DTW, called Gesture Follower (GF), for 
both continuous gesture recognition and following, between the 

template or reference gesture, and the incoming or performed 
gesture (template-based method). It can learn a gesture from a 
single example (one-shot learning), by associating each template 
gesture to a ‘state’ of a hidden Markov chain [5]. During the 
performance, a continuous estimation of parameters is calculated 
in real-time, by providing information for the temporal position 
of the performed gesture. Time alignment occurs between the 
template and the performed gesture, as well as offering an 

estimation of the time progression within the template in real-
time.  
 One limitation of HMMs is that observations are produced at 
the frame level, and as a consequence they do not support the 
transitions between segments [15]. Therefore, [14][15] 
developed a system based on H-HMMs with two levels for real-
time gesture segmentation and recognition. Similarly to GF, it 
adopts a template-based method and implements one-shot 

learning. The system is trained with a single pre-segmented 
gesture, which is annotated by the user. Each segment is 
associated with a high-level state (segment state), which 
generates the sub-models of the signal level (lower level), 
encoding the temporal evolution of the segment [14][16].  
 The aforementioned methodologies and research approaches 
do answer the question of what/which gesture is performed, but 
not how expressive gesture is performed. [12] further extended 

the research by proposing a template-based method which 
implements a Sequential Monte Carlo technique. Its main 
advantage is that the recognition system, named Gesture 
Variation Follower (GVF), is being adapted to gesture 
expressive variations in real-time. Specifically, in the learning 
phase only one example per gesture is required. Then, in the 
performing phase, time alignment is computed continuously and 

expressive variations (such as speed, size, etc.) are estimated 
between the template and the performed gesture [10][12].  

2.3 Conclusions from SoA and Motivation  
Leveraging the above, we can conclude that the majority of 
algorithms answer the question of what/which gesture is 
performed, or how it is performed, or both. Furthermore, in most 
cases, a parameter is implemented, measuring how much the 
performance is allowed to be different from template gestures 
[25]. Additionally, the users can control the degree of 
generalization of the model to ensure a robust estimation of their 

performed gestures with this parameter [15]. In GF and GVF, 
this parameter is called tolerance [8][25] and in [15] which is 
based on H-HMMs, variance offset. The main advantage of this 
parameter is that if its value is low, the system will be more 
robust and will recognize gestures with more accuracy. If it is set 
high, the system will be less reliable, due to the fact that the 
model will be too general and it will lead to overlaps between 
classes [15][25]. However, the main drawback is that the value 

of this parameter remains fixed during the performance of the 
gesture. This leads to the possibility that the system might fail to 
recognize some variations within the gesture, because it might 
require a slightly higher or slightly lower value of this parameter. 
Moreover, there is an impact on the time alignment between 
template gesture and performed gesture, which can vary 
importantly, thus reducing the immediacy and fluidity of the 
gesture sonification. 

 An additional conclusion from the literature review is that, the 
purpose or end-use of the implementation of algorithms is for 
installations, performances or even entertainment. But what 
happen in the case of the educational and learning process? Can 
the existing algorithms successfully recognize expressive 
gesture variations between expert and learner’s performances? 
For this reason, our proposed methodology deals with the know-
how transmission between expert and learner. Moreover, we 
propose confidence bounds, instead of fixed values of tolerance 

and variance offset, which are derived from expert gesture 
performance [22] and can dynamically and more precisely 
recognize the variations that occur within the learner’s 
performance (performed gesture) in relation to the expert’s 
performance (template gesture). Apart from the learning the 
scenario, the proposed methodology gives also the possibility to 
the user to perform his/her own musical gestures and control 
sound parameters.  

3. MODELING AND RECOGNITION  
In the proposed methodology, the goal is not simply to train, 
recognize and sonify expert musical gestures, but by exploiting 
the existing methodologies and adding the parameter of 
confidence bounds, to develop a system that will be able to 

recognize expressive variations that take place within the gesture 
performance.  

