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ABSTRACT
This paper documents and discusses the process of develop-
ing a generative drumming agent built from the results of
an extensive survey carried out with electronic music pro-
ducers. Following the techniques of user-centered interac-
tion design, an international group of beat producers was
reviewed on the possibility of using AI algorithms to help
them in the beat production work-flow. The results of these
tests were used as design requirements for constructing a
system that would indeed perform some tasks alongside the
producer. The first results of this working prototype, a
stylistic drum generator that creates new rhythmic patterns
after being trained with a collection of drum tracks, are pre-
sented with a description of the system. Further stages of
development and potential algorithms are also discussed.
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1. INTRODUCTION
There are many pieces of music software that have been
solely developed by following the intuitions and needs of
their own developers. Even intended-to-be universal music
composition environments show the imprint of their cre-
ators’ musical interests or biases. Commercial software, on
the other hand, has to be developed according to the re-
quirements of potential users. Listening to users, current
or potential, is one of the elements in their recipe for suc-
cess in software development. It is, nevertheless, rare that
music creation prototypes that have arisen in academic en-
vironments include, in their inception phases, the insights
provided by potential users.

Computer-assisted music creation epitomizes another dis-
tinction between the academic and commercial sides of mu-
sic technology. While algorithmic composition and AI-
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based music systems have a long tradition in academic and
experimental realms, such tools seem not to have found their
place in the market yet. Is it really because users would re-
ject them?

In this paper we report on the process, findings and con-
sequences of poking into the conceptual and practical views
of users, and of letting them test rough ideas with software
prototypes yet-to-be-converted into working tools. From
this exploration, our resulting prototype addresses the gen-
eration and variation of rhythm patterns by means of high-
level control, and according to some stylistic conventions.

1.1 Helpers for Popular Music Creation
Much of popular music, and electronic dance music (EDM)
makes no exception, arguably starts out by imitation, by
recalling a musical sketch, be it a melody, a chord progres-
sion, or (as most commonly in EDM) a rhythmic pattern.
Progressively changing this material and adding variations,
may finally turn the music into an original piece of its own.
Grote [13] discusses whether this selection of a structural
framework from fragments of one own’s cultural background
is already a creative act, or is perhaps more akin to the tasks
of a scientist collecting literature for a state-of-the-art in a
new paper. Within this context, and considering the greater
realm of cultural practice where the repetition of established
patterns or sounds would appear as redundancy, the use of
generative agents or helpers in commercial popular music
creation would seem a natural move. As Grote also points
out, if machines were able to provide you with proposals for
ready-made structural frameworks of a piece of music that
fit your cultural background, if they were able, in summary,
to do all the basic work for you, why wouldn’t you embrace
the possibility to save time and be more productive?

We know that such potential tools are far from con-
stituting a mainstream trend yet, but where are the
main shortcomings? Do they come from the natural fear
we humans (and probably more specially popular music
artists) have, of becoming progressively unneeded and
supplanted by machines? Are they caused by a strong
sentiment against the idea of a machine taking control on
the entire groundwork of a music piece? Or are they rather
a consequence of the technical difficulties imposed by
hypothetical musical know-hows, that (specially in the case
of electronic music) have not been fully analyzed neither
formalized, and are in permanent evolution (so much that
a one year-old EDM piece might sound horribly dated to
some critically trendy ears)? While we acknowledge that
at its current stage, the research documented in this paper
will not be able to provide us definite answers to these
questions yet, they will guide us and inspire us for which
directions to take.
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2. PRELIMINARY RESEARCH
2.1 First Interviews with Experts
With the aforementioned questions in mind, our preliminary
inquiries started at the Red Bull Music Academy (RBMA)
that took place in Tokyo, in November 2014. Begun in
1998, the RBMA is a global music institution that orga-
nizes world-traveling series of music workshops. Its main
event is an annual workshop in which two dozens of promis-
ing and not-yet-popular young music producers and DJs,
selected from more than 4,000 submissions from about 100
countries, gather for two weeks of lectures, master classes,
studio production workshops and collaborative writing and
recording sessions1. Within the GiantSteps project [16], 16
in-depth interviews were conducted in Tokyo with RBMA
participants. Ages ranged from 21 to 35, with 10 users in
the 20-30 age group and 6 older than 30. Each user was in-
terviewed individually in one session that lasted between
30 and 120 minutes. The interviews were conducted in
between RBMA work sessions and during recording studio
down time, and focused on the musicians’ work practices,
their attitude towards the computer as a more or less active
collaborator in their work process, as well as on their visions
and concerns for the future, their imagined ideal tools and
interface wishes. Interviews were recorded in audio, tran-
scribed and subsequently analyzed. The results are fully
documented in [2]. We here provide a very quick summary,
concentrating on aspects that may orient our pursuit.