3.1 Expert operational model 
The first step was to model expert gestural know-how in the case of 
the piano. This was accomplished by capturing expert musical 
gestures while the expert performed specific musical gestures on the 
piano. Then, expert gestural analysis was conducted. The purpose of 
using the State Space estimation methodology was two-fold: a) in 

order to model expert musical gestures, we built an operational model 
that describes how expert gestures are performed; and b) in order to 
develop a system that will be able to recognize more accurately the 
variations that might occur within the learner’s performance, we 
extracted the confidence bounds, based on the iterations of the same 
expert musical gesture, from the expert operational model [22]. 
 The general specification of the State Space presentation of vector 
𝑌𝑡 is given by the following dynamic system [21]: 
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𝒀𝑡 =  𝜷𝑡 + 𝒁𝑡𝒂𝑡 + 𝜺𝑡          (1) 

𝒂𝑡+1 =  𝜸𝑡 + 𝑾𝑡𝒂𝑡 + 𝜼𝑡         (2) 
 

where: 

 𝒀𝑡 is a n×1 vector, which can refer to as the signal or observation 
equation (1)  

 𝒂𝑡 is an m×1 vector of possibly unobservable state variables, 
which can be referred to as the state or transition equation (2) 

 𝜷𝑡, 𝒁𝑡, 𝜸𝑡 and 𝑾𝑡 are conformable vectors and matrices 

 𝜀𝑡  and 𝜂𝑡 are vectors of mean zero, Gaussian disturbances  

 Following equations (1) and (2), in our case the functional version 
of the expert operational model, presenting the gestures of the right 
hand with respect to dimension X (RHX), is as follows: 
 

𝑹𝑯𝑿𝑡 =  𝒁1𝑡𝒂1 + 𝒁2𝑡𝒂2𝑡 +  𝜺1𝑡       (3) 

𝒂2𝑡 =  𝛿1𝒂2𝑡−1 + 𝜼1𝑡          (4) 
 

where: 

 𝒁1𝑡 = [𝑰  𝑹𝑯𝒁𝑡−1 𝑹𝑯𝒀𝑡−1 𝑳𝑯𝑿𝑡−1], 𝒁2𝑡 = [𝑹𝑯𝑿𝑡−1 −
𝑹𝑯𝑿𝑡−2] 

 I = unit vector, 𝐙t = [𝐙1t 𝐙2t],  ′ = transposition, and  

 𝒂1
′ = [𝑎10 𝑎11 𝑎12 𝑎13], 𝒂2t and δ1 are parameters to be 

estimated.   

 

 Analytically, the equations to be estimated are as follows: 
 

𝑅𝐻𝑋𝑡 =  𝑎10 + 𝑎11𝑅𝐻𝑍𝑡−1 + 𝑎12𝑅𝐻𝑌𝑡−1 + 𝑎13𝐿𝐻𝑋𝑡−1 +
𝑎2𝑡(𝑅𝐻𝑋𝑡−1 − 𝑅𝐻𝑋𝑡−2) + 𝜀1𝑡        (5) 

𝑎2𝑡 =  𝛿1𝑎2𝑡−1 + 𝜂1𝑡          (6) 
 

 In our piano case study, we mostly focused on the gestures made by 
playing with two hands. Thus the complete operational model has two 
sets of equations: three right hand equations (𝑅𝐻𝑋𝑡, 𝑅𝐻𝑌𝑡 and 

𝑅𝐻𝑍𝑡), and three left hand equations (𝐿𝐻𝑋𝑡, 𝐿𝐻𝑌𝑡 and 𝐿𝐻𝑍𝑡). 

 Having estimated the system of equations (5) and (6), the expert 
operational model is dynamically simulated and the dependent 

variables are forecasted. Consequently, the estimated forecast standard 
error is derived according to: 
 

𝑅𝐻𝑋_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑠𝑒𝑡 =  𝑠√1 + 𝑅𝐻𝑋𝑡
′(𝑍𝑡

′𝑍𝑡)𝑅𝐻𝑋𝑡   (7) 

where s = standard error of the estimated equation. 
 

 Then, we calculated the confidence zone for each musical gesture, 
including confidence bounds (a higher and a lower bound). The 

equations of the higher (8) and lower (9) bound referring to right hand 
are the following, where 𝑅𝐻𝑋_𝑓𝑡 is the forecasted data series at 

discrete time t, and 𝑅𝐻𝑋_𝑠𝑒𝑡  is the forecasted standard error:  
 

𝑅𝐻𝑋_ℎ𝑖𝑔ℎ𝑡 =  𝑅𝐻𝑋_𝑓𝑡 + 𝑅𝐻𝑋_𝑠𝑒𝑡      (8) 
𝑅𝐻𝑋_𝑙𝑜𝑤𝑡 =  𝑅𝐻𝑋_𝑓𝑡 − 𝑅𝐻𝑋_𝑠𝑒𝑡       (9) 

 

 

Figure 1. Confidence bounds of the expert musical gesture. 