While the interviews reveal to a certain degree the musi-
cians’ fear of intelligent agents taking control of their music
and making it less interesting, there is a common agreement
that machines could provide help in many tasks, even in the
ones considered more ”creative”. Most producers agreed
that tools that would not impose their own aesthetics but
would rather work within some stylistic constraints defined
by the users, and that would specially preserve (unless ex-
plicitly stated otherwise) the musician’s aesthetic stamps
would be highly appreciated. According to the producers
interviewed, such tools, which should also allow accidents or
unexpected results when deliberately pushed beyond their
declared limits, would be specially helpful for suggesting
variations and adding variety to the users’ material. Ex-
perts also call for tools allowing them to adopt a perspec-
tive that hides or silently cares for low-level details and non-
creative stuff.

2.2 Three Conceptual Pillars
From these preliminary guidelines we approach the design
and development of a stylistic drum generator that allows
to interactively modify rhythmic patterns and create new
ones, after being trained with a collection of drum tracks.
We decide to start with rhythm, because it is one of the
primary components of EDM, and we base our prototype
on three conceptual pillars suggested by the interviews: (i)
the provision for high-level control of the system’s behavior
(i.e., by means of domain-specific conceptual parameters),
(ii) the embedding of style knowledge at the core of the
musical representations, and (iii) the metaphor of ”model
plus variations” to create, in controllable and meaningful
ways, output diversity.

In the following section we provide some justification for
and clarifications about each of these, together with an
overview of existing related approaches.

1http://www.redbullmusicacademy.com/

3. RELATED APPROACHES
3.1 High-Level Control
In computer music jargon, ”high-level control” is an idea
that goes back to the 1970’s if not earlier, and which relates
to the concepts of ”Interactive Music” introduced by Chad-
abe (1984), and to Laurie Spiegel’s ”Intelligent Instruments”
(Spiegel, 1987). For Pressing (1990), performing with such
musical systems can be closer to ”conducting an orchestra”
than to what we conventionally understand by ”playing a
musical instrument”. While this approach has been ubiq-
uitous for at least two decades in more experimental elec-
tronic music, and can indeed be seen as the backbone of
much laptop performance, which often relies on real-time
programming environments such as Max/MSP, Pure Data
or SuperCollider, it is still not so prevalent in more main-
stream electronic music, neither in the commercially avail-
able tools typically used within these styles.

3.2 Interacting with Style
The notion of musical style as a statistical model dates back
to 1956, after Leonard Meyer’s seminal work Emotion and
Meaning in Music [18], partially motivated by Shannon’s
Mathematical Theory of Communication [22]. Whilst there
have been approaches to style-modeling based on formal
grammars ([24] specifically for jazz harmony) and the imple-
mentation of music-theoretical rules [11], we consider statis-
tical modeling of style a fruitful approach toward generative
music systems ([9]; [8]; [21]), especially for the genres and
subgenres we are dealing with, about which there is not a
formalized musical theory proper.

Electronic dance music seems to be deeply anchored in
conventions that define the different genres and subgen-
res, emerging from a complex network of factors, including
aspects as diverse as marketing trends and social strati-
fication, technological development and studio production
techniques, not to mention the different musical roots from
diverse ethnicities and geographical idiosyncrasies. How-
ever, we will not consider these aspects inasmuch as they
are highly debatable and vague [25], focusing instead on
style, in the tradition set by Meyer, referring to those as-
pects that can be statistically learnt from a given collection,
however heterogeneous this might be (e.g. a user’s music
collection). In that sense, we hope to alleviate the danger
of dealing with preconceived ideas about genre and the lack
of (or blind confidence in) ground-truth [26].

When considering style imitation, Markovian sequence
generation is a well known modeling tool, which has been
used in many generative musical applications ([1]; [6]; [11];
[19]). More specifically, Markov chains have also been ap-
plied in real-time interactive music systems, such as ”M”
[34], the ”Continuator” [20] or ”Omax” [10]. However,
Markov chains and interactive control are two concepts that
do not go well together, because a user may not be able to
specify additional musical properties wished in the gener-
ated material, while preserving Markovian properties and
therefore stylistic consistence (Pachet, 2011). Pachet pro-
poses the use of Elementary Markov Constraints (EMC)
as a computational solution for obtaining steerable or in-
teractive Markovian sequences. In our prototype, we ex-
plore complementary approaches based on the constrained
and perceptually meaningful interactive manipulations of
Markov probability tables.

3.3 Source/Model and Variations
Our third pillar, based on the idea of applying variation to
a model or source chosen by the musician, seems also safer
than the alternative suggestion of material from scratch,
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for the artist who wants to keep full control over her cre-
ations (even when this material complies with the stylistic
constraints defined in the previous section). This idea of
”controlled variation” should not prevent, however, the sug-
gestion of ”weird”or contrasting material, when deliberately
decided by the musician.

We conclude this section with an overview of existing al-
gorithmic systems for drum pattern generation, both in the
academic and in the commercial realms.

3.4 Algorithmic Systems for Drum Pattern
Generation

Most of the systems reported in the literature try to cap-
ture the style of a compilation of patterns and embed it
in original rhythms that resemble those of the compilation.
Focusing on the input side, these systems can be classified
in two groups, according to the music representation they
are based upon: symbolic notation versus audio. Indepen-
dently of the input format, the techniques used for the anal-
ysis and synthesis of the rhythms are diverse, being genetic
algorithms (GA), neural networks and stochastic processes
the most commonplace.

On the first group of symbolic input based systems,
Burton’s system uses a GA to recombine collections of
polyphonic drum patterns extracted from drum machines
and transcribed manually [7]. As a part of the GESMI
project, aimed at generating complete electronic music
tracks, Eigenfeldt uses 1st order Markov chains of 32 steps
resulting from the analysis of the drum tracks of 100 tran-
scribed electronic music songs [12]. Tidemann et al. present
a system based on Echo State Networks (ESN), a particu-
lar approach of a neural network that is trained in real-
time by a human MIDI drummer [28]. Once their system is
trained, it is set to imitate the sequence that had been used
in training. Bernardes et al. use a GA to create new poly-
phonic drum patterns, based on the study of a set of MIDI
drum loops. The main operations of a GA which provide a
variable population of rhythms are crossover and mutation.
Crossover is based on a first order Markov chain and mu-
tation on the selection of a step to transform controlled by
their metrical weights. Once a population is created, den-
sity and complexity are used as user inputs to filter out the
output drum patterns [5].