 If the performed gesture is between these confidence bounds (Figure 
1) during the whole performance, this means that we can successfully 
take into consideration the expressive variations that occur between the 
template and performed gesture. We further generalize this 
methodology by implementing the confidence bounds and using them 
with machine learning algorithms, in order to recognize expressive 

variations that might take place between the learner’s (performed 
gesture in Figure 1) and expert’s (template gesture in Figure 1) 
performance in real-time, in order to improve both the recognition 
results and the gesture sonification. 

3.2 Implementation  
x2Gesture is based on GVF library 1 [10][12][26], and implements 
the State Space and Particle Filter algorithm. The state elements are the 
gesture characteristics, which are for example, the time progression of 
the performed gesture (temporal alignment), the relative speed, the 
scaling coefficient (size) and the angle of rotation (orientation). The 

transition function is linear, relying on a Gaussian noise [9] and the 
observation function is the distance between the adapted template 
gesture and the performed gesture [10].   
 The algorithm includes two phases: the learning (or training) and the 
following (or recognition) phase. x2Gesture is first trained with a 
single expert example per gesture along with an audio file (pre-
recorded sound). This process is repeated until the system is trained 
with all the template gestures, which are mapped to the respective 

sounds. Thereafter, in the following phase, the learner or performer 
imitates in real-time the same expert gesture. For each performed 
musical gesture, x2Gesture selects the appropriate confidence 
bounds, which correspond to the performed gesture. At the same time, 
the model aligns the incoming gesture onto the template gesture, 
estimating also the gesture variations [10][26]. Moreover, the system 
resynthesizes a plausible imitation of the original (expert) sound in real 
time according to the learner’s gesture performance, by using the 

granular sound synthesis engine. The better the recognition results are, 
the better the gesture sonification and the re-synthesis of the sound will 
be.   
 The added value in the recognition system, as it is already 
mentioned, is the implementation of the confidence bounds. In this 
way, during the recognition, the system can prevent numerical errors 
that might happen due to expressive variations, and as a result, 
confidence bounds could improve the gesture classification and 
therefore the gesture sonification. This happens because confidence 

bounds are extracted from the expert operational model and they are 
not a fixed number selected by the user during the learning process or 
musical performance.  

4. CASE STUDIES 
For the evaluation of x2Gesture we organized two case studies: a) a 

learning scenario of expert musical gestures and b) a performance with 
musical gestures by using Intangible Musical Instrument (IMI) [24]. 
IMI setup is a construction made of Plexiglas, shaped so as to look like 
a table on which the learner and/or performer can put his/her hands and 
perform musical gestures. In both case studies, three musical gestures 
were included in the musical vocabulary (Table 1): a) 𝐺1: ascending 

scale performed in legato style, b) 𝐺2: descending arpeggio performed 

in staccato style, and c) 𝐺3: a musical excerpt from a famous Greek 

song.  

Table 1. (a) 𝑮𝟏: ascending scale, (b) 𝑮𝟐: descending arpeggio 

and (c) 𝑮𝟑: a musical excerpt from a Greek song  
 

 
(a) 

 

 
(b) 

 

 
(c) 

Slow – 72 bps  

(adagio)  

Slow – 80 bps 

(andante) 

Slow – 72 bps  

(adagio) 

Normal – 100 bps 

(andante) 

Normal – 112 bps 

(moderato) 

Normal – 100 bps 

(andante) 

Fast – 116 bps 

(moderato) 

Fast – 126 bps 

(allegro) 

Fast – 116 bps 

(moderato) 

 
 1 https://github.com/bcaramiaux/ofxGVF 
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 All gestures have duration approximately 10-15 seconds and each 
user was asked to repeat each gesture five times. Apart from that, the 
user repeated each musical gesture in two different rhythms, slow and 
fast (Table 1). 
 In order to capture in real-time the musical gestures, two inertial 

sensors (Animazoo IGS-150 2) were used. These sensors are 
gyroscopes, providing XYZ axis rotations. Also they were placed on 
user’s two hands, and specifically on wrists.   