On the second category we find two audio-based drum-
ming systems. Aucouturier and Pachet [4] describe a reac-
tive system that adapts to the musical input of a performer
on a MIDI keyboard. The generative system is based on
extraction of drum sounds from recordings and then uses
concatenative synthesis to generate rhythms. In the exam-
ple reported, the mappings between MIDI and drum genera-
tion, as well as other generative controls and constraints are
defined offline, therefore letting the system to drum along
with no real-time control. Wooler [33] describes a fast adap-
tive system used to create rhythm mosaics resulting from
two audio sequences to be cross-faded at the user’s will.
Cross-fades are not for volume but for the percussive ele-
ments extracted from one track or the other and located in
non-disruptive positions. The rules for locating the frag-
ments are based on a Markov analysis of the short rhythms
to be cross-faded. These two last examples are borderline
stylistic, but are worth mention due to the creative approach
to polyphonic rhythm generation.

Most commercial drum programs and plugins available
are concerned with sound rendering (synthesis and sam-
pling) and basic sequencing rather than with intelligent
pattern generation or algorithmic composition. We present
here a brief summary of the most relevant programs we have
found connected to our research.

Different Drummer [27] and Robotic Drums [30] use
stochastic methods for generating drums. Both are drum se-
quencers in which events on a given step are user-controlled
by a probability value. Another approach is Stylus RMX
[23], which aims to create music tracks based on overlapping
pre-analysed audio samples, forcing the onsets to be dis-
placed to certain points in the grid. There are two variation
parameters: a ”simplify” knob, which reduces the amount
of onsets in the loop, and a discrete selection menu called
”variation”, where a fixed amount of variations from the
original patterns can be selected. Although not a drum-
exclusive application, drum loops can be loaded in order to
be transformed.

Electronic artist Cristian Vogel has applied the Euclidean
algorithm [29] to automatic pattern generation in the Kyma
environment [31] and he has used the software to create all
the rhythmic elements for the 2014 album ”Polyphonic Be-
ings”. WaveDNA has recently released Liquid Music [32]
for Max for Live, which provides building blocks of rhyth-
mic patterns that can be varied and tweaked with unique
visual editing tools such as the ”beatform tumbler”complex-
ity transformer, the ”beatform weaver” combination gener-
ator or the ”groovemover” remixer. Artist James Holden
has tackled the difficult notion of groove and the challenges
that need to be addressed when interacting with human mu-
sicians. Based on Holger Hennig’s ideas, who examined the
effects of synchronisation between musicians [14], he has
released a free MIDI humaniser [15] which can listen and
respond to musicians in real-time performances.

4. REFINING THE DESIGN
4.1 Drum Interaction Questionnaire
For deepening into the potential high-level user control
features of our drum pattern creation software, we subse-
quently conducted an online questionnaire. It consisted of
25 questions, all using a 5-point Likert scale, which were
grouped according to the following topics: the musical ex-
pertise of the participant (questions 1-4), the concepts of
style-knowledge and variations (questions 5-10), the poten-
tial interest of such systems namely in an off-line compo-
sition environment and in a real-time performance context
(questions 11-12), the hypothetical and interesting proper-
ties, features, control parameters, etc. such a system could
potentially have (question 13), the specific interest of 5 po-
tential controls, namely: density, syncopation, stylistic typi-
cality, variation frequency and variation amount (questions
14-19), the convenience of having individual controls per
voice (question 20, 21), and the desired input and output
possibilities of such a system, namely audio and MIDI (ques-
tions 22-25).

A total of 48 participants took part in the survey, of which
38 were practicing musicians, 25 played drums or percus-
sion, and 36 produced electronic music and programmed
drums patterns. Following we present and discuss some of
our findings:

4.1.1 Style and variations
All features related to style and variations were considered
very interesting, the more appreciated being the possibility
for users to create their own styles (4.40)2 and the least one,
the possibility to navigate between different styles (3.90)
(perhaps some participants might have found this feature
harder to grasp). The possibilities to work with a model or
source pattern to which to apply variations and to be able

2All subsequent values indicate the average value of the
ratings, from a maximum score of 5.
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to navigate among several of these patterns were both also
very much appreciated (4.35).

When asked about the hypothetical use of these agents
in a real-time performance and off-line music composition
tasks, more participants thought that these potential sys-
tems could be more helpful for off-line composition tasks
than for real-time performance (4.23 vs. 3.83). This ten-
dency seems very reasonable considering that participants
could not evaluate the quality of the outcomes yet. We con-
sider, though, that these results still show a quite positive
predisposition for future live experimentation with such de-
vices.

Figure 1: More popular concepts with size propor-
tional to their respective frequency of appearance.

4.1.2 Open suggestions and tags
Participants were asked to list any potentially interesting
high-level interactive control parameters that such systems
could afford (within this question, they were instructed
about what could be considered a ”high-level” control). Fig-
ure 1 shows the more frequent tags, from a list of manually
post-processed 118 terms that comprised all the 48 partic-
ipants’ contributions. We observe that the tags that re-
peat more frequently are ”variation” (7) and ”randomness”
(6), followed by ”bar vs. beat control”, ”density”, ”groove”,
”swing” (5), ”aggressiveness”, ”complexity”, ”syncopation”
(4), and finally ”accent”, ”humanize”, ”pattern-morphing”
and ”style morphing” (3).

4.1.3 Density, Syncopation, Stylistic typicality, Vari-
ation rate and Variation amount

Following this open-form suggestion, we explicitly asked
participants for the convenience of some specific controls
we had previously identified ourselves as potentially inter-
esting and reasonably implementable. All these concepts
had already frequently appeared in the open tags list, either
explicitly (i.e. density and syncopation), or via related con-
cepts (e.g. commonness, weirdness, commonness-weirdness,
absurdity and contrast for stylistic typicality, and variabil-
ity, variation, variation-amount or bar-vs-beat-control for
variation frequency and variation amount). The topics we
introduced were namely density, syncopation, stylistic typ-
icality, variation rate and variation amount3. All features
were considered quite interesting, confirming the results ob-
tained in the open list, with syncopation being considered
the most interesting one (4.29), and variation rate as the
least (3.69).

4.1.4 Global vs. individual (voice) control
The issue of a global control of the drum pattern vs. a
separated control for each drum voice (i.e. kick, snare, etc.)
had already appeared in the open list form, with related

3Before each question, each of these terms was briefly de-
scribed in a short sentence

tags such as: density by voice, voice separated control, voice
hierarchy, voice number control or polyrhythmic support.
We were now posing these two precise questions: ”For each
of these parameters I would like to have global direct control
on all the sounds (e.g. kick, snare, open hat, closed hat...)
at once” and ”I would like to have separate control on each
of the sounds (e.g. kick, snare, open hat, closed hat...)”.
Perhaps not surprisingly, both possibilities were considered
equally important (3.96 vs. 3.98, respectively).

4.1.5 MIDI and Audio Input/Output
As an introduction to the two last questions, we uncovered
and explicitly stated the idea that such a system would be
trained in a ”style” by being fed with examples (e.g. from
individual files or from complete folders). These questions
thus addressed the preferred formats for this training mate-
rial (either audio or MIDI drum loops), as well as the pre-
ferred output formats (audio or MIDI messages). Again, the
preferences were very similar and all features were consid-
ered especially important (4.1 for MIDI importing to 4.45
for MIDI output).

As we understand it, an ideal system should be able to
work in all modalities. It should be able to learn from MIDI
sequences (definitely simpler to implement), but also from
audio drum loops (which should probably be decoded be-
fore analysis). It should be able to output MIDI messages,
a flexible solution for the professional producer who will
definitely want to have full control over the chosen drum
sounds, but it should also be able to produce audio, proba-
bly resulting from the advanced manipulation of the drum
loops used as models or sources.

4.2 Prototype Requirements
The preliminary RBMA interviews together with the re-
sults of this drum interaction questionnaire led to specific
concepts and ideas, which were translated into requirements
and set to work in the design process of a novel drum in-
teraction system:Drumming with Style. This prototype is
an interactive drum pattern generator/variation generator,
based on Markov chains, that pursues the concept of in-
teracting (or high-level ”drumming”) with style. Following,
we describe its current state, with a focus on its interactive
control aspects.