4.1 Case study I: Learning  
In the learning scenario, 7 users were participated, one from whom 

was the expert pianist and the rest 6 were the learners. The purpose 
was to capture the expert pianist while performing the expert musical 
gestures on the piano (Figure 2 (a)). For each expert musical gesture, 
one iteration was selected as the reference gesture. Then, the rest 
iterations have been aligned and timely warped based on the reference 
gesture, using the DTW technique. Therefore, all the iterations of the 
same gesture transformed into having the same duration. These 
transformed data were averaged per variable and the result was used 

in the estimation of the expert operational model and in the extraction 
of confidence bounds, following the steps, which are described in 
Section 3.1.  
 

 
(a) 

 

 
(b) 

 
(c) 

Figure 2. Different roles of users: (a) expert, (b) learner and 
(c) performer.  

 Subsequently, x2Gesture was trained with the three template 
gestures (reference). In the recognition phase, each one of the six 
learners performed the same expert musical gestures on the piano 
(Figure 2 (b)) five times. Their gestural data were captured in order to 

evaluate the recognition results of the model, as well as the accuracy 
and reliability of the confidence bounds. 

4.2 Case study II: Performing 
In the second case study, 6 performers were participated in total. For 
each performer the expert operational model and the confidence 
bounds were extracted. Moreover, apart from their gestural data, the 

sound that was produced was also recorded. Therefore, in the training 
phase, both reference gesture of each performers and the respective 
sound were given as input. In the recognition phase, each performer 
(Figure 2 (c)) performed the same musical gestures by using IMI, in 
order to resynthesize the pre-recorded sound in real-time.  

5. EVALUATION 
The goal of the experiment is to assess the recognition accuracy of 
x2Gesture, which implements the confidence bounds, comparing it 
also with established techniques, such as GF and GVF. The evaluation 
method that was used is called ‘jackknife’, or ‘leave-one-out’ 
approach. The basic idea is leaving out one or more observations at a 
time from the sample set. Practically, the database contains 
observations from five iterations of three musical gestures. Five 

distinct datasets have been created for each iteration of performed 
gesture. Therefore for each jackknife iteration, one dataset is left out to 
train the model 𝑀𝑖  per musical gesture 𝐺𝑖  and the rest four are used 

for testing. Two metrics were also used to evaluate the recognition 
accuracy: a) Precision, which takes into account the false recognitions 
and b) Recall, which takes into account the missed recognitions.   
 
2 http://synertial.com/ 

5.1 Evaluation of case study I 
For the evaluation of the learning scenario, jackknife method was used 

only in expert’s data. The aim is to evaluate the accuracy of the expert 
operational model and confidence bounds.  Table 2 presents the results 
that x2Gesture gave for the five jackknife iterations, as well as the 
values of Precision and Recall per 𝐺𝑖.  

Table 2. x2Gesture: Precision and Recall per expert gesture  

Maximum likelihoods 

  𝑀1 𝑀2 𝑀3 Recall 

Observa-

tions 

𝐺1 20 - - 100% 

𝐺2 - 20 - 100% 

𝐺3 - - 20 100% 

 Precision 100% 100% 100%  

 
 Because the results seemed to be perfect, we repeated the same 
experiment with GF and GVF. Therefore, Table 3 shows briefly the 
values of Total Precision and Total Recall per expert gesture from 
recognition with GF and GVF.  

Table 3. GF and GVF: Precision and Recall per expert gesture  

  GF GVF 
  Precision Recall Precision Recall 

Observa-

tions 

𝐺1 100% 100% 95% 100% 

𝐺2 100% 100% 100% 100% 

𝐺3 100% 100% 100% 95% 

 Total 100% 100% 98% 98% 

 
 The high recognition results that x2Gesture, GF and GVF gave, 
can be explained by the fact that the expert pianist was very dedicated 

and focused on the expert performance of musical gestures. This 
resulted in not occurring expressive variations, even unconsciously, 
between the different iterations of musical interpretations. The 
tolerance that was used for these tests was 0.1 for both GF and GVF. 
 In order to complete the evaluation of the learning scenario, learners 
have to imitate the same expert musical gestures on the piano. The 
specific dataset contains: 6 learners * 3 musical gestures * 5 iterations 
= 90 gesture examples. The value of tolerance that was selected was 
0.2 for GF and 0.1 for GVF. These tolerance values were the result of 

many experiments, as they gave better results for these specific 
musical gestures in comparison with smaller or larger tolerance values.  
 After having trained the system with the expert’s template gesture 
(reference), the data from the learners’ performances were given for 
recognition. The recognition results are presented in Table 4:  