5. DESCRIPTION OF THE SYSTEM
Drumming with Style is a software prototype for both per-
formance and studio work, aimed at the generation and
variation of drum patterns. It allows continuous pattern
variations to be controlled by the performer on the basis of
some high-level musical parameters, such as density, syn-
copation and commonness, while keeping compliance with
a user-defined drumming style. At its present state, the
material used to feed its stylistic knowledge are collections
of MIDI drum loops or drum tracks, which can be selected
by the user. In its current incarnation it is implemented in
Pure Data and can be run as a VST plugin using PdPulp4,
thus working in synchronization with any DAW. It outputs
MIDI messages that can be sent to the same DAW or to
any drum synthesizer/sampler plugin.

5.1 Step-Based Markov Probability Tables
The material used to feed the stylistic knowledge to
our prototype are sets of MIDI drum loops or complete
drum tracks. Each set is assumed to contain genre-style-
consistent information (e.g., deep-house, jungle drum pat-
terns, or any collection compiled by the user). In the current

4http://pd-pulp.net/
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version we are working with sequences of up to eight differ-
ent instruments (i.e. kick, snare, open hat, closed hat, rim
shot, clap, bongo and conga), but the same principle could
be extended to drum sequences with more instruments.

Each MIDI library or set of tracks selected as the stylis-
tic input is analyzed, filling several probability distribution
tables depending on the selected order. The current im-
plementation works with Markov orders from 0 to 8. The
resulting tables are n 2D-arrays Anij, i ∈ [1 − 256] and
j ∈ [1 − 32], where n represents the Markov order used, j
represents the step in the drum loop and i represents the
possible drumming events at step j. The 256 possible values
of i cover silence (no instrument sounding), each instrument
sounding separately , plus all the possible instrument com-
binations. As the Markov order n increases, so does the
amount of probability distributions. For example, if the
Markov order is 2 (n=2) and i ∈ [1 − 256], at step j-2 we
have 256 possible events and at step j-1 we have another
256. In general, the amount of tables increases at a rate of
in, so that 2562 = 65536, is the number of tables needed to
record all possible combinations of two past events.

5.2 Interaction Parameters
At the heart of a Markov system lays a selection of pos-
sible future events mediated by a probability distribution
table which is selected given the past events. Our system
enables the user to modify in real-time these probability ta-
bles based on high-level controls that will favor (or disfavor)
the occurrence of some events at given steps. The following
sections describe these high-level concepts and their imple-
mentation into interactive algorithms. Namely, we currently
have addressed the concepts of commonness/oddness, den-
sity and syncopation, which are derived from the interviews
and from the questionnaire with producers.

5.2.1 Strategies for Commonness/Oddness
The notion of commonness relates to the manipulation of
the probability of an event to occur at a given step. This
opens up the door to increasing the probability of the most
probable/common events, at the cost of reducing the prob-
ability of the least common ones. Stylistically, this could
be translated as emphasizing the most recurrent elements
in the database, or as ”sharpening” the style. On the other
hand, the concept of oddness suggests the opposite: em-
phasizing the least recurrent drumming events found in the
database (the odd rhythms within a style)[3]. So far we
have implemented this ”commonness/oddness”control using
a sigmoid transfer function, which works as follows: proba-
bility distributions are temporally reordered at every given
step, according to their probability values, and subsequently
multiplied by the sigmoid, whose skewness and slope [-1,+1]
are controlled by the user. This algorithm allows to sharpen
or flatten these probabilities (via the skewness control), but
also to invert them (with the slope control), thus creating a
sort of ”anti-style”.

5.2.2 Strategies for Density
Density is defined as the amount of onsets of a given instru-
ment per unit of time. We are currently exploring density
in two ways. First, as the balance between silence and the
occurrence of an event, and second, as the balance between
silence and the different amount of drum sounds played to-
gether. On the first approach, the density of a pattern on
a given step is inversely proportional to the probability of
a ”silence” event. For example, when the probability of re-
producing a silence on a given step is 100%, then that step
has density 0. Controlling the density of a pattern thus
becomes controlling the probability of silence to occur at

the expense of all the other 255 possible events. On our
second approach to density, combos of simultaneous drum
shots are considered to have a higher density than combos
of lower amount of simultaneous drum shots (i.e. a combo
of kick + snare + open high hat is denser than a combo
of snare + clap). When manipulating density using this
second approach, what is taken from (or given to) silence
is distributed among (or taken from) the rest of the possi-
ble events, proportionally to their amount of simultaneous
shots.

When density implies artificially increasing the value of
an event on the probability distribution from zero to any
other value (i.e. the occurrence of silence at a given step is
100% but we want to introduce a sound), it creates a rupture
in the flow of a Markov system. This inconsistency is due
to the appearance of new events that did not occur when
the style was analyzed, that make the system unable to
respond. This inconsistency is called a zero frequency state
(ZFS). A ZFS is mathematically induced by an algorithm
adding to a probability table instead of multiplying, since a
probability zero multiplied by any value will always remain
null. Our density algorithm takes care of these issues, by
avoiding the use of zero values in the frequency tables and
replacing them by very small values close to zero, and by
automatically reducing the order of the Markov table to 0,
whenever a ZFS is found. These steps add flexibility to the
system allowing the increase of the probability value of any
given step, regardless it not occurring on that step in the
database.

5.2.3 Strategies for Syncopation
Our approach to syncopation is based on the metrical weight
profile by Lerdahl and Jackendoff [17], where all the steps
within a rhythmic pattern are assigned a weight according
to the metrical structure of the rhythm. This profile is said
to describe human cognitive expectation of an onset when
listening to a 4/4 beat. The higher the metrical weight, the
higher are our expectations of experiencing a note on such
step, given the metric and the resolution. When the expec-
tations are broken, such that an onset that was expected to
occur on a strong metrical weight is presented on a previous
step, or that a strong metrical step is replaced by a silence,
a syncopation occurs.

With the syncopation control, a user is able to amplify
the syncopation of a pattern, or on the contrary, to make
the accentuation of the beat stronger. Our syncopation al-
gorithm changes the density value at a given step, while
excerpting the same value on the next step in opposite di-
rection. If the intention is to increase syncopation, the odd
steps are density-increased and the even ones decreased.
The opposite happens if the intention is to reduce synco-
pation, giving more density to the steps that reinforce the
sensation of the beat. In general terms, syncopation is a
step-dependent density control.

6. FUTURE WORK
We are still adding features to the system. An Independent
instrument control will allow for separate controls over the
different drum sounds, such as increasing the density of the
kick while decreasing the snare’s. With Style-to-model in-
terpolation a source pattern is input by a user, and vari-
ations of it are generated by increasing the statistical in-
fluence of a style. In Style-to-style interpolation, a pattern
is generated somewhere in between two or more different
styles, according to an interpolation value that indicates
the statistical influence of each style in the resulting pat-
tern. Other controls described in the reported question-
naire, such as the variation rate and the variation amount,
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have neither been addressed yet. More importantly, al-
though we are frequently conducting many informal local
tests, specially for addressing the choice and implementa-
tion of some algorithms, all of the current solutions and
alternative approaches we are implementing still need to be
further validated by the users.

7. CONCLUSIONS
We have presented Drumming with Style, a musical agent
for the interactive generation and variations of drum pat-
terns, according to some stylistic constraints defined by the
user. The guidelines for this agent have been deduced from
extensive interviews and questionnaires carried out with
dozens of EDM producers. This is a work in progress; all
ideas of interaction presented in this paper have been imple-
mented, and are being tested with users and explored more
in depth, in order to understand which of them, and under
which circumstances, are the most suited for our system.
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