Table 4. GF, GVF and x2Gesture: expert – learners  

 GF GVF x2Gesture 
 Precision Recall Precision Precision Precision Recall 

𝐺1 59% 57% 70% 53% 100% 70% 

𝐺2 79% 37% 45% 43% 65% 37% 

𝐺3 53% 83% 53% 70% 48% 83% 

Total 64% 59% 56% 55% 71% 63% 

 
 According to Table 4, we can conclude that from the comparison of 
recognition percentages, x2Gesture gives better results than the others. 
These results are consistent to what we expected, and confirm the 
hypothesis that the recognition results can be improved with the 
implementation of confidence bounds. Moreover, the results confirm 
that confidence bounds can dynamically and more precisely recognize 
the variations that might occur within the learner’s performance and 
expert’s performance. 

5.2 Evaluation of case study II 
In the performance case study with the use of IMI, all 6 performers 
execute the musical gestures five times. As it is mentioned, during the 
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performance they were also asked to perform the gestures either 
slower or faster. The dataset for this case study includes per user: 3 
musical gestures * 5 iterations (which contain data from slow, normal 
and fast speed) = 15 gesture examples. For the case study II, the value 
of tolerance that was selected was 0.1 for both GF and GVF.  

 x2Gesture was trained per user with the three template gestures 
along with the pre-recorded sounds. Then, in the recognition, 
x2Gesture selected the appropriate confidence bounds, according to 
the performed gestures, and resynthesized the sound in real-time, by 
using the granular sound synthesis engine. The recognition results per 
performer and per algorithm are shown in Table 5: 

Table 5. GF, GVF and x2Gesture: performer – performer  

  GF GVF x2Gesture 
  Precision Recall Precision Recall Precision Recall 

U
se

r 
1
 𝐺1 75% 75% 68% 85% 64% 80% 

𝐺2 82% 90% 76% 65% 71% 75% 

𝐺3 83% 75% 61% 55% 79% 55% 

 Total 80% 80% 68% 68% 71% 70% 

U
se

r 
2
 𝐺1 100% 100% 100% 100% 100% 100% 

𝐺2 100% 100% 100% 100% 100% 100% 

𝐺3 100% 100% 100% 100% 100% 100% 

 Total 100% 100% 100% 100% 100% 100% 

U
se

r 
3
 𝐺1 100% 100% 95% 95% 87% 65% 

𝐺2 100% 100% 100% 100% 100% 90% 

𝐺3 100% 100% 95% 95% 67% 90% 

 Total 100% 100% 97% 97% 85% 82% 

U
se

r 
4
 𝐺1 71% 50% 78% 90% 95% 95% 

𝐺2 54% 35% 95% 90% 91% 100% 

𝐺3 55% 90% 89% 80% 100% 90% 

 Total 60% 58% 87% 87% 95% 95% 

U
se

r 
5
 𝐺1 100% 100% 95% 100% 100% 100% 

𝐺2 100% 100% 100% 100% 100% 100% 

𝐺3 100% 100% 100% 95% 100% 100% 

 Total 100% 100% 98% 98% 100% 100% 

U
se

r 
6
 𝐺1 100% 100% 95% 100% 100% 100% 

𝐺2 100% 100% 100% 95% 100% 100% 

𝐺3 100% 100% 100% 100% 100% 100% 

 Total 100% 100% 98% 98% 100% 100% 

 
Grand 

Total 90% 90% 91% 91% 92% 91% 

 
 In the last row of Table 5, grand total from all performers are 
presented. If we interpret the table according to the last row, 
x2Gesture gives the highest results (with GVF and GF to follow).   
 Alternatively, if we interpret the results per performer, we can 
conclude that GF gives better recognition results than the others, while 
x2Gesture and GVF come after. This can be explained by the fact that 
in four out of six performers GF gives 100% in Precision and Recall, 

while x2Gesture in three and GVF in one. However, the majority of 
the percentages per performer from x2Gesture and GVF are really 
close to 100% (i.e. 98%, 97%, etc.), which means that the model did 
not manage to recognize correctly one or two gestures.   

5.3 Evaluation on recognition stability and 

time 
At this point, it is important to highlight an additional advantage of the 
implementation of confidence bounds. Figure 3 presents the time 
progression of the recognized 𝐺3 from user 3 (case study II). Time 

index ‘0’ is the beginning of the gesture and time index ‘1’ is the end 
of the gesture. Compared to the other two algorithms, x2Gesture is 

more stable during the recognition process and faster than the others, 
because the system recognizes correctly 𝐺3 from the 1st frame, 

resulting to the increase of the maximum likelihood that refer to 𝐺3.  

 

 

Figure 3. Gesture progression through the temporal 

alignments of GF, GVF and x2Gesture.  

 This can be also confirmed by the Figure 4(c), which presents the 
maximum instant likelihood. Therefore, the gesture sonification is 

more fluid and immediate because the new synthesized signal is much 
closer to the template sound. GVF becomes stable after 112 frames. 
Figure 4(b) shows the latency before 𝐺3 takes the maximum 

likelihood. GF recognizes correctly 𝐺3 after 145 frames, as it seems to 

oscillate between 𝐺3 and 𝐺1. The maximum likelihoods along with 

their transitions between gestures are presented in Figure 4(a). 
Although, in the end all three algorithms recognize correctly 𝐺3, the 

production of the sound differs in three algorithms.  
 

     
 

(a) 

     
 

(b) 

     

(c) 

Figure 4. Instant likelihoods per frame using (a) GF, (b) 
GVF and (c) x2Gesture. 

 Additionally to the above specific example in which x2Gesture 
recognizes the right musical gesture faster than the other two 
algorithms, Table 6 presents the average time that each algorithm 
succeeds to recognize each musical gesture correctly.   

Table 6. Average time that GF, GVF and x2Gesture need to 

recognize each gesture correctly 

 GF GVF x2Gesture 
 Mean St.Dev. Mean St.Dev. Mean St.Dev. 

𝐺1 8,43 7,27 2,25 1,65 2,23 1,53 

𝐺2 1,94 3,17 3,25 2,56 1,65 1,73 

𝐺3 0,71 1,34 2,46 2,43 0,96 0,68 
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 In order to evaluate the response time in real time, the database from 
case study I (expert – learners), was used. According to the small 
values of mean and standard deviation for each gesture, it can be 
further confirmed that x2Gesture can recognize faster and more stable 
the musical gestures without oscillating between all three musical 

gestures. However in 𝐺3, GF has smaller mean value than x2Gesture, 

but larger standard deviation. This can be interpreted by the fact that, 
although GF has recognized more 𝐺3 in comparison to x2Gesture 

(Precision in Table 4), the values of time that GF has taken the highest 
instant likelihoods for 𝐺3 varied with each other more (max. time 

value 5,02 sec. and min. time value 0,11 sec.) than in x2Gesture (max. 
time value 3,01 sec. and min. time value 0,13 sec.).    

6. CONCLUSION AND PERSPECTIVES 
Summarizing, we propose the 3D gesture recognition engine 

‘x2Gesture’, which has been especially designed to address the needs 
of both learning the expert musical gestures and live performing 
through gesture sonification. Moreover, the proposed modeling of the 
expressive variations and the output confidence bounds, led to higher 
recognition accuracy even in multi-user use-cases, by taking into 
consideration the expressive variations that might occur. Furthermore, 
the first evaluation results prove that there is a more fluid and 
immediate temporal alignment with the correct gesture.  

 Our future work is to generalize our methodology in order to be used 
in a variety of different disciplines, by creating connections between 
them. For example, to combine music with mathematics, or physics, 
or drawing, etc. Expressivity and creativity will be the core of these 
interdisciplinary musical performances.   
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sémiologie du geste musical. In: G. Guertin (Eds.), Glenn 
